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8.3 SPATIAL VARIABILITY AND GEOSTATISTICS example, a maximum yield is measured at about 150 kg-ha™! fertilizer. Being

Soils vary continuously i . mindful of the desire not to waste fertilizer or pollute the subsoil envirorunent
y y in space, especially when we consider domains at the with excess fertilizer and also noting that 100 kg-ha™ fertilizer produced a yield

soil series scale. However, our measurements i i
: | ] of soil physical properti i i ‘ : §
sets of discrete values for particular "point" locations lw;,vizll'dn ov.lxar sgilrtslae:ng;ierllg oo et Tt o ncsesod il Deng o when &

area. For a more complete interpretation of those discrete measurements, the fertilizer over the entire field. With an increased yield being obtained when the

theory of regionalized variables transfor . ) recommendation is followed, the farmer is happy. What is the usual third step
continuum. s our point discrete data to the soil taken in the above experimentation? It varies from repeating the same

experiment or modifying its treatment levels, going to another field or soil
condition or doing nothing more. Doing nothing more does not benefit the
farmer nor does it benefit agriculture or the environment. Another sampling
across the entire field could detect specific locations within the field where, for
example, crop production could be increased, excessive levels of the fertilizer
nutrient and deficiencies of other plant nutrients prevail or changes in soil
quality indicative of achieving or denying sustainable agriculture are observed.
Yes, another sampling across the entire field would ascertain if the farmer could
make still further improvements in crop and soil management without
necessarily imposing different treatments in still another replicated small plot
experiment. Similar inefficient procedures can be found in research and in
practical applications of soil hydrology.

Assuming steady-state conditions, deterministic concepts and ‘mass
balance equations have usually been applied for relatively short time periods -

é LUSUAL minutes, days, weeks or for times no longer than a growing season. Attempts to
S SECOND STEP assess the impacts of agricultural methods and weather events between and
By \ during several growing seasons have been made through long-term
8 R experimental plots managed for decades, and in a few cases for more than a
O - >~ o century. These kinds of experiments remain effective today when one wishes to
0 100 7 TREAT ENTIRE \ ascertain the effect of a particular treatment relative to crop or animal
FERTILIZER (kgha™) { FIELD WITH | production. On the other hand, they do little for improving our understanding

\ 100 kgha'! y qf how agricultural practices impact on the quality of water leaving a cultivated

TSUAL N o _ field or rangeland. Moreover, they provide no direct information regarding the

? - — - all-too-often subtle changes in soil quality occurring on a farm or within an

. THIRD STEP . .
agricultural region.

) : During the century, we have asked the question, "Does the treatment
Figure 8.3. Small, replicated plot scheme typical of agricultural research. cause a significant perturbation from the expected mean?” We have used
analysis of variance and regression techniques designed to minimize the impact
of spatial or temporal heterogeneity in field soils and until recently, have not
even taken the time to record where we take an observation within an

replicaﬁilhlpel‘g::‘:sr;; lli;lh:gncult‘uralb production have been aided by small, experimental plot or field. ‘

of a farmer's field or an agr(ijgx lstlttxiasxl lil:\ilved to lée typical” or "representative" Regionalized variablg analysis considers the distance between pairs of
plots treated with fertilizers, pesticide .sce.lpe.. rop responses_ on these small measured valt.xes ?s the main criterion in dealing with the variance. Here lies
formed the basis for uniformll ptreatin s, irrigations, etc. were interpreted and one of the main differences between classical "Fisher" statistics and geostatistics.
all-too-common method today of congd anﬁentlre field. f:‘lgu.re 8.3 illustrates the Whergas the cqorFllnate system is ignored in classical "Fisher" statistics, it is
agricultural field an day or ucting agro'nomxc.ﬁelf:l research. In an used in geostatistics to better answer the question, "How far apart should we
g experiment is located at a site which is assumed to be take our samples?”

"representative” of the rest of the field as well as the soi i

; i : | il of the agricultural
region. With replicated treatments established in four statistical block%r the first
step is to establish the regression between crop yield and treatmenlt. In this
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8.3.1 Autocorrelograms and Semivariograms

A geostatistical evaluation of data is performed using two tools; (i) the
autocorrelogram and (ii) the semivariogram. Both tools can be used for data
obtained in 1, 2 and 3 dimensions as well as in time. For the sake of simplicity
here, we limit our description and their construction for sampling along a
transect at regular intervals.

For an explanation of an autocorrelogram, we consider a transect of equi-
distant sampling and measurements of soil property A. We obtain a value of A
at location x1 designated as A1(x1), and similarly Ax(x3), A3(x3) -- An(xn), see Fig.
8.4. We compute correlation coefficients for pairs separated by a specified
distance h using the relation

cov[A Alx+ h)]

\/ﬁzr[A(x \/Var[A x+h)]
For example, if we specify a distance h = 0, we find for pairs [A(x;), A(x))] a
correlation coefficient 7, = 1. For pairs [A(x;), A(xi.+1)] at a distance h = 1(nearest
neighbors), we obtain a value of r1. Next, we increase the distance between the
neighbors to h = 2 for pairs [A(x;), A(x;s2)] and obtain a value for r; and so on.
Details of the calculation are e.g. Webster, 1985; Webster and Oliver, 1990).
Finally, we plot r; versus h or r(h) and we obtain the function illustrated in‘Fig.
8.4. The distance between neighbors h is called the lag. The distance over which
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Figure 8.4. Derivation of the autocorrelogram with equidistant sampling along a
transect.
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a significant correlation exists is called the correlation length, scale, or range.
Commonly, the correlation length 4 is defined for a 1-dimensional transect by
the relation

r=r,exp(-x/A) (8.6)
where the value of 7, =1 and that of r is dlmlmshed to e! at a distance of A.
Figure 8.5a presents soil water content 6 measured in a field at 1-m intervals
with a neutron moisture meter at the 50-cm soil depth within a 160-m long
transect. Neglecting the locations of the observations (n = 160), the mean m and

standard deviation s of the 160 observations are 0.136 and 0.0162 cm3-cm™3,
respectively. Figure 8.5b,.the autocorrelogram of the 160 observations, shows
that the autocorrelation length A is‘about 6 m. Sampling at intervals less than 6
m is somewhat unnecessary because the observations are related to each other.
Sampling at intervals greater than 6 m does not allow meaningful interpolation
between neighboring observations. It should be obvious that the functional
relation between r and h depends upon the size of the sample, and that in
general, the greater the sample size, the greater the value of the autocorrelation
length A.

& 0.2 T T T
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=N /VW/\/'\N\/]M
=z ; 0.1+ 2
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@) E mean = 0.136
2 Z std dev. = 0.0162
8 0 | i |
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Figure 8.5. a. Values of soil water content 6 measured with a neutron probe
along a 160-m transect at 1-m intervals. b. Autocorrelogram of 6
illustrating a correlation length A of 5.86 m.
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When we calibrate a soil moisture meter, we should try to sample at
distances smaller than the value of A. Or, when Ks is measured on samples of
various sizes, autocorrelograms for each size provide estimates of 4. As the size
of the sample increases, the value of A or the scale of the autocorrelogram
approaches an upper limit which defines the value of the REV. The same
technique can be used to ascertain the magnitude of the REV of 6 for a particular
value of h. Or by using different sampling volumes, we can establish equal
autocorrelation scales for both 8 and solute content when we formulate
transport equations for leaching.

The concept of autocorrelation is applicable only if second order
stationarity exists, i.e. if the variance is constant across the field. Spatial trends
across fields or within soil profiles can be found from autocorrelation functions.
If there are shoulders within r(h) or if r(h) remains large as the separation
distance increases, we can assume that trends exist. Because nonlinear trends
yield different correlation scales for different sampling grid densities, trends
along a transect can be examined by a regular dropping out of data to change the
density of sampling. The correlation scale is also probably interrelated with
transect spacing (Jury, 1989). »

The concept of variance known from classical statistics is extended in
geostatistics to consider the location of ‘the observations [A(x;), A(x; + h)]
separated by a distance h. The equation for the construction of the
semivariogram is

y(h) = 51; E;[A(xi +h)-A(x, )]2 . (8.7)

As the distance between pairs of observations or lag h increases, Ah) rises and
asymptotically approaches the value of the variance called the sill, see Fig. 8.6.
The sill is approached at i =  denoted as the range or scale of the variogram as
well as the zone of correlation. For h < A, the variance is deformed by the
position of the sampling points, or in other words, by the spatial dependence
otherwise called the spatial structure. Methods for calculating A are reviewed by
Peck (1984). Semivariograms for spatially independent and dependent data as
well as for a spatially changing domain are illustrated in Fig. 8.6. If the domain
is spatially changing and not statistically homogeneous, ¥h) increases and does
not approach a sill. Methods for dealing with this situation are described in the
literature (e.g. Webster, 1985). The intercept at h = 0 is called the nugget and
usually appears as a consequence of fine scale estimates not being available. The
nugget also includes the measurement error. Uehara et al. (1985) collected
surface soil samples on a 1-km grid within a single soil series in Sudan
extending over an area of about 400 km?. Additional samples only 1 m apart
were also collected. Each sample was analyzed for exchangeable sodium
percentage inasmuch as that soil attribute was judged to be most likely to limit
sugarcane production. The spatial variance structure of the exchangeable
sodium percentage across the domain is apparent in Fig. 8.7. The variogram has
a nugget of 6.15, a range of 3 km and a sill and sample variance of 21.6. Kriged
contours of exchangeable sodium percentage having values between 5 and 21%
had a mean estimation variance of 10.5. (Kriging and co-kriging are discussed in
the next section.)

8.3 Spatial variability and gcostatistics
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Figure 8.6. Derivation of the semivariogram with equidistant sampling along a
transect: a. spatially dependent with and without a nugget, b. spatially
independent and c. spatially changing domain.
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Figure 8.7. Semivariogram of exchangeable sodium percentage from samples
taken on a 1-km grid over a 400-km? area of a mapping unit in Sudan
(Uehara et al., 1985).
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Figure 8.8. Semivariograms of two perpendicular transects of a non-isotropic
domain.

In a non-isotropic domain variograms differ for different directions, see
Fig. 8.8. For sampling on a rectangular grid, constructing variograms along the
main two directions of the grid and on the two diagonals is a logical first choice
to identify the presence of non-isotropic behavior. For the construction of the
appropriate semivariograms, computed data yh) are fitted to a simplie curve,
usually the segment of a circle, or that of an exponential or hyperbolic curve.
Interpreting semivariograms is made somewhat more reliable if a couple of
"rules of thumbs" are followed. First, the minimum number of samples along a
transect should be in the range of 50 to 100 (Gutjahr, 1985; and Webster, 1985).
And second, the estimation of k) is considered reliable for lags not exceeding
20% of the total transect length.

The term support refers to the size, shape and orientation of samples. An
increase of support, called regularization, generally leads to a decrease of
variation.

Reviewing data of various authors, Jury (1989) shows that the correlation
length A of a given soil property varies significantly. In some instances when
the value of 4 depends upon the sample spacing along the transect, we deal
with a scale effect. In such cases, several theories provide an explanation (e.g. a
violation of the stationarity hypothesis).

8.3.2 Kriging and Cokriging

Derived information on spatial variability in the form of r(h) and Hh) can be
advantageously used for estimating a soil property at locations where it is not
measuréed. Kriging is a weighted interpolation named after D. G. Krige (1966)
who devised it for estimating the gold content of ore in South Africa. Although
its theoretical foundation was apparently recognized much earlier
(Kolmogorov, 1941), its present day development is largely attributed to

8.3 Spatial variability and geostatistics 259

Matheron (1965) and his associates. If A(x;) and A(x3) are measured values of A
at locations x1 and x3, respectively, we seek an unbiased estimate of A in
between x; and x,. We interpolate with weights y and v for each of the positions
x1 and x3. Values of 4 and v depend upon the covariance function or the
semivariogram as well as upon the location of the interpolated value. Note: that
the weights do not depend upon the actual values of A. The kriging variance or
the minimum square error 6% is a measure of the precision of the interpolated
value. Many kriging formulations are available (e.g. Journel and Huijbregts,
1978). Here, we briefly introduce punctual kriging.

For n sampling points x; i=1,2, - n) in a field, A is estimated (or kriged)
atx, by

n
AM(x,)=Y MA(x;) (8.8)
i=1
where 1; are the weights assigned to the sampling points and have a sum of
unity. The kriging variance is
n n n
U%((xo)=2zli7(xirxo)_zZ)'i)'jY(xirxj)_T'(xorxo) 8.9)
i=1 i=1j=1
where Axi,xj) is the semivariance of A between the ith and jth sampling points,
7(xix,) is the average semivariance between the ith sampling point and the
field and 7(x,,x,) is the average variance within the field. The kriging variance
is least when :

ilﬂ(x,»,xj)+m=7(xj,xo) (8.10)
i=1

1=
for all j where py is the Lagrange multiplier. The solution of (8.10) subject to the
sum of the weights 4; being unity provides values of the weights 1; used in (8.8)

as well as that of y;. These values also allow estimation of 0',2<(x,,) with

O (%)= X AT (i, %o )~ F(xos o)+ (811)

i=1

An examiple of kriging along a transect is given in Fig. 8.9. With kriging,
additional optimal locations of sampling can be gained inasmuch as the kriged
isolines depict more objectively the district of soils than an interpolation done
by eye, or by linear interpolation between the measured data. The results of
kriging depend upon the fitted semivariogram and can be easily validated as
follows. An estimate of A is made for each location xj for which an observation
was obtained but is purposely left out of the kriging process. The procedure
("jack-knifing") is repeated for each of the measured j locations. The differences
between the kriged and observed values are related to o2, and if equal to 1, the
kriging procedure has been properly executed. The computational procedure is
readily available in the literature (e.g. Journel and Huijbregts, 1978; and
Webster, 1985).

In the derivation of the autocorrelogram we considered the spatial
correlation of only one soil property with itself - hence, the term
autocorrelation. The same principle can be applied to two properties A and B to
determine to what extent property A at location x; depends upon B at x;,1. Here,



260

we deal with random fields of two properties, and when we transfer spatial
variability information from one field to the other, their variables are co-
regionalized or cross-correlated. The procedure is particularly useful when
sampling locations for variable A are not identical to those for variable B, e.g.
variable B is more densely sampled than variable A. Practical considerations of
cost of analysis, reliability of particular measurement procedures, ease and
access of sampling locations and time all contribute to the numbers of
observations selected. For example, the available water content AWC in a soil
profile and soil water content at pF = 2.5 are more difficult and expensive than
the contents of sand, silt and clay. The semivariogram of these five properties
and their cross-semivariograms are plotted in Fig. 8.10 and used in co-kriging
procedures to obtain the contour isarithmic maps given in Fig. 8.11. The
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Figure 8.9. Demonstration of Kriged estimates yielding a smoother path than

the actual path (Gutjahr, 1985). The shaded area represents +ox.

detailed computational procedure is described by Vauclin et al. (1983).
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Figure 8.19. a. Semivariograms of five soil physical properties and b. Cross-
variograms. AWC is available water content and pF 2.5 represents the
soil water content at pF = 2.5.
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Figure 8.11. Isolines of available water content using data from Fig. 8.10 (top
fig.).The accuracy of the map increases when kriging is used (middle fig.)
and co-kriging is used (bottom fig.). The bold, horizontal numbers
correspond to measured values (Vauclin et al., 1983).
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Figure 8.12. A self similar microscopic soil particle structure is the principle of
Millers’ scaling (Miller and Miller, 1956).

8.4 SCALING

Scaling theories are based upon the assumption that the continuously
heterogeneous field is an ensemble of mutually similar homogeneous
domains. We assume that each of the domains can be characterized by the
SWRC h(8) which is related to the porous system through (4.11), or more
generally by

h= f(%) 8.12)
Two porous media of equal porosity are similar according to Miller and Miller
(1956) when a scale factor A4 exists which will transform one of the porous media
to the other. Such similar media have identical microscopic structures except
for scale, see Fig. 8.12. This kind of similarity leads to the constancy r1/A; = 12/,
=1;/A; and to the formulation of a scaled, invariant pressure head h* such that

Ay =2k = A =K (8.13)
where h* can also be called an average pressure head and A* is an average
scaling factor. Alternatively, we can denote the parameters of a reference soil
with an asterisk.

Invariant microscopic flow in pores leads first to the formulation of an

equation for the mean pore water velocity, see Hagen-Poiseuille (5.10) for
laminar flow. Hence, the saturated hydraulic conductivity is

K, = f(r*) (8.14)
and with the dimensionless term r/A, we obtain

K /() = Ko/ 22 ‘ (8.15)
and analogously for K(6)

K*(0)/(°) = K,(8)/A2 (8.16)

where K; and K*(9) are either average values or values of a reference soil. The
original scaling of Miller and Miller (1956) is restrictive in two aspects. First, a
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microscopic length is physically interpreted, and second, the requirement of a
constant porosity is rarely applicable.

Warrick et al. (1977) extended the use of the Millers' single scaling factor
by introducing the degree of saturation (equivalent to the earlier relative soil
water content 6r) and eliminating the assumption of identical porosities. Thus,
they scaled 8 with the scaling factor 85. Additionally, their derivation of A does
not require a search for a microscopic physical length. For the derivation of 4,
the sum of squares

T (r - Ah)
was minimized for r locations. Using this scaling procedure, a large dispersion
of experimental data of h(8/6s) and K(6/8s) was nicely coalesced into unique
functions, see Fig. 8.13. Hence, soil heterogeneity is approximated by the
stochastic character of A which retains its universal meaning with relations
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Figure 8.13. The scattering of experimental h,(6g) and K,(6r) data (left) is
substantially reduced by Warrick's scaling (Warrick et al., 1977). The lines
given in the upper and lower right hand graphs are the equations
(h=-6020 6R'[(1- 6g)-2.14(1- 63) + 2.04(1 - 63) - 0.694(1- 64)]} and

[InK = -20.5 + 75.0 6g - 10963 + 59.7 6} ], respectively.
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The modification for estimating A indicated in the Warrick et al. (1977)
procedure was fully developed by Simmons et al. (1979). They rejected the
assumption of microscopic geometrical similarity and based their method on
the similarity between soil hydraulic functions.
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Figure 8.14. Neutron probe soil water contents measured at different soil depths
and spatial locations during redistribution. Equation (8.18) is the solid
line describing the scaled data.

Simmons et al. (1979) as well as others (see authors and those cited in
Hillel and Elrick, 1990) have derived scaling relations that have not yet been
sufficiently examined under field conditions to define criteria for their
acceptance or rejection. Some of the formulations are physically based while
others are mathematical techniques of inspectional analysis. Sposito and Jury
(1990) - showed that Richards’ equation will be invariant under scaling
transformations only if K(6) is a power or exponential function. If that is the
case, the solution of Richards' equation obtained for one location can then be
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scaled to other locations in the same field or domain. Assuming K(6) is an
exponential function and a unit hydraulic gradient exists during redistribution
in the absence of evapotranspiration, Simmons et al. (1979) recommended that
(7.28) be scaled with a.common value of § in (7.27) for all locations. within a
field. Fig. 8.14a shows soil water content versus redistribution time for a total of
608 measurements (19 times at 32 locations) within 4 plots covered by plastic
sheeting to prevent evaporation after steady state infiltration had ceased. Fig.
8.14b shows the data from Fig. 8.14a. scaled with reduced time 7 and a common

initial value of ,. The solid line in Fig. 8.14b is

6=8, -lm[u K ’] (8.18)
B z

where 8, = 0.408 cm®cm™3, f = 50, K* = 529 cm-d}, 2* = 120 ecm and
r=wzz'(az)'1t[a is defined in (7.26) and @ is the scale factor for each location

defined by Ko=a)2K' where K is the scale mean of all K,.]. The measured 6

deviate from the solid line with a pooled standard deviation is 0.008 cm3.cm-3 -
a value comparable to-the neutron probe measurement error.

Methods based upon regression analysis are described as functional .
normalization techniques (Tillotson and Nielsen, 1984). With this approach
being only macroscopic, geometrical similarity of the porous system is therefore
not the condition for scaling. The idea of a universal 4 for all hydraulic
functions was abandoned as it was found that A for scaling h(6g) is not
necessarily identical with that of K(6r). Even if the two scaling factors are
different, they are generally correlated. In order to differentiate from the
previous universal single set of scaling factors 4;, we shall now use symbols ay;
and ay; for the two sets of scaling factors, the first one denoting the scaling of
and the second denoting the scaling of K. Hence, we have

K K" 9
=g 4 _(K‘) 6 = % (8.19)
A set of sampling locations is similar if the soil hydraulic functions can be
scaled. Warrick (1990) reviewed the application of this scaling in three different
regions, while Clausnitzer et al. (1992) demonstrated that simultaneous scaling
with @; and o3 is not always as successful as independent scaling using a single
scaling factor A (our notation here).

-Stll yet another scaling proposal of Vogel et al. (1991) is based upon the
assumption that the spatial variability of soil hydraulic functions has two
components, one being linear and the other being non-linear. Supposing that
the linear component is dominant, he proposed linear scaling with
h _ K(h) _ 6(h)-86,
ho al( Ku(h-) ao o.(h-)_ e: (8'20)

Any of the above types of scaling should be tested for the measured set of
functions. For the selected type -of scaling the invariant form of Richards'
equation is applied together with the scaled boundary conditions. We can
denote the soils as Warrick, or Simmons, or Vogel similar. Once successfully
scaled, computed fluxes can be "descaled” for any given sampling point. Of

a, =
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greater importance is the study of the variability of the scaling parameters by
stochastic and geostatistical methods. Scaling yields higher quality data or more
useful information when soil samples within one soil type are scaled
independently from other soil types (Clausnitzer et al.,, 1992). The variability of
soil hydraulic functions is appropriately expressed by scaling factors within each
soil type where their pdf and correlation structure can be easily determined.
Additional details on numerical procedures of scaling are described by
Clausnitzer et al. (1992). Appropriate developments of dimensionless variables
and scaled basic equations for various types of boundary conditions and soil
hydrological problems have been assembled by Hillel and Elrick (1990).

Up to now we have demonstrated the scaling of soil hydraulic functions
of field soils in order to ascertain reference soil parameters and the statistical
character of the scaling factors. However, scaling techniques offer still a greater
opportunity to formulate Richards' equation in an invariant form for the
solution of elementary hydrological processes. Once a solution is known for a
defined soil or boundary condition and is expressed in scaled variables, it is
valid for all soils or boundary conditions within the given class of flow
problem. Two different procedures are available. (i) Variables and soil hydraulic
functions are scaled by the boundary condition with these scaled variables
usually not being dimensionless. (i) Variables are scaled to dimensionless
forms using soil hydraulic functions. These solutions are similar to traditional
expressions of solutions of flow problems in dimensionless variables.

The first procedure was used in the study of two scaling classes. (i)
Infiltration with a constant flux at the soil surface (Neuman's boundary
condition) and infiltration into a crust-topped soil (Kutilek et al., 1991).
Variables z, t and @ scaled by the boundary condition, i.e. either using the flux
density g, (left-hand column) or using the resistance R (right-hand column) are

t=g2T t=R"T" (8.21)
z=¢"Z" z=R"Z’ (8.22)
6-6,=q'6" 6-6,=R6" (8.23)

The soil hydraulic functions expressed in a power form D(6) = Dy(6 - 6,)", h(6) =
-p(6- 6,)™ and K(6) = K,(6 - 6,)° similarly scaled are

D(6)=4."D"(6") D(6)=R"D"(8") (8.24)
h(6) = g;"" 1’ (6") h(8)=R*"1'(6") (8.25)
K(6)=¢""K'(6) K(§)=R"K(6") (8.26)

And, Richards' equation in the diffusive form (5.68) transcribed into scaled
variables invariant to ¢, is

q(7‘a) .ai.. = q(ﬁ"*"}"zﬁ)__a__ D‘(e‘)_a_o‘_ - q(‘ﬂ—ﬂ) _aK (6 )

o arl‘ [ azt az‘ 0 *

Similarly, (5.68) transcribed into scaled variables invariant to R is

. * JK*(6*
RE2) 8_8; - Rlon+e=20) i‘ D-((,-)_B_é_?T _R(cu-b)_(_l. (8.28)
oT oZ Jz JZ

8.27)
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Boundary conditions are expressed in a similar manner. The exponents for the
above conditions are

_ ~2m-n 4= 2m+n
T mAn+l T 2m4n+l (8.29)
-m ' m
= —_— b =
A m+n+1 2m+n+1 (8.30)
_ 1 c= -1 "
[ T 2m+n+1 - (831)

The solution of the infiltration problem plotted in scaled variables 6*(Z*, T*) is
valid for the whole class, i.e. either for all variations of constant flux at the soil
surface, see Fig. 8.15, or for all variations of resistance (except for R = 0), see Fig.
6.25.
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Figure 8.15. Scaling of Richards’ equation through the boundary flux for NBC
infiltration offers unique soil water profiles for all fluxes. Scaled variables
are 6°, Z* and time T* (Kutilek etal., 1991). The symbols O, ¢ and O
designate values of g, = 0.05, 0.15 and 0.25 cm-h?, respectively.The value
of Ks is 0.196 cm-hL.

The second scaling procedure elaborated by Warrick and Hussen (1993) is
applicable to a broader family of flow classes, e.g. redistribution and upward
flow. They defined the dimensionless variables

Z'=2/z, T =t/t, (8.32)
and functions
. 06-6, . .
6 =-9—:9—, K =K/K°, =h/Zo (833)
where 6, < 65 and K, = K(8,). When they considered the soil hydraulic
characteristics
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a n

6-9. =(1’4) X_[(6-6. (8.34)

0,-6, \h K |9.-6,
they defined

6,-6,)"" ‘

z, = I"M'( ) ] (8.35)
and

= L?,_—;(_G,)_zi . | (8.36)

Hence, in Richards' e:’quation all variables and soil hydraulic functions are
scaled with each equation being invariant and dimensionless. An example of a
scaled soil water profile @(Z*, T*) for infiltration with DBC is given in Fig. 8.16.
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Figure 8. 16. Soil water profile for Guelph loam (Warrick and Hussen, 1993) in
scaled variables 6*(Z*,T*) for DBC infiltration is unique in 6'(Z°) for T'
= 0.4 and 0.8. Data points represent the following combinations of
saturated hydraulic conductivity (cm-h’?) and relative soil water content

[Ks, 6/65]: [1.332,1.0], [2.664, 1.0], [1.332, 0.9] and [2.664, 0.9].

A scaling procedure is also advantageous for the solution of the inverse
problem of infiltration (Warrick, 1993). With the soil hydraulic functions being
scaled together with variables, the procedure is conveniently reduced to simple
algebraic computations instead of repetitive numerical simulations.
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8.5 STATE-SPACE EQUATIONS FOR MULTIPLE LOCATIONS

2.3

A state-space solution was introduced (section 7,32.2) in order to ascertain K(6)
within prescribed fiducial limits for -a. pedon. That ‘state-space formulation
described soil water redistribution with an approximate ordinary first-order
differential equation, assumed K(6) to be of exponential form and quantitively
included the uncertainty of the neutron probe and its calibration. Here we
present a similar analysis to compute evaporation between irrigation events as
well as to determine a soil water diffusivity function from soil water profiles
measured at multiple locations within a field. The uncertainties associated with
soil heterogeneity as well as those of instrument calibration are separately
identified.

Five neutron access tubes positioned every 18 m along a transect allowed
soil water content to be monitored with a neutron probe at 15-cm depth
intervals within the soil profile at each location. The level site was free of
vegetation and equipped with a sprinkler irrigation system that was used to
apply 15 small irrigations (each <20 mm) during a 3-month period. In addition
to the neutron probe measurements of soil water to estimate evaporation, 20-
min weighings of a 50-t capacity lysimeter in the same field were integrated to
obtain daily values of evaporation.
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Figure 8.17. Depths of water stored within five depth intervals of a pedon
measured with a neutron probe together with depths of water applied to
the soil surface during the experiment. The depth interval 67.5 - 82.5 cm
is represented with O symbols.

The spatially averaged amounts of water stored within the five depth
intervals of the soil profile measured with the neutron probe as a function of
time together with the amounts of water applied with the sprinklers are shown
in Fig. 8.17. Notice that the water stored in the lower depth intervals does not
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Figure 8.18. Depths of water stored within the 0 - 22.5 cm topsoil at each of five
field locations measured with a neutron probe .

appreciably change during the entire experiment. Evaporation and infiltratiqn
from the applied water are the primary physical processes that create changes in
stored water and those changes occur primarily in the 0 - 22.5 cm depth.
Variations in soil water stored in the top 22.5 cm of the profile as a function of
time as well as location are shown in Fig. 8.18.

The hydrologic balance in the absence of lateral flow and negligible
drainage is
%% =P,-E (8.37)
where S is the depth of stored water between the soil surface (z = 0) ar}d some
depth b (b is the depth assumed to be uniformly wet), E; the evaporation rate
and P, the rate at which water is applied to the soil surface .(pre.clpltatloq or
irrigation). The evaporation rate can be calculated using the diffusion equation
(assuming isothermal and homogeneous soil conditions)

98 _ i[D(e)é’ﬁ] (838)

ot oz oz '
where D(6) is the soil water diffusivity function. Gardner (1962) obtained the

following approximate solution of the depth-integrated form of (8.38)

2
E = ”—5%(],5/—”) %>o.3 (8.39)
where the diffusivity is a function of stored water S. Combining (8.37) and (8.39)
the hydrologic balance becomes the ordinary differential equation

ds 7}
L _p - Z)sD(s) (8.40)
= (21:) 5) :

For an exponential diffusivity function D(S/b)= Aexp(BS/ b), the state-space
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equation for (8.40) is

2
dX, = [p, - (2_’;) X,Aexp(BX, /b)}dt + Vgdt (8.41)

where X, is the state variable representing the stored water S and vdt is a
stochastic noise owing to the uncertainties in the proposed equation. The noise
vsdt arises owing to the various simplifying assumptions of the physical model
such as neglecting thermal and salinity effects, swelling and shrinkage,
hysteresis, etc. The corresponding observation equation at time # (k = 1, 2, 3,0)
is

Z,(t)=X, +v,(t) (8.42)
where Z,, is the observed amount of stored water at time ty and v,, is the
observation noise.

The diffusivity parameters A and B were calculated assuming that the
observation variance R; can be estimated from spatially averaging the neutron
probe readings from the five access tubes located 18 m apart. It can be seen in Fig.
8.19 that the observation variance R; is much larger than the neutron probe
calibration variance. Values of A and B were estimated to be 0.0292 mm2-d-! and
32.59, respectively, with the state variance per unit time Q being 18.87 mm?2-d-1.
The value of Q is of the same order of magnitude as the neutron probe
calibration variance, while the model uncertainty for stored water prediction on
a daily basis is within the neutron probe noise. The agreement found between
the state space estimation of cumulative evaporation and that measured with
the lysimeter (12 = 0.98) indicates that the estimated diffusivity function
provides an adequate description of evaporation and the soil water transport
process.
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Figure 8.19. Observation variance owing to spatial averaging of measured soil
water storage for the 0 - 22.5 cm topsoil as well as the variance of the
neutron probe calibration.



272 Soil Hydrology

State-space formulations that describe location-averaged phenomena
could improve our understanding of the development of soil horizons, growth
and water extraction of plant roots and chemical and microbiologically-induced
reactions within soil water. We also expect that progress could be made using
time-averaged equations to examine critical periods during which soil processes
occur; these soil processes may be related to particular soil locations, mapping
units or regions.

PROBLEMS

1. Derive the scaled cumulative infiltration term I* for infiltration into the
crust-topped profile. Use scaled variables and functions of Kutilek et al.
(1991).

2. Values of soil property A(x) have been measured along a transect at three
locations: A(1) = 7, A(2) = 5 and A(4) = 3. a.Using a simple desk calculator,
estimate A(3) by kriging. Hint: After calculating the only value possible
of «(h) with (8.7) for each of the lags (1, 2 and 3), estimate a smooth
variogram i) = mh? by regression. Using values of ¥h) from the
regression at h = 1, 2 and 3, calculate the weights A; with (8.10). b. What is
the value of the kriging variance for A(3)?

3. You have measured infiltration with double ring infiltrometers every 5 m

along a 500-m transect. Two different inner ring diameters were used.
The diameter d was a. 50..5 cm and b. 25.2 cm. The diameter of the outer
ring D = 2d. The evaluated semivariograms are in Fig. 8.6a with nugget
for d = 50.5 cm and in Fig. 8.6b for d = 25.2 cm. What are your conclusions
regarding an appropriate size of the ring and the range of the
variograms?

. You are calibrating a neutron probe. Recognizing that the autocorrelogram in
Fig. 8.5 had been previously determined in your field, sketch the
locations of 4 soil sampling sites for measuring the soil water content
around the access tube.

5. Estimate the range of the variograms for sand, pF = 2.5, silt and AWC in Fig.
8.10. Would you expect the range of a variogram of quasi-steady state
infilration rate to be more or less than 25m?

6. How will you scale infiltration rate and cumulative evaporation if the scaling
factors are expressed by (8.19)?

7. Show the relation between (8.39) and (7.3).

8. a. Starting with (7.25) and (7.27) and assuming 4 = 1 and b = 0 in (7.26), derive
the following expression for the flux density at soil depth L :

qL =K, (1+BK L™ )"1.

b. Assuming the mean values of K, and 8 are 31.9 cm-d! and 61.1,
respectively, calculate g; at a soil depth of 1.8 m for ¢ =1 and 10 d.

N=N

\O

. The probability distribution function of K, in problem 7 is divided into five
20%-fractile groups having median values of K, = 1.98, 5.73, 11.9, 24.9 and
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72.0 cm-d’l. Similarly, the five 20%-fractile groups of § have median
values of f§ = 22.1, 35.8, 49.9, 69.6 and 112.8. Assuming that the two
probability distribution functions are independent, substitute into the
equation of problem 7 each of the five median values of K, with each of
the five median values of . to obtain 25 estimates of g (each of 4%
probability) for t = 1 d. From the 25 values, calculate the mean value 7;.
Repeat the calculations for ¢t = 10 d. Considering the 25 estimates of g1, and
the mean §; and comparing these values with those of problem 7, discuss

the implications for sampling a field to estimate 7;.



