Estimation of External Costs Associated with Hydroelectric Projects Having Reservoirs Projects Having Reservoirs

Ghulam Ras ul AtharApplied Systems Analysis Group, Pakistan Atomic Energy Commission, P.O. B ox 1114, Islamabad, Pakistan asag@comsats.net.pk

IAEA Workshop on the 'Use of the SimPacts Model for Estimating Human **Health and Environmental Damages from Electricity Generation' Trieste, Italy, May 12-23, 2003.**

Scope of HydroPacts

Estimation of external costs due to:

- **Displacement and Resettlement**
- **Atmosphere Emissions (i.e GHG, SO_x) during # Construction and Operation**
- **Accidental Dam Breach**
- **Loss of Land, Agriculture Products, Livestock**

Displacement and Resettlement Displacement and Resettlement

First Attempt to Correlate Displaced Population with Simple Parameters Simple Parameters

 $\boldsymbol{\mathsf{Area}_{\mathsf{inundred}}}$ [km²] = 0.57 * Capacity [MW] Coeffic_{Correlation}: 0.523 **PopulationResettled [persons] = 3.1 * Capacity [MW] CoefficCorrelation: 0.160** $\mathsf{Population}_{\mathsf{Resettled}}$ [persons] = f (Area_{Inun} **CoefficCorrelation: 0.041 Resettlement Cost_{per Person} [\$/capita] = 1.33 * GDP_{pc1999} Coeffic_{Correlation}: 0.843**

- **Approach found that most relationships had low correlations**
- **Does not take into account basic dam and reservoir characteristics**
- **Does not account for different terrains**
- **Does not consider population distribution**

Physical and Economic Impact Estimation Physical and Economic Impact Estimation of Displacement of Displacement

• Estimation of displacement follows similar routine than air impacts and is based on regional population den sity

$$
POP_{DIS} = IA_{RS} [km^2] \times POP_{Density} [persons]
$$

If you know the inundated area, you can enter it.

Alternatively

you can use the model to estimate the inundated area

Area Inundated by the Reservoir is a Function of the Dam Height (at Constant Terrain) Dam Height (at Constant Terrain)

Area Inundated by the Reservoir is a Function Area Inundated by the Reservoir is a Function of the Terrain (at Constant Dam Height) of the Terrain (at Constant Dam Height)

Simple 3D Model of Reservoir Triangular Cube Triangular Cube (for Flatlands) (for Flatlands)

If a user choose type of terrain=2 (flatland/plane), the model will choose Triangular reservoir shape

Simple 3D Model of Reservoir Rectangular Cube Rectangular Cube (for Mountains, Gorges, Canyons) (for Mountains, Gorges, Canyons)

If a user choose type of terrain=1 (gorges, narrow valleys, steep mountains), the model will choose Rectangular reservoir shape

Relation between dam height and width of reservoir

Relation between dam height and length of reservoir

Reservoir Area

LRs Triangular-Shape Reservoir IARs = 1/2 (LRs x 0.5 WRs) x 2 = 0.5 LRs x WRs = 0.5 H D [m] H D [m] 0.5 x 1000 x tan β 1000 x tan β = H D2 tan α x tan β x 10 6 xTerrain index Rectangular-Shape Reservoir = H D [m] H D [m] 0.5 x 1000 x tan β 1000 x tan β x= H D2 0.5 x (tanα x tanβ)x 10⁶ $0.5 W_{Rs}$ $0.5 W_{Rs}$ **LRs** IA_{Rs} $=$ L_{Rs} **x** W_{Rs} **… WRs…**

Reservoir Area

Triangular-Shape Reservoir

The user has to enter **either terrain index or inclinations of river and terrain (^α, β) . Currently 8 terrain indices are available in the model. The user inputs for α and β have priority over the terrain index**

TERRAIN INDEX

1: Ghana, Akosombo(1.80e-6) 2: Zimbabwe, Kariba(3.66e-6) 3: China, 3 Gor ges(4.65e-5) 4: Brazil, Itaipu(5.65e-5) 5: Pakistan, Tar bela(7.10e-5) 6: USA, Hoover(4.29e-5) 7: USA,Grand Coulee(1.44e-4) 8: Egypt, Aswan(3.08e-6)

Reservoir Area rvoir Area

The users inputs for reservoir area has priority over the calculated reservoir area

Model Results for 10 Locations: Model Results for 10 Locations:Triangular Shape Assumed For All Location

Model Results for 7 Mountain Locations: Model Results for 7 Mountain Locations:Assumes Rectangular Shape

Do you know dam height? Do you know dam height?

If yes. The model will use it. Otherwise model will estimate the dam height based on: (i) head.

(ii) capacity and flow.

Estimating Dam Height Estimating Dam Height

z **Default assumption for** ∆ **H is 0, that is, head equals dam height**

$$
H_D = Head - \Delta H
$$

z ∆**H < 0, if head is expected to be noticeably smaller than dam height. If generator house is expected to be located substantially down stream** ∆**H > 0**

Estimation of Dam Height

$$
Head = \frac{P \times 1000}{9.81 \times \eta \times Q_W}
$$

- **P:Power Output [MW]**
- η**: Overall Plant Efficiency [fraction]**
- **Q ^W: Discharged water flow from turbine [m 3/s]**

The model uses the following priority for dam height :

- **i) Users inputs for dam height .**
- **ii) Dam height calculated based on head.**
- **iii) Dam height calculated based on capacity and flow.**

Impact of Design Turbine Flow

• If power output and turbine design flow is known, the model will use the previous equation

• If the flow information is unknown, use 5000 m 3/s and then scale up and down as part of a sensitivity analysis

Physical and Economic Impact Estimation Physical and Economic Impact Estimation of Displacement of Displacement

• Estimation of displacement follows similar routine than air impacts and is based on regional population den sity

$$
POP_{DIS} = IA_{RS} [km^2] \times POP_{Density} [persons]
$$

Estimating the External Cost of Population Displacement (Levelized per MWh) Displacement (Levelized per MWh)

- **Resettlement cost from Markandya**
- **As resettlement costs are usually internalized, we calculate the external cost based on people displaced but not resettled or compensated**

$$
Cost_{DIS} = POP_{DIS} [persons] x (1.33 x GDP_{PerCapita} \frac{USS}{person}]
$$
\n
$$
Cost_{DIS,EXT} = Cost_{DIS} [USS] x Fraction_{DIS,NOTRES}
$$
\n
$$
Cost_{DIS,MWh,EXT} = \frac{Cost_{DIS,EXT} [USS] x (1 + IR)^{ELife} - 1}{P [MWe] x 8,760 x \frac{CF [%]}{100} } for IR > 0
$$
\n
$$
Cost_{DIS,MWh,EXT} = \frac{Cost_{DIS,EXT} [USS]}{P [MWe] x 8,760 x \frac{CF [%]}{100} x ELife [years]} for IR = 0
$$

100

GHG Emissions during Construction and Operation Construction and Operation

GHG Emissions during Construction Phase (Life Cycle)

z **Equation below uses the emission factors in g/kWh (***EFCon str***), the plant capacity in MWe (** *P***) and the average capacity factor in % (***CF***).**

$$
E\left[\frac{g}{kWh}\right] \times P\left[MWe\right] \times 8,760 \left[\frac{h}{year}\right] \times CF\left[\frac{9}{6}\right]
$$

Emissions_{Constr,Year} = $\frac{E\left[\frac{g}{kWh}\right] \times P\left[MWe\right] \times 8,760}{1,000}$

Emissions Factors for Construction Phase

• Emissions during construction phase depend on the type of dam

- Concrete dams (concrete gravity, concrete arch, etc) account for 72% of all dams
- Embankment dams using earth and rock fill material account for 25% of all dams
- **Material, associated energy requirements, and resulting emissions vary with the type of material used for construction**

GHG Emissions During Operation Phase GHG Emissions During Operation Phase

- **Once flooded, biomass (vegetation and soil) and carbon inflows from catchment area are decomposed by microbes via aerobic and anaerobic bio processes**
- z **Byproducts are CO2, CH4, and to a lesser extent, N2O**
- **Measurements in tropical and boreal regions show large range of GHG emissions within countries and between regions**
- z **Larger variation in tropical regions**
- **In addition, there appear to be strong seasonal and annual variations**
- Decomposition varies with time: three phases can be distinguished: (1) **initial phase lasting 1-3 years after flooding, (2) erosion phase lasting up to 7-10 year, and (3) balanced phase lasting 10-30 years**

Model has two options, Region ID = 1 for Tropical , Region ID = 2 for Boreal

GHG Emissions During Operation Phase (ton/km 2/year)

Emissions_{Operat,Year} =
$$
IA_{RS}
$$
 $[km^2]$ x EF_{Operat} $\left[\frac{ton}{km^2 - year}\right]$

$$
GHG_{CE,Total,Year} = CO_2,_{Const}\left[\frac{tons}{year}\right] + CO_2,_{Operat}\left[\frac{tons}{year}\right] + \left(21 \times CH_4,_{Operat}\left[\frac{tons}{year}\right]\right)
$$

Accidental Dam Breach Accidental Dam Breach

Accidental Dam Breach Accidental Dam Breach

\bullet **Several causes for dam failure**

- Seepage
- Overtopping or inadequate spillway
- Seismic
- Slides
- Others

Risk of Dam Failure and Factors Risk of Dam Failure and FactorsInfluencing the Impact Level Influencing the Impact Level

- **Risk of dam failure is estimated at 1E-4 per dam per year**
- **Risk is not uniformly distributed over dam lifetime**
	- Higher risk at the beginning
	- About 50% of all dam failures occur during initial reservoir filling to capacity
	- Residual risk more or less uniform over lifetime

• Damage resulting from failure is determined by

- Population and property at risk
- Warning time (time for evacuation)
- Type of terrain

• Warning time has strong influence on impact level

- 13% average fatalities with warning times less than 1.5 hours, and a fatality rate of 0.04% if the warning time was more than 1.5 hours
- **Downstream terrain affects the height and extent of the flood wave as well as the ability to evacuate and avoid the impact of the wave**

Determining the Number of Lives Lost per Accident and the Expected Lives Lost Expected Lives Lost

Warning Time [hours]

Estimating the External Cost of Accidents Estimating the External Cost of Accidents and Total External Cost (Levelized per MWh) and Total External Cost (Levelized per MWh)

• Allows adjustment of the value of statistical life (VSL)

$$
VSL_{CountryX} = \$1,500,000 \times \frac{GDP_{PPP,CountryX}}{23,550}
$$

$$
Cost_{LossLife, MWh,EXT} = \frac{EXPLives_{Loss,Year} \times VSL_{CountryX}}{P[MWe] \times 8,760 \times \frac{CF\left[}\%{}\right]}{100}
$$

Estimating the External Cost of Land Loss (Levelized Levelized per MWh)

Estimating the External Cost of Land Loss (Levelized per MWh) (Levelized per MWh)

- **For simplicity, three land categories: forest, farmland, other**
- **Similar to resettlement, accounts for internalizing most of the cost**

$$
Cost_{LandLoss,EXT} = (1 - FIC) \times \sum_{i=1}^{3} \left(I A_{RS,i} \left[km^2 \right] \times Cost_{Landuse i} \left[\frac{USS}{hectare} \right] \times 100 \right)
$$

$$
Cost_{LandLoss,MWh,EXT} = \frac{Cost_{LandLoss,EXT} \left[US\$\right] \times \left(\frac{IR \times (1 + IR)^{ELife}}{(1 + IR)^{ELife} - 1} \right)}{P \left[MWe \right] \times 8,760 \times \frac{CF \left[\% \right]}{100}} \qquad \text{for} \quad IR > 0
$$

$$
Cost_{LandLoss,MWh,EXT} = \frac{Cost_{LandLoss,EXT} [USS]}{P [MWe] \times 8,760 \times \frac{CF [0/0]}{100} \times ELife [years]}
$$
 for IR = 0

Total External Cost (Levelized per MWh) Total External Cost (Levelized per MWh)

- If physical impacts are known, model allows to include cost of loss **of agricultural and livestock production**
	- **Total cost is sum of individual cost components**

$$
Cost_{TOTAL, MWh,EXT} = \sum_{i=1}^{n} Cost_{MWh,EXT}
$$

Model Results – Economic Summary

