Estimation of External Costs Associated with Hydroelectric Projects Having Reservoirs

Ghulam Rasul Athar Applied Systems Analysis Group, Pakistan Atomic Energy Commission, P.O. Box 1114, Islamabad, Pakistan asag@comsats.net.pk

IAEA Workshop on the 'Use of the SimPacts Model for Estimating Human Health and Environmental Damages from Electricity Generation' Trieste, Italy, May 12-23, 2003.

Scope of HydroPacts

Estimation of external costs due to:

- bisplacement and Resettlement
- Atmosphere Emissions (i.e GHG, SO_x) during Construction and Operation
- Accidental Dam Breach
- * Loss of Land, Agriculture Products, Livestock

Displacement and Resettlement

First Attempt to Correlate Displaced Population with Simple Parameters

Area[km²] = 0.57 * Capacity [MW]Coeffic0.523PopulationResettled[persons] = 3.1 * Capacity [MW]Coeffic0.160PopulationResettled[persons] = f (AreaCoeffic0.041Resettlement CostCost1.33 * GDPCoeffic0.843

- Approach found that most relationships had low correlations
- Does not take into account basic dam and reservoir characteristics
- Does not account for different terrains
- Does not consider population distribution

Physical and Economic Impact Estimation of Displacement

• Estimation of displacement follows similar routine than air impacts and is based on regional population density

$$POP_{DIS} = IA_{RS} [km^2] x POP_{Density} \left[\frac{persons}{km^2}\right]$$

If you know the inundated area, you can enter it.

Alternatively

you can use the model to estimate the inundated area

Area Inundated by the Reservoir is a Function of the Dam Height (at Constant Terrain)

Area Inundated by the Reservoir is a Function of the Terrain (at Constant Dam Height)

Simple 3D Model of Reservoir – Triangular Cube (for Flatlands)

If a user choose type of terrain=2 (flatland/plane), the model will choose Triangular reservoir shape

Simple 3D Model of Reservoir – Rectangular Cube (for Mountains, Gorges, Canyons)

If a user choose type of terrain=1 (gorges, narrow valleys, steep mountains), the model will choose Rectangular reservoir shape

Relation between dam height and width of reservoir

 $Tan \alpha$ = Perpendicular / Base

Relation between dam height and length of reservoir

Reservoir Area

Triangular-Shape Reservoir $IA_{Rs} = \{ 1/2 (L_{Rs} \times 0.5 W_{Rs}) \} \times 2$ = 0.5 $L_{Rs} \times W_{Rs}$ $= 0.5 H_{D} [m]$ H_{D} [m] X L_{Rs} 1000 x tanβ 0.5 x 1000 x tanβ $= H_{D}^{2}$ tang x tang x 10^6 0.5 W_{Rs} $0.5 W_{Rs}$ **Terrain index Rectangular-Shape Reservoir** $= L_{Rs} \times W_{Rs}$ H_D [m] = H_D [m] x -Rs 0.5 x 1000 x tanβ 1000 x tanβ $= H_{D}^{2}$ 0.5 x $(\tan \alpha x \tan \beta)$ x 10⁶ ... W_{Rs}

Reservoir Area

Triangular-Shape Reservoir

The user has to enter either terrain index or inclinations of river and terrain (α , β). Currently 8 terrain indices are available in the model. The user inputs for α and β have priority over the terrain index

TERRAIN INDEX

1: Ghana, Akosombo(1.80e-6) 2: Zimbabwe, Kariba(3.66e-6) 3: China, 3 Gorges(4.65e-5) 4: Brazil, Itaipu(5.65e-5) 5: Pakistan, Tarbela(7.10e-5) 6: USA, Hoover(4.29e-5) 7: USA,Grand Coulee(1.44e-4) 8: Egypt, Aswan(3.08e-6)

Reservoir Area

The users inputs for reservoir area has priority over the calculated reservoir area

Model Results for 10 Locations: Triangular Shape Assumed For All Location

Model Results for 7 Mountain Locations: Assumes Rectangular Shape

Do you know dam height?

If yes. The model will use it. Otherwise model will estimate the dam height based on: (i) head.

(ii) capacity and flow.

Estimating Dam Height

- Default assumption for ∆H is 0, that is, head equals dam height
- △H < 0, if head is expected to be noticeably smaller than dam height. If generator house is expected to be located substantially down stream △H > 0

Estimation of Dam Height

$$Head = \frac{P \ x \ 1000}{9.81 \ x \ \eta \ x \ Q_W}$$

- P: Power Output [MW]
- **η:** Overall Plant Efficiency [fraction]
- **Q**_W: Discharged water flow from turbine [m³/s]

The model uses the following priority for dam height :

- i) Users inputs for dam height.
- ii) Dam height calculated based on head.
- iii) Dam height calculated based on capacity and flow.

Impact of Design Turbine Flow

 If power output and turbine design flow is known, the model will use the previous equation

 If the flow information is unknown, use 5000 m³/s and then scale up and down as part of a sensitivity analysis

Physical and Economic Impact Estimation of Displacement

• Estimation of displacement follows similar routine than air impacts and is based on regional population density

$$POP_{DIS} = IA_{RS} [km^2] x POP_{Density} \left[\frac{persons}{km^2}\right]$$

Estimating the External Cost of Population Displacement (Levelized per MWh)

- Resettlement cost from Markandya
- As resettlement costs are usually internalized, we calculate the external cost based on people displaced but not resettled or compensated

$$Cost_{DIS} = POP_{DIS} \left[persons \right] x \left(1.33 \ x \ GDP_{PerCapita} \left[\frac{US\$}{person} \right] \right)$$

$$Cost_{DIS,EXT} = Cost_{DIS} \left[US\$ \right] x \ Fraction_{DIS,NOTRES}$$

$$Cost_{DIS,MWh,EXT} = \frac{Cost_{DIS,EXT} \left[US\$ \right] x \left(\frac{IR \ x \ (1 + IR)^{ELife}}{(1 + IR)^{ELife} - 1} \right)}{P \left[MWe \right] x \ 8,760 \ x \ \frac{CF \left[\% \right]}{100}} \qquad for \ IR = 0$$

$$Cost_{DIS,MWh,EXT} = \frac{Cost_{DIS,EXT} \left[US\$ \right]}{P \left[MWe \right] x \ 8,760 \ x \ \frac{CF \left[\% \right]}{100}} \qquad for \ IR = 0$$

100

GHG Emissions during Construction and Operation

GHG Emissions during Construction Phase (Life Cycle)

• Equation below uses the emission factors in g/kWh (*EFConstr*), the plant capacity in MWe (*P*) and the average capacity factor in % (*CF*).

$$Emissions_{Constr,Year} = \frac{EF_{Constr}\left[\frac{g}{kWh}\right] \times P\left[MWe\right] \times 8,760\left[\frac{h}{year}\right] \times CF\left[\%\right]}{1,000}$$

Emissions Factors for Construction Phase

• Emissions during construction phase depend on the type of dam

- Concrete dams (concrete gravity, concrete arch, etc) account for 72% of all dams
- Embankment dams using earth and rock fill material account for 25% of all dams
- Material, associated energy requirements, and resulting emissions vary with the type of material used for construction

	CO ₂ (g/kWh)		SO2	NO _x	
	Concrete	Earth + Rock Fill	(g/kŴh)	(g/kŴh)	
Low	1.00	0.10	0.008	0.003	
High	5.90	1.00	0.100	0.013	
Mean	2.733	0.55	0.035	0.006	
Source: [IEA, 1998]					

GHG Emissions During Operation Phase

- Once flooded, biomass (vegetation and soil) and carbon inflows from catchment area are decomposed by microbes via aerobic and anaerobic bio processes
- Byproducts are CO2, CH4, and to a lesser extent, N2O
- Measurements in tropical and boreal regions show large range of GHG emissions within countries and between regions
- Larger variation in tropical regions
- In addition, there appear to be strong seasonal and annual variations
- Decomposition varies with time: three phases can be distinguished: (1) initial phase lasting 1-3 years after flooding, (2) erosion phase lasting up to 7-10 year, and (3) balanced phase lasting 10-30 years

Model has two options, Region ID = 1 for Tropical, Region ID = 2 for Boreal

GHG Emissions During Operation Phase (ton/km²/year)

	Tropical		Boreal			
	CO ₂	CH₄	CO ₂	CH4		
Low	150	1.5	183	1.8		
High	4,000	40	1,350	13.5		
Mean	1,798	18	693	6.9		
Sources: [WCD, 2000], [IEA, 1998] Assumes that 1% of emissions are in form of methane						

$$Emissions_{Operat,Year} = IA_{RS} [km^{2}] x EF_{Operat} \left[\frac{ton}{km^{2} - year}\right]$$

$$GHG_{CE,Total,Year} = CO_{2},_{Const} \left[\frac{tons}{year}\right] + CO_{2},_{Operat} \left[\frac{tons}{year}\right] + \left(21 \ x \ CH_{4},_{Operat} \left[\frac{tons}{year}\right]\right)$$

Accidental Dam Breach

Accidental Dam Breach

• Several causes for dam failure

- Seepage
- Overtopping or inadequate spillway
- Seismic
- Slides
- Others

Cause of Failure	Occurrence			
Overtopping or inadequate spillway	23 – 38%			
seepage	30 – 44%			
Slides	2 – 15%			
Others	9- 35%			
Source: [Christian and Baecher, 1999]				

Risk of Dam Failure and Factors Influencing the Impact Level

- Risk of dam failure is estimated at 1E-4 per dam per year
- Risk is not uniformly distributed over dam lifetime
 - Higher risk at the beginning
 - About 50% of all dam failures occur during initial reservoir filling to capacity
 - Residual risk more or less uniform over lifetime

• Damage resulting from failure is determined by

- Population and property at risk
- Warning time (time for evacuation)
- Type of terrain

Warning time has strong influence on impact level

- 13% average fatalities with warning times less than 1.5 hours, and a fatality rate of 0.04% if the warning time was more than 1.5 hours
- Downstream terrain affects the height and extent of the flood wave as well as the ability to evacuate and avoid the impact of the wave

Determining the Number of Lives Lost per Accident and the Expected Lives Lost

Warning Time [hours]

Estimating the External Cost of Accidents and Total External Cost (Levelized per MWh)

• Allows adjustment of the value of statistical life (VSL)

$$VSL_{CountryX} = \$1,500,000 \ x \ \frac{GDP_{PPP,CountryX}}{23,550}$$

$$Cost_{LossLife,MWh,EXT} = \frac{EXPLives_{Lost,Year} \ x \ VSL_{CountryX}}{P \ [MWe] \ x \ 8,760 \ x \ \frac{CF \ [\%]}{100}}$$

Estimating the External Cost of Land Loss (Levelized per MWh)

Estimating the External Cost of Land Loss (Levelized per MWh)

- For simplicity, three land categories: forest, farmland, other
- Similar to resettlement, accounts for internalizing most of the cost

$$Cost_{LandLoss,EXT} = (1 - FIC) x \sum_{i=1}^{3} \left(IA_{RS,i} \left[km^{2} \right] x Cost_{Landuse i} \left[\frac{US\$}{hectare} \right] x 100 \right)$$

$$Cost_{LandLoss,MWh,EXT} = \frac{Cost_{LandLoss,EXT} \left[US\$ \right] x \left(\frac{IR x (1 + IR)^{ELife}}{(1 + IR)^{ELife} - 1} \right)}{P \left[MWe \right] x 8,760 x \frac{CF \left[\% \right]}{100}} \quad for \ IR > 0$$

$$Cost_{LandLoss,MWh,EXT} = \frac{Cost_{LandLoss,EXT} [US\$]}{P [MWe] x 8,760 x \frac{CF [\%]}{100} x ELife [years]} \quad for \ IR = 0$$

Total External Cost (Levelized per MWh)

- If physical impacts are known, model allows to include cost of loss of agricultural and livestock production
 - Total cost is sum of individual cost components

$$Cost_{TOTAL,MWh,EXT} = \sum_{i=1}^{n} Cost_{MWh,EXT}$$

Model Results – Economic Summary

