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Sources of uncertainty
i) data uncertainty
e.g. slope of a dose-response function, cost of a day of restricted activity, and 
deposition velocity of a pollutant; 
ii) model uncertainty
e.g. assumptions about causal links between a pollutant and a health impact, 
assumptions about form of a  dose-response function (e.g. with or without 
threshold), and choice of models for atmospheric dispersion and chemistry; 
iii) uncertainty about policy and ethical choices
e.g. discount rate for intergenerational costs, and value of statistical life;
iv) uncertainty about the future
e.g. the potential for reducing crop losses by the development of more resistant 
species; 
v) idiosyncrasies of the analyst
e.g. interpretation of ambiguous or incomplete information, and human error. 

The difficulties begin with trying to prepare this list: the distinction between
these sources is not always clear.



Appropriate analysis

For data and model uncertainties:
analysis by statistical methods, combining the component 

uncertainties over the steps of the impact pathway, to obtain 
formal confidence intervals around a central estimate.

For ethical choice, uncertainty about the future, and 
subjective choices of the analyst:

sensitivity analysis, indicating how the results depend on 
these choices and on the scenarios for the future. 

For human error:
be careful and  guard against overconfidence. 



Difficulties

Quantifying the sources of uncertainty in this field is problematic 
because of a general lack of information. 

Usually one has to fall back on subjective judgment, preferably by 
the experts of the respective disciplines. 

The uncertainties due to strategic choices of the analyst, e.g. which 
dose-response functions to include, are difficult to take into account 

in a formal uncertainty analysis.

⇒ the comprehensive uncertainties can be much larger than the 
ones that have been quantified (uncertainties due to data and 

parameters).



Uncertainty ≠ variability
Don’t confuse uncertainty and variability of impacts!

Both can cause estimates to change, 
but in very different ways and for totally different reasons:

Uncertainty: insufficient knowledge at the present time, 
future estimates may be different when we know more.

Variability: damage cost can vary with the type of source 
(where, ground level or tall stacks, …).

Damage cost per kWh are proportional to the emissions and vary with the 
technologies used. 

These variations are independent of the uncertainties. 



Variability of damage with site
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An example of dependence on site and on height of source for a primary pollutant: damage D 
from SO2 emissions with linear C-R function, for five sites in France, in units of Duni for uniform 

world model Eq.10 with ρ = 105 persons/km2 (the nearest big city, 25 to 50 km away, is 
indicated in parentheses). The scale on the right indicates YOLL/yr (years of life lost) by acute 

mortality from a plant with emission 1000 ton/yr. Plume rise for typical power plant conditions is 
accounted for.



Variability of damage cost, €/kWh in France, due to 
reduced emissions 
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Probability distributions of parameter values
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The most important characteristics are 
the mean µ and the standard deviation σ

Example: the 
frequent case of a 
normal (=gaussian) 
distribution of µ = 0 
and σ = 1



Combination of errors for a sum of terms
If y = x1 + x2 + … + xn
is a sum of uncorrelated random variables xi,
each with mean µi and standard deviation σi,
the uncertainty distribution of y has mean
µy = µ1 + µ2 + … + µn, 
and standard deviation σy given by
σy

2 = σ1
2 + σ2

2 + … + σn
2.

Central limit theorem of statistics:
In the limit n→∞, the distribution of y approaches a 
normal distribution, even if the distributions of the 
individual xi are not normal.

In practice the distribution of y is often close to normal
even for very small n if the individual distributions 
(especially those with large widths) are not too far from normal.



Combination of errors for a product of terms
If y = x1 x2 … xn, 
the log of y is a sum
ln(y) = ln(x1) + ln(x2) + … + ln(xn).
Let the xi be uncorrelated random variables 
with probability distributions pi(xi).
Define the geometric mean µgi of xi by 

Then the geometric mean µgy of y is

and it is equal to
µgy = µg1 µg2 …µgn. 

ln(µgi)= pi(xi)ln(xi)dxi∫

ln(µgy )= py (xy )ln(y)dy∫



Combination of errors for a product of terms, cont’d

Now define the geometric standard deviation σgi of xi by

Then the geometric standard deviation σgy of y is given by
[ln(σgy)]2 = [ln(σg1)]2 + [ln(σg2)]2 + … + [ln(σgn)]2 .

The central limit theorem implies that for large n the distribution of
ln(y) is approximately normal, and in practice this approximation 
can be quite good even for small n if the distributions of the individual
ln(xi) are not too far from normal.

A variable whose log has a normal distribution is called lognormal.
The distribution of a product is often approximately lognormal.

[ln(σ gi)]
2 = pi(xi)[ln(xi)−ln(µgi)]

2 dxi∫



The lognormal distribution
To get the lognormal from the normal distribution pn (u)=

1
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Change variable u = ln(x). The normalization integral becomes

pn (ln(x))
x

dx =1
0

∞

∫
which allows interpreting the function 

plog n (x)=
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as the probability density of a new distribution between 0 and ∞.
This is the lognormal distribution. The geometric mean µg and 
geometric standard deviation σg are related to µ and σ by 
µg = exp(µ) or ln(µg) = µ and σg = exp(σ) or ln(σg) = σ



The lognormal distribution, cont’d

Example, with µg = 1 and σg = 2

The lognormal distribution is asymmetric, with a long tail
and its mean is larger than its median.
Its median is equal to µg.
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When plotted vs ln(x) it looks just like an ordinary normal. 
For confidence intervals, note that 
68% of the distribution is in the interval [µg/σg, µg σg]
and
95% of the distribution is in the interval [µg/σg

2, µg σg
2] .
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Combination of errors for a general function of terms
For a sum the standard deviation, and for a product the standard geometric 
deviation, can be calculated exactly, regardless how wide the distributions of 
the individual terms. Furthermore, this often determines the entire 
distribution approximately (central limit theorem). ⇒ Explicit closed form 
solution!

But for general functions y = f(x1, x2, …, xn) a closed form solution can be 
obtained only in the limit of small uncertainties (narrow distributions)

σ y
2 =

∂f
∂x1

2

σ x1
2+

∂f
∂x2

2

σ x2
2+... ∂f

∂xn

2

σ xn
2

This is not appropriate for the very large uncertainties involved in damage costs.

⇒ Use Monte Carlo approach, i.e. perform a very large number of 
numerical simulations, each calculating the result y for a specific 
choice of {x1, x2, … xn}, and look at the resulting distribution of the y.



Impact pathway analysis for calculation of damage cost

⇒ impact
(e.g., cases of asthma due to ambient

concentration of particulates)

DOSE-RESPONSE FUNCTION
(or concentration-response function)

⇒ cost
(e.g., cost of asthma)

MONETARY VALUATION

DISPERSION
(e.g. atmospheric dispersion model)

⇒ emission
(e.g., kg/yr of particulates)

⇒ increase in concentration
at receptor sites

(e.g., µg/m3 of particulates
in all affected regions)

SOURCE
(specification of site and technology)

DOSE

Dose-
Response
Function



Formula for calculation of damage cost
The damage cost C [€/yr] of a particular impact caused by a continuous 
emission of a pollutant at rate q [kg/yr] is the integral over the entire region 
where receptors (people, agricultural crops, buildings, …) are affected by the 
pollution source

C = ∫ dx dy p(x) sCR(x) ρ(x) c(x, q) 
where

x = (x,y) is a point in the impact region,
p(x) = unit cost (“price”) of the impact that is evaluated [€/case],
sCR(x) =  slope of concentration-response function [cases/(yr·µg/m3)],
ρ(x) = receptor density [receptors/m2], and 
c(x, q) = concentration of pollutant in air at x [µg/m3)]. 

In most cases p(x) does not vary with x and sCR(x) is also approximately 
constant. With constant p and sCR the equation becomes a product of three 
terms

C = p sCR ∫ dx dy ρ(x) c(x, q) 
each of which can make a large contribution to the total uncertainty. Thus it 
suffices to carry out a Monte Carlo analysis of the integral to determine its 
geometric standard deviation; then the overall geometric standard deviation can 
be found by the rule for products.



The “Uniform World Model” (UWM)
The concentration can be related to the rate at which the pollutant is 
removed from the atmosphere by wet deposition, dry deposition and/or 
decay or chemical transformation. This rate can be defined as a flux Fdep
[µg/(m2·s)]; it is the product of concentration and removal velocity vdep

Fdep(x,q) = c(x,q) vdep(x)
Further simplification is possible if vdep(x) and ρ(x) do not vary with x. 
Replacing vdep(x) and ρ(x) by constants one obtains

C = (p sCR ρ/vdep) ∫ dx dy Fdep(x, q)
By conservation of mass the integral of the removal flux equals the 
emission rate q. Thus the damage cost is simply a product of these factors

This is the “uniform world model” (UWM). 

C = p sCR ρ q/vdep .



The “Uniform World Model” (UWM), cont’d

The UWM can easily be generalized to secondary pollutants. 
Indicating quantities referring to the primary pollutant by the subscript 1 
and the secondary by 2, one can show that the damage cost C2 of the 
secondary pollutant due to the emission q1 of the primary pollutant is

C2 = p2 sCR2 ρ q1 v1-2/(vdep1 vdep2) 
where v1-2 is the transformation velocity of the primary to the secondary 
pollutant, defined as v1-2 = F1-2/ c1 where F1-2 is the transformation flux 
[µg/(m2·s)].

Comparison of UWM with detailed site specific calculations for about a 
hundred installations in many countries of Europe, as well as China, Thailand 
and Brazil: UWM is so close to the average that it can be recommended for
typical damage costs for emissions from tall stacks (>~ 50 m); for specific 
sites the agreement is usually within a factor of two to three.
Note: typical values = average over emission sites, equivalent to averaging 
over receptor distributions ⇒ ρ ~ uniform.



Uncertainty of the components
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For Dispersion: deposition velocities. 
An example: Distribution and lognormal fit of maximum values, in the 
review of Sehmel [1980], for dry deposition velocity [in cm/s] of SO2 over 
different surfaces.



Uncertainty of the components, cont’d
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Example of lognormal distribution for monetary valuation: “value of 
statistical life”, in £1990, in 78 studies reviewed by Ives, Kemp and Thieme 
[1993], histogram and lognormal fit. 

µg = 1.5 M£
σg = 3.4



Uncertainty of the components, cont’d

Epidemiological studies report their errors as 95% confidence intervals, 
usually approximately symmetric about the mean; that corresponds to two 
ordinary standard deviations, 2 σ.
For a simplified uncertainty analysis in terms of lognormal distributions and 
geometric standard deviations, it is convenient to express the reported 
symmetric confidence intervals as approximately equivalent geometric 
standard deviations. Assume that the one-standard deviation (68% probability) 
interval [µ − σ, µ + σ] corresponds to the interval [µg/σg, µg σg] of the 
lognormal distribution.Thus 

σ g =
µ+σ
µ−σ



Some uncertainty estimates

Component lognormal? sigG ln(sigGi)^2
Emission (TSP/PMx) probably yes 1.4 0.113
Dispersion yes 2 0.480
sCR regression no 1.3 0.069
sCR transfer (composition) ? 1.5 0.164
YOLL, given RelRisk probably yes 1.5 0.164
VSL (value of statistical life) yes 2 0.480
Value of YOLL, given VSL ? 1.5 0.164
latency&discount rate probably yes 1.2 0.033
Total 3.64 3.64

Example: uncertainty of mortality cost due to PM emissions (if 
emission has been specified in terms of TSP rather than PM10).
Note that the calculation of sCR and p is broken down into several 
factors.

Recall [ln(σgy)]2 = [ln(σg1)]2 + [ln(σg2)]2 + … + [ln(σgn)]2



Some uncertainty estimates, cont’d

Component sigG ln(sigGi)^2
Emission data 1.5 0.164
Dispersion 1.8 0.345
factor for noninhalation pathways 2 0.480
dose-response function (unit risk) 2 0.480
dose and dose-rate effectiveness factor 1.5 0.164
fraction that is fatal 1.3 0.069
YOLL (years of life lost) 1.5 0.164
VSL (value of statistical life) 2 0.480
Value of YOLL, given VSL 1.3 0.069
latency&discount rate 1.3 0.069
Total 4.84 4.84

For cancers due to radionuclide emissions



Some uncertainty estimates, cont’d

Uncertainty of damage costs for buildings and for agricultural losses.

Lognormality buildings due to
SO2

crop losses due to
NO2 via O3

Emission approximately 1.2 1.2
Dispersion yes 2 3
fCR regression no 1.3 1.3
fCR other ? 2 2
inventory ? 2 1.2
cost per m2 of building surface ? 1.3
repair frequency probably yes 2
value of crops probably yes 1.2
Total 4.2 3.9



Monte Carlo ↔ simplified analysis

Approximate No limit on accuracy

Transparent Opaque

Simple hand calculationRequires large number of 
computer calculations

Only for products (sums); 
OK only if the distributions with 
the largest widths are not too far 

from lognormal  (normal)

Can handle any combination of 
errors sources and distributions

Simplified analysisMonte Carlo

For damage costs the two approaches are complementary



Presentation of uncertainty
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Mean and median
For the lognormal distribution the confidence intervals in a log plot are 
symmetric about the geometric mean (=median of lognormal distrib.), not 
the mean. But damage cost estimates are means, not medians.
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Quantified uncertainties and comprehensive uncertainties 
(subjective)

1.0E-3 1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 1.0E+3 1.0E+4

Cars, h=0m              

PM2.5, rural      

PM2.5, Paris-Lyon 

PM2.5, Paris, city

Power plants, h=100m    

PM10, rural       

PM10, urban       

PM10, Paris       

SO2, direct, urban

Arsenic           

Cadmium           

Chromium          

Nickel            

Emission from any height

SO2, via sulfates 

NO2, via nitrates 

NO2, via ozone    

VOC, via ozone    

Global warming          

CO2 (€/kgCO2)

N2O (€/kgN2O)

CH4 (€/kgCH4)

NOx (€/kgN)

-SO2 (-€/kgS)

€/kg

Note: these 
numbers are 
from ExternE
2000, 
significantly 
lower than 
those of
ExternE 1998 
shown 
elsewhere in 
these notes.



Conclusions

The uncertainties of damage costs are very large, 
• typically geometric standard deviations σg around 3 to 5
• σg around 3 for primary pollutants PM, NOx,SO2; 
• somewhat larger for secondary pollutants, especially O3, than for 

primary pollutants;
•very large for greenhouse gases, σg around 5.

Comprehensive uncertainties can be much larger than the ones that 
have been quantified, but they involve a great deal of subjective 
judgment with little or no factual basis.

… but even an estimate with large uncertainty is better than none at all



Conclusions, cont’d

Effect of uncertainty depends on the use of the cost estimate. 
Example: was the reduction of PM emission limits from 20 to 5 

mg/m3, proposed for the Directive of 2000 for cement kilns that co-
incinerate waste as fuel, justified?
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Answer: no, even in view of the uncertainties.


