united nations educational, scientific and cutural organization organization international atomic energy agency the **abdus salam** international centre for theoretical physics

H4.SMR/1503 - 05

WORKSHOP ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY: MATERIALS ANALYSIS

(19 - 30 May 2003)

Prompt gamma activation analysis Part 1: Principles

Prof. Gá bor L. Molná r Department of Nuclear Research Institute of Isotope and Surface Chemistry, Chemical Research Centre Budapest H-1525 HUNGARY

strada costiera, || - 340|4 trieste italy - tel. +39 0402240||| fax +39 040224|63 - sci_info@ictp.trieste.it - www.ictp.trieste.it

Workshop on Nuclear Data for Science and Technology: Materials Analysis ICTP Trieste, 19-30 May 2003

Prompt gamma activation analysis Part 1: Principles

Gábor L. Molnár

Institute of Isotope and Surface Chemistry Chemical Research Centre Budapest, Hungary

Neutron-induced prompt gamma activation analysis (PGAA or PGNAA)

- Physical method: detection of prompt gamma radiation from a neutron-induced nuclear reaction
 - radiative capture (all elements and isotopes)
 - fission (actinides)
- Active method: sample subjected to neutron radiation
- Non-destructive method: no (or little) residual radioactivity
- Instantaneous method: results appear promptly
- Absolute method: no standards needed

1. Physical basis of PGAA

Neutron capture and subsequent beta decay

Basic reaction: Radiative neutron capture

- Most important reaction for slow neutrons
 - High cross sections (but vary widely!) >> all elements
 - Simple 1/v behavior (exceptions!) >> easy quantification
 - Reaction rate ~ amount & time >> increase sensitivity
- Complementary reactions at high/low energies
 - Inelastic scattering >> C, N, O, Pb
 - (n,p) etc. >> O, Pb (with NAA)
 - Low-energy fission >> actinides

Various neutrons for use

	Ultra cold neutron	Very cold neutron	Cold neutron	Thermal neutron	Intermediate neutron	Fast neutron
Neutron speed	1 m/s 10)m/s 10	0m/s 1k	.m/s 10	km/s 10	0km/s
Neutron wavelength	1000 Å	100 Å	10 Å	I Å	0.1Å	0.0001 Å
utron	$I \text{ \AA} = I0^{-5} \text{cm}$		1	Irr	adiation utilization	on
ner		Neutron	beam experimen	ts		
ble				JRI	R-2, JRR-4, JN	ITR
nsa				IDD-3N	A	
of				J HH-0K	1	
uge		A	dvanced researc	h reactor with hi	gh performance	
Ë						

Capture Cross Sections

Thermal neutron capture cross sections

¹⁴N Cross Sections σ_{th}=8x10⁻² b

¹²C Cross Sections σ_{th} =3.8x10⁻³ b

Nuclear Structure View of PGAA and NAA

Coincidence in PGAA

2. Features of PGAA

PGAA properties

- Gamma radiation is characteristic
 - energy elements (isotopes)
 - intensity quantity
- complicated gamma spectrum
- independent from chemical environment
- nondestructive
- no sample preparation, sample in any form
- extremely different sensitivities

Cr capture spectrum

Reaction Rate

$$R = \int_{E_{\min}}^{E_{\max}} N_0 \,\sigma(E) \,\Phi(E) \,\mathrm{d}E$$

 σ - differential cross section (cm²), Φ - flux cm⁻²·s⁻¹ eV⁻¹ N - number of target nuclides (~ mass) $N=m/M\theta N_A$

For thermal neutrons

$$R_{th} = N_0 \,\sigma_0 \,\Phi_{th}$$

PGAA analysis

 $R_{\gamma} = N \sigma_{\gamma} \Phi$ $\sigma_{\gamma} = \sigma I_{\gamma}$

- N number of atoms (~mass of component)
- σ_{γ} gamma ray production cross section
 - σ capture reaction cross section
 - I_{γ} gamma-ray intensity
- Φ neutron flux

DETERMINATION OF CHEMICAL COMPOSITION

$$A_{E} = m \cdot S \cdot t$$
$$S = \frac{N_{A}}{M} \cdot \theta \cdot \sigma_{0} \cdot I_{\gamma} \cdot \Phi_{0} \cdot \varepsilon(E_{\gamma})$$

 $\begin{array}{l} \mbox{m}: \mbox{Mass of the element} \\ S: \mbox{Sensitivity} \\ A_E: \mbox{Peak area} \\ N_A: \mbox{Peak area} \\ N_A: \mbox{Avogadro-number} \\ m: \mbox{Molar weight} \\ \theta: \mbox{Isotopic abundance} \\ \mbox{\sigma}_0: \mbox{Neutron capture cross-section} \\ I_\gamma: \mbox{Gamma-yield} \\ \Phi_0: \mbox{Neutron flux} \\ \epsilon(E_\gamma): \mbox{Detector efficiency} \end{array}$

PGAA detection limits

H 1 1.00794 0.3326 b 82.02 b				Eler stable	nent isotope		Detecti 0.0 1-1 10-	on Limi <mark>1-1</mark> 0 .100	t [ppm]								He 3 ^{0.00014} 4 4.002602 0.007 b 1.34 b
Li 6 ^{7.5} 7 ^{92.5}	Be 9			atomic	weight		■ 100 ■ >10	D-1000				B 10 ²⁰ 11 ⁸⁰	C 12 ⁹⁹ 13 ^{1.1}	N 14 15 ³⁷	O 16 17 ^{0.038} 18 ^{0.2}	F 19	Ne 20 ⁹¹ 21 ^{0.26} 22 ⁹
6.941 7 0.5 b 1.37 b	9.0 122 0.0076 b 7.63 b			σ-sca	ittering		□ no	data				10.811 767 b 5.24 b	12.011 0.00350 b 5.551 b	14.00674 1.9 b 11.51 b	15.9 994 0.00019 b 4.232 b	18.998 0.0096 b 4.018 b	20.1 797 0.039 b 2.628 b
Na 23	Mg 24 ⁷⁹ 25 ¹⁰ 26 ¹¹											AI 27	Si 28 ⁹² 29 ^{4,7} 30 ^{3,1}	P 31	S 32 ⁹⁵ 33 34 ⁴ 36	CI 35 ⁷⁶ 37 ²⁴	Ar 36 38 40 ^{99.6}
2 2.98 977 0.530 b 3 .28 b	24.305 0.063 b 3.71 b											26.9 815 0.231 b 1.503 b	28.0 855 0. 171 b 2. 167 b	30.9738 0.172 b 3.312 b	32.066 0.53 b 1.026 b	35.4527 33.5 b 16.8 b	39.948 0.675 b 0.683 b
K 39 ⁹³ 40 41 ⁷	Ca 40 ⁹⁷ 42 43 44 ² 46 48	Sc 45	Ti 46 ⁸ 47 ⁷ 48 ⁷⁴ 49 ⁵ 50 ⁵	V 50 ^{0.25} 51	Cr 50 ⁴ 52 ⁸⁴ 53 ¹⁰ 54 ²	Mn 55	Fe 54 ⁶ 56 ⁹² 57 ² 58	Co 59	Ni 58 ⁶⁸ 60 ²⁶ 61 ^{1.1} 62 ^{3.6} 64 ^{0.9}	Cu ₅3 [™] 65 ³¹	Zn 64 ⁴⁹ 66 ²⁸ 67 ⁴ 68 ¹⁹ 70	Ga 69 ⁶⁰ 71 ⁴⁰	Ge 70 ²⁰ 72 ²⁷ 73 ⁸ 74 ³⁷ 76 ⁸	As 75	Se 74 76 ⁹ 77 ⁸ 78 ²⁴ 80 ⁵⁰ 82 ⁹	Br 79 ⁵¹ 81 ⁴⁹	Kr 78 80 ² 82 ¹² 83 ¹² 84 ⁶⁴ 86 ¹⁷
39.0 983 2.1 b 1.96 b	40.078 27.5 b 23.5 b	44.9559 27.5 b 23.5 b	47.867 6.09 b 4.35 b	50.9415 5.08 b 5.10 b	51.9 961 3.05 b 3.49 b	54.9 380 1 3.3 b 2.15b	55.845 2.56 b 11.62 b	58.9 332 37 .18 b 5.6 b	58.6 934 4.49 b 18.5 b	63.546 3.78 b 8.03 b	65.39 2.75 b 6.38 b	69.723 2.75 b 6.83 b	72.61 2.20 b 8.60 b	74.9216 4.5 b 5.50 b	78.96 11.7 b 8.30 b	79.904 6.9 b 5.90 b	83.8 25 b 7.68 b
Rb 85 ⁷² 87 ²⁸ 85.4 678	Sr 84 86 ¹⁰ 87 ⁷ 88 ⁸³	¥ 89 8 8.90 585	Zr 90 ⁵² 91 ¹¹ 92 ¹⁷ 94 ¹⁷ 96 ³ 91.224	Nb 93 9290638	Mo 92 ¹⁵ 94 ⁹ 95 ¹⁶ 97 ¹⁰ 98 ²⁴ 99 ¹⁰ 95.94	(Tc) (98)	Ru 96 ⁶ 98 ² 99 ¹³ 100 101 ¹⁷ 102 ³² 104 101.07	Rh 103 102.9055	Pd 102 ¹ 104 ¹¹ 105 ²² 106 ²⁷ 108 ²⁷ 110 ¹² 106.42	Ag 107 ⁵² 109 ⁴⁸ 107.8682	Cd 106 108 110° 111° 112° 113° 114° 118 112.411	In 113⁴ 115 ⁹⁶ 114.818	Sn ^{112¹114 115 116¹⁵ ^{117^a118² 119⁵ 120¹²122⁵124⁴} 118.71}	Sb 121 ⁵⁷ 123 ⁴³ 121.76	Te 120122123124 125126"128"130" 127.6	 127 126.90 447	Xe 124 126 128 ² 129 ²⁷ 130' 131 ²¹ 122 ²⁷ 134' ⁹ 135 ⁴ 131.29
0.38 b 6.8 b	87.62 1 28 b 6 25 b	1 28 b 7 .70 b	0.185 b 6.46 b	1.15 b 6.255 b	2.48 b 5.71 b	20 b 6.3 b	2.56 b 6.6 b	144.8 b 4.6 b	6.8 b 4.48 b	63.3 b 4.99 b	2520 b 6.5 b	1938 b 2.62 b	0.626 b 4.892 b	4.91 b 3.90 b	4.7 b 4.32 b	6.15 b 3.81 b	23.9 b -
Cs 133	Ba 130 132 134 ² 135 ⁴ 136 ¹ 137 ¹¹ 138 ²	La 138 139 ^{99.9}	Hf 174 176 ⁵ 177 ¹⁹ 178 ²⁷ 179 ¹⁴	Ta 180 181 ^{99,99}	180 182 ²⁶ 183 ¹⁴ 184 ³¹	Re 185 ³⁷ 187 ⁶³	Os 184 186° 187° 188° ² 189° ⁶ 190° ⁶	ir 191 ³⁷ 193 63	Pt 190 192 ¹ 194 ³³ 195 ³⁴ 196 ²⁵	Au 197	Hg 196 198° 199° 200° 201° 202 °	TI 203 ³⁰ 205 ⁷⁰	Pb 204 ¹ 206 ²⁴ 207 ²² 208 ⁵²	Bi 209	(Po) (209)	(At) (210)	(Rn) (222)
132.90545 29.0 b 3.90 b	137.327 1.1 b 3.38 b	1 38.9 055 8 .97 b 9 .66 b	180 ³⁵ 178.49 104.1 b 10.2 b	180.9497 20.6 b 6.01 b	186 ²⁹ 183.84 18.3 b 4.60 b	186.207 89.7 b 11.5 b	192'' 190.23 16.0 b 14.7 b	192.217 425 b 14 b	198 ⁷ 195.08 1 0.3 b 11 .71 b	196.96655 98.65 b 7.73 b	204 ⁷ 200.59 372.3 b 26.8 b	2 04.3 833 3 .43 b 9 .89 b	207.2 0.171 b 11.12 b	20 8.98 038 0.0338 b 9.156 b	-	-	-
(Fr) (223)	(Ra) (226)	(Ac) (227)	104	105	106											-	-
-	128 b 13 b	-															

Ce 136 138 140 ⁸⁹ 142 ¹¹ 140.115 0.63 b 2.94b	Pr 141 140.90765 11.5 b 2.66 b	Nd 142° 143° 144 ° 145' 146° 148 150' 144.24 51 b 16.6b	(Pm) (145) 168.4 b 21.3 b	Sm 144 ¹ 14 ⁷⁺¹ 148 ¹ 149 ¹ 150 ¹ 152 ² 154 ⁸ 150.36 5922 b 39 b	Eu 151 ⁴⁹ 153 ⁶² 151.965 4530 b 9.2 b	Gd 152 154 155° 156° 157° 158 ° 160° 157.25 49700 b 180 b	Tb 159 158.92534 23.4 b 6.84 b	Dy 155 158 160° 161° 162° 168° 164° 162.5 994 b 90.3 b	H0 165 16 4.93 032 6 4.7 b 8.42 b	Er 162 164 ² 166 ³³ 167 ²³ 168 ²⁷ 170 ¹⁵ 167.26 159 b 8.7 b	Tm 169 16 893 421 100 b 6 .38 b	Yb 168 170' 17 1" 172" 173" 174 " 176 ¹³ 173.04 34.8 b 23.4 b	Lu 175 ⁹⁷ 176 ³ 174.976 74.b 72.b
Th 232 23 2.03 805 7 .37 b 13 .36 b	(Pa) (231) 2006 b 105 b	U 235 ^{0.72} 238 ^{99.3} 2 38.0 289 7 .57 b 8 9 b	(Np) (239) 175.9 b 145 b	(Pu) (244) 1017.3 b 77 b	(Am) (243)	(Cm) (247)	(Bk) (247)	(Cf) (251)	(Es) (252)	(Fm) (257)	(Md) (258)	(No) (259)	(Lr) (261)

3. PGAA methodology

Neutron Sources

- Reactor
 - Thermal 25 meV
 - Cold 5 meV
- Isotopic sources
 - Fission (²⁵²Cf) 1-5 MeV
 - Alpha (Pu-Be) 4-8 MeV
- Generators
 - d-D 3 MeV
 - d-T 14 MeV
- Photoneutron sources

Reactor neutron spectrum

FIG. 2.1-General features of a reactor neutron spectrum.

Cold and thermal neutron spectra

Advantages of cold neutron beams

- Higher flux
- every nuclide behaves regularly
 - (follows the 1/v-law)
- every nuclide has higher cross section

Neutron guides at Budapest

Starting of the cold source at Budapest Research Reactor

The PGAA facility at Budapest

NIPS (Neutron Induced Prompt Gamma Spectroscopy) system

PGAA sample

BEAM CHOPPER

Li-6 and Gd-coated rotating disks

Gap width: 0.2 – 50% • Variable frequency : 3 – 100 Hz

Possible cyclic activation of short-lived isotopes (Na, F, Sc, Ge, Pd, Ag, In, Er, Hf, W, etc.)

Time of flight

Gamma-ray spectroscopy

• Decreasing the background

- Compton-suppression
- cluster detectors
- combination with NAA

max. 10⁶ counts

10 counts

$$\mu_{\rm A}/\mu_{\rm B} = A_{\rm A}/A_{\rm B} = 10^{-5}$$

Compton-suppressed detector

Background reduction via Compton-suppression

Composite detectors

Clover

Cluster

Analog signal processing chain

Preamplifier \rightarrow Spectroscopy Amplifier \rightarrow ADC \rightarrow MCA

Digital signal processing

Preamplifier \rightarrow Sampling ADC \rightarrow DSP \rightarrow MCA

Parameters of a spectrometer

- Peak shape
- Resolution vs. energy and amplifier gain
- Time stability
- Detector efficiency
- Energy nonlinearity

Peak shape

Distorted peak shape

Optimum peak shape

FWHM analysis

 $FWHM = \sqrt{a^2 + b^2 E}$ $if E \rightarrow 0:$ $FWHM \rightarrow a$

a : peak broadening effect of electronics in keV

Range of calibration sources

Efficiency calibration

Monte Carlo simulation with CYLTRAN vs. Budapest efficiency

R. G. Helmer (INEEL)

Comparison of efficiencies Compton-suppressed mode

Nonlinearity analysis

Measured with ¹⁵²Eu source and Cl(n,γ)

- 16k channels
- Nonlinear fit of orthogonal olynomials
- Centred around zero

Nonlinearity

Fi	le Di	splay	Roi	Eval	Options	Help			
					•			EUO_A7 MCA (Tag No=: MCA Mode COLLECTI 13:49:31	77C.MCA #1 1421 ≥: PHA+ ED AT 9
	and a second							ELAPSEI Live=569 True=683 CALIBRA ENERGY Unit: E0: 1	998 D TIME 99 sec 28 sec TION: keV .6578
								E1: O NO WIDTI	.4455 H
								LENGTH: SUM: : MAX: MIN:	16384 CH 38605635 2052606 0
CU	RSOR:	1 CH		O CNT	2.103	keV	LOG	DISP FIRST	LAY HALF

4. Special techniques

Dynamic range

 $(\mu_{\rm A}/\mu_{\rm B})_{\rm max} / (\mu_{\rm A}/\mu_{\rm B})_{\rm min} \approx 10^6 - 10^7$

e.g. 1 mg Mn in 1g H_2O (~0.1 g H)

 $1 \text{ mg H}_2\text{O} (0.1 \text{ mg H}) \text{ in } 1 \text{ g Mn}$

Can it be improved?

Simultaneous PGAA and NAA measurement with a chopper

Beam open

prompt gamma rays
decay gamma rays

Beam closed

only decay gamma rays

Usual PGAA spectrum

cyclic NAA spectrum

Spectra

Elements with decay lines

- < 1 s: Na,
- <1 min: F, Sc, Ge, Pd, Ag, In, Er, Hf, W,
- < 10 min Mg, Al, V, Cr, Se, Br, Rh, Dy, Ir,
- < 1 h: Ga, Rb, Sn, I, Pr, Nd, Ta, Re,
- <1 day: Mn, Cu, Sr, Cs, Ba, Eu, Lu,
- longer: As, Ru, La, Ce, Tb, Ho, Yb, Au,

Background

Name	Reactor	Beam	Vacuum	Chopper	Phase	Backgound
						(cps)
Room background	off	—	—	—	—	0.63
Beam-off background	on	off	—	_	—	1.5
Beam-on background (in vacuum)	on	on	yes	_	_	4.0
Beam background in air	on	on	no		_	5.6
Chopper background in prompt phase	on	on	no	on	prompt	5.3
Chopper background in decay phase	on	on	no	on	decay	4.6

Prompt and decay spectrum of Ag

El	E (keV)	prompt s	spectrum	decay sj	gain	
	_ (,	rate S/N		rate	S/N	
F	1633	1.63(2)	1300	1.63(6)	7000	5
Al	1779	2.62(1)	2000	2.61(1)	200,000	100
Sc	143	28(1)	200	29(1)	40,000	20
	147	46.8(7)	400			
V	125	20.0(2)	270			
	1434	9.3(1)	1200	8.8(4)	41,000	34
Cu	159	29.6(2)	200			
	1039	0.58(2)	90	0.55(2)	900	10
Ag	198	82(1)	62			
	658	7.16(15)	20	7.3(3)	1900	95
In	163	157(3)	53	146(6)	3700	70
Er	185	32(1)	400			
	208	14.6(8)	180	15.4(6)	11,000	60

Measurements

Results

Element	Half-life	Energy (keV)	decay	prompt
			line σ_{γ}	line σ_{γ}
			(barn)	(barn)
F	11.16 s	1633	0.0093(3)	—
Al	2.24 m	1779	0.233(4)	< 0.005
Sc	18.75 s	143	4.88(10)	<0.13
V	3.75 m	1434	5.20(10)	<0.3
Cu	5.12 m	1039	0.0600(12)	< 0.0023
Ag	24.6 s	658	1.93(4)	<0.08
In	2.18 s	163	15.8(8)	<1.1
Er	2.27 s	208	2.15(9)	<0.18

Scheme of transmuting ⁹⁹Tc

PGAA on a radioactive target 99 Tc chopped beam (n, γ) + decay spectra

Increase of PGAA sensitivity by coincidence

9.35 mg CoCl₂(2H₂O) and 22.1 mg of H_3BO_3 / ml

Focused Beams with Cold Neutrons

Polycapillary neutron lens (NIST). 1763 glass fibres (0.5 mm), each with 1657 channels (9 μ m) focus neutrons to 0.5 mm spot.

End of Part 1