the **abdus salam** international centre for theoretical physics

H4.SMR/1503 - 06

WORKSHOP ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY: MATERIALS ANALYSIS

(19 - 30 May 2003)

Prompt gamma activation analysis Part 2: Applications

Prof. Gá bor L. Molná r Department of Nuclear Research Institute of Isotope and Surface Chemistry, Chemical Research Centre Budapest H-1525 HUNGARY

united rations educational, scientific and cubural organization () () international atomic energy agency

Workshop on Nuclear Data for Science and Technology: Materials Analysis ICTP Trieste, 19-30 May 2003

Prompt gamma activation analysis Part 2: Applications

Gábor L. Molnár

Institute of Isotope and Surface Chemistry Chemical Research Centre Budapest, Hungary

Main steps of PGAA analysis

Spectrur C/LHY PC/SPE CT RA/A RCHEO/ZOLDP ALA/FV 41103C. MCA Live Tim 3290.48

_															
											c%	c%	c%	c%	
Z	EI	M	m	un c%	m(bkg)	un c%	m(net)	n(ox)	m(ox)	un c%	atom	el∕el	el/ox	ox/ox	un c‰
1	н	1.00794	0.0729	1.2	0.00018	3.0	0.07272	0.5	0.6499	1.2	0.027	0.904	0.484	4.328	1.2
5	в	10.811	6.7E-05	1.1	1E-08	0.0	6.7E-05	1.5	0.00022	1.2	3E-04	8E-04	4E-04	0.001	1.2
11	Na	22.9898	0.39095	2.5	0	0.0	0.39095	0.5	0.52699	2.5	3.36	4.859	2.604	3.51	2.5
12	Mg	24.305	0.93332	3.6	0	0.0	0.93332	1	1.5477	3.6	8.48	11.6	6.216	10.31	3.6
13	AI	26.9815	1.21162	1.6	0.00273	5.0	1.20689	1.5	2.28416	1.6	12.19	15.03	8.051	15.21	1.6
14	Si	28.0855	3.09038	1.5	0	0.0	3.09038	2	6.61136	1.5	32,45	38,41	20.58	44.03	1.5
16	S	32.066	0.03361	5.8	0	0.0	0.03361	3	0.08391	5.8	0.403	0.418	0.224	0.559	5.8
17	CI	35.4527	0.0015	7.0	1.8E-05	20.0	0.00149	0	0.00149	7.1	0.02	0.018	0.01	0.01	7.1
19	к	39.0983	0.04832	12.4	0	0.0	0.04832	0.5	0.05821	12.4	0.706	0.601	0.322	0.388	12.4
20	Ca	40.078	0.75737	2.0	0	0.0	0.75737	1	1.05972	2.0	11.35	9,414	5.044	7.058	2.0
21	Sc	44.9559	0.00063	14.5	0	0.0	0.00063	1.5	0.00097	14.5	0.011	0.008	0.004	0.006	14.5
22	Ti	47.867	0.1515	1.0	0	0.0	0.1515	2	0.25277	1.0	2,711	1.883	1.009	1.683	1.0
23	V	50.9415	0.00471	6.8	0	0.0	0.00471	2.5	0.00841	6.8	0.09	0.059	0.031	0.056	6.8
24	Cr	51 9961	0.00984	7.9	0	0.0	0.00984	1.5	0.01438	7.9	0.191	0.122	0.066	0.096	7.9
25	Mn	54,938	0.01509	2.4	0	0.0	0.01509	1	0.01948	2.4	0.31	0.188	0.101	0.13	2.4
26	Fe	55.845	1.3222	1.2	0.00144	5.0	1.32076	1.5	1.88835	1.2	27.57	16.42	8,796	12.58	1.2
27	Co	58 9832	0.00531	40	0	0.0	0.00531	1	0.00676	40	0.117	0.066	0.035	0.045	4.0
62	Sm	150.36	5.4E-05	2.1	0	0.0	5.4E-05	1.5	6.3E-05	2.1	0.003	7E-04	4E-04	4E-04	2.1
64	Gd	157.25	7.6E-05	2.0	0	0.0	7.6E-05	1.5	8.7E-05	2.0	0.004	9E-04	5E-04	6E-04	2.0
66	Dv	162.5	0.00014	183	0	0.0	0.00014	1.5	0.00017	18.3	0.009	0.002	1E-03	0.001	18.3
	<u> </u>														
8 04523 15 0151 0 806 100 100 5358 100															
						- 0 cal	culated		6.96985	46.42	%				

Main results in methodology

- Data library transportable to other labs
- evaluation based on several peaks
 - least squares fit to component's mass
- complete analysis
 - panorama analysis
- analytical precision for the important elements
 - relative uncertainty: 1–2%

DETERMINATION OF CHEMICAL COMPOSITION

$$A_{E} = m \cdot S \cdot t$$
$$S = \frac{N_{A}}{M} \cdot \theta \cdot \sigma_{0} \cdot I_{\gamma} \cdot \Phi_{0} \cdot \varepsilon(E_{\gamma})$$

 $\begin{array}{l} \mathsf{m}:\mathsf{Mass of the element}\\ & \mathsf{S}:\mathsf{Sensitivity}\\ & \mathsf{A}_\mathsf{E}:\mathsf{Peak area}\\ & \mathsf{N}_\mathsf{A}:\mathsf{Avogadro-number}\\ & \mathsf{M}:\mathsf{Molar weight}\\ & \theta:\mathsf{Isotopic abundance}\\ & \sigma_0:\mathsf{Neutron capture cross-section}\\ & \mathsf{I}_\gamma:\mathsf{Gamma-yield}\\ & \Phi_0:\mathsf{Neutron flux}\\ & \epsilon(\mathsf{E}_\gamma):\mathsf{Detector efficiency}\\ \end{array}$

Introducing the fluxindependent $k_{0,C}(X) = \frac{(\theta \cdot \sigma_0 \cdot I_{\gamma} / M)_X}{(\theta \cdot \sigma_0 \cdot I_{\gamma} / M)_C}$

$$\frac{m_X}{m_Y} = \frac{A_X}{A_Y} \cdot \frac{S_{\gamma,Y}}{S_{\gamma,X}} = \frac{A_X}{A_Y} \cdot \frac{k_{0,C}(Y)}{k_{0,C}(X)} \cdot \frac{\varepsilon_{\gamma,Y}}{\varepsilon_{\gamma,X}}$$

gives the mass ratio of arbitrary elements

 $c_{\rm x} = m_{\rm x} / \Sigma m_{\rm i}$

gives the mass fraction (concentration)

IN THE PAST

- Used for supplementary analysis only
 - to provide additional information on the sample
- Only in case of selected elements
 - (B, H, Cd...)
- Every lab analyzed
 - using its own data library
 - based on its own measurements
 - 1 or 2 lines per element

NOW

- Multielement analysis
 - to provide full information on the sample
- Analysis based on k_0 / σ_{γ} library
 - no need for element standards
- Several labs worldwide
 - NIST, JAERI, SNU/KAERI, BARC etc.

APPLICATIONS

Selected Applications

- Rocks and minerals (Geology, Archaeology)
- Ceramics (Archaeology)
- Glasses (Archaeology, Industry)
- Metals (Materials Research, Archaeology)
- Chemistry
- Nuclear Materials (Safeguards, Transmutation)

ROCKS AND MINERALS

BORON IN MIOCENE VOLCANIC ROCKS (Dept. of Petrography, Eötvös University)

- **B** is a fluid-mobile trace element / conc. of 10-25 ppm
- Representative samples from Northern Pannonian Basin
- Major components were detected with high accuracy
- Systematic variation in B conc. as function of distance from subduction zone

DEEP SEE VENTS ON THE PACIFIC FLOOR (Lawrence Berkeley National Laboratory)

- Deep see vents have been found on the ocean floor near faults
- The overheated water dissolves different minerals
- The investigated samples contain sulfates of Cu and Fe

Experimental Results With PGAA

• Analysis of Deep Sea Vents (% by weight)

	ALVIN 917-R4	ALVIN 1457-1R-C	ALVIN 1461-2R
0	45.9 [*]	41(6), 44.9 [*]	45.1*
S	20.0 (0.2)	0.151 (0.005)	0.16 (0.01)
Ca	11.3 (0.2)	7.22 (0.11)	7.25 (0.13)
Fe	9.28 (0.11)	9.65 (0.08)	9.37 (0.09)
Cu	7.67 (0.07)		
Al		7.10 (0.07)	7.06 (0.12)
Mg	1.8 (0.2)	3.98 (0.11)	3.6 (0.2)
Zn	1.36 (0.05)		
Р		0.85 (0.18)	1.6 (0.2)
Ni	1.17 (0.003)	0.022 (0.002)	
Ti		1.097 (0.008)	1.060 (0.010)
Si	0.55 (0.05)	22.6 (0.3)	22.3 (0.3)
Н	0.368 (0.004)	0.0290 (0.0005)	0.027 (0.001)
K	0.27 (0.06)	0.138 (0.004)	0.16 (0.01)
Cl	0.194 (0.002)	0.0566 (0.0005)	0.0188 (0.0005)
Mn		0.154 (0.002)	0.161 (0.004)
Na	0.140 (0.014)	1.97 (0.04)	1.96 (0.05)
V		0.042 (0.002)	0.046 (0.003)
Со	0.0066 (0.0011)	0.0045 (0.0003)	0.0058 (0.0009)
Sc		0.0039 (0.0002)	0.0058 (0.0005)
Cd	0.00352 (0.00005)		0.00024 (0.00003)
В	0.00220 (0.00002)	0.000659 (0.000007)	0.000658 (0.000008)
Dy		0.00099 (0.00008)	0.00111 (0.00014)
Gd	0.000050 (0.000006)	0.000524 (0.000007)	0.000556 (0.000010)
Sm	0.00033 (0.00003)	0.000330 (0.000005)	0.000340 (0.000007)

Experimental Results With PGAA

Analysis of a Sediment Profile from an Archaeological site

Si,H,Al,Na,K,Ca,Fe,Cl,B,Sm,Gd, Mn,Cu observed with PGAA

⁴⁰K,U,Th,¹³⁷Cs from low-background counting; ³⁹K from PGAA

NEOLITHIC POLISHED STONE TOOLS -GREENSCHIST AND BLUESCHIST (Dept. of Petrography, Eötvös University)

- 17 archaeological objects from the Carpathian basin
 6-8 thousand-year-old settlements
- 7 rocks from quarries (Eastern-Alps, Western-Carpathian)
- Aim: Provenance study of stone tools
- Analysis: Petrography, PGAA
 Major (SiO₂, Al₂O₃, TiO₂ Fe₂O₃, MnO, CaO, MgO, Na₂O, K₂O) and traces (B, Sc, V, Co, Cr, Sm, Eu, Gd, Dy)

CLASSIFICATION OF GREENSCHIST AND BLUESCHIST OBJECTS

REE-PATTERN OF SAMPLES FROM QUARRIES (Eu-ANOMALY)

LAPIS-LAZULI (University of Tübingen)

- Semi-precious stone
- Few quarries known over the World (Ural, Chile, Afghanistan, Lake Baikal)
- **Mineral**: Lazurite / (Na,Ca)₇₋₈(AI,Si)₁₂O₂₄[(SO₄)Cl₂(OH)₂]
- PGAA: H, Na, Mg, Al, Si, K, Ca, Ti, Mn, Fe, S, Cl

CLASSIFICATION OF LAPIS-LAZULI RAW MATERIAL

CHIPPED STONE TOOLS MADE OF GREY FLINT (Hungarian National Museum)

- **AIM**: Provenance study of 8 archaeological objects from the Carpathian basin (Upper Paleolithic **16-30 thousand years**)
- **GEOLOGICAL REFERENCE**: Lithotheca of the HNM (Quarries of Poland, Czech, Hungary, Ukraine, Romania)
- ANALYTICS: >95% SiO₂; Al₂O₃, TiO₂, Fe₂O₃, CaO, Na₂O, K₂O, MgO, MnO, H₂O, CI, B, Sm, Eu, Gd, Sc, Cd

PGAA spectrum of a grey flintstone

CLASSIFICATION OF GREY FLINT SAMPLES

CERAMICS

PRE-COLUMBIAN POTTERY FROM VENEZUELA (Simón Bolívar University, Caracas)

- Fragments of pottery figurines from 12nd-15th Century
- Provenance: Valencia Lake Basin and the Los Roques Islands
- **Question**: Did the occupants use the same raw material?
- Analytic: Major and trace components (H, Na, Mg, AI, Si, K, Ca, Ti, Mn, Fe B, S, CI, Sc, V, Cr, Ba, Sm, Eu, Gd, Dy)

PROVENANCE OF VENEZUELAN POTTERY

CLASSIFICATION OF VENEZUELAN POTTERY

HISTORICAL GLASS

(Inst. of Nuclear Chemistry and Technology, Warsaw)

WHITE	Conc. [%]	BLUE	Conc. [%]	GREEN	Conc. [%]
SiO ₂	59.7	SiO ₂	71.8	SiO ₂	71.2
K ₂ O	8.33	K ₂ O	17.6	K ₂ O	17.4
PbO	25.1	PbO	<2	PbO	3.1
CaO	1.3	CaO	2.98	CaO	2.27
Al ₂ O ₃	0.58	Al ₂ O ₃	<0.3	Al ₂ O ₃	<0.3
Na₂O	3.1	Na ₂ O	1.79	Na ₂ O	1.12
MgO	0.5	MgO	<0.2	MgO	<0.2
P ₂ O ₅	<2	P_2O_5	2.16	P_2O_5	<2
MnO	0.07	MnO	0.018	MnO	0.030
Fe ₂ O ₃	0.081	Fe ₂ O ₃	< 0.05	Fe ₂ O ₃	<0.05
CuO	<0.1	CuO	0.83	CuO	0.77
TiO ₂	0.037	TiO ₂	<0.01	TiO ₂	<0.01
В	0.00137	В	0.00296	В	0.00570

Good agreement with EPMA !

- W: High Pb, colourless K-glass / Piece of goblet from 17th C., England
- B and G: K-glass, colourants are Cu (U), opaque from P₂O₅ Wastes from 19th C. Silesian glasswork

INACTIVE TRACING OF A GLASS FURNACE (GE Lighting Tungsram)

- Homogenization and flow properties of an industrial melting furnace were investigated
- To avoid high level radioactivity, inactive tracers of Gd₂O₃ and H₃BO₃ were added in 10 ppm concentration
- Samples were taken regularly at the outlet and measured with PGAA
- Properties were found to be close to ideal case

ROMAN BRONZE FIBULAE AND COINS (Archaeological Institute of the HAS)

- Cemetery of Hegyeshalom (H): 2nd and 4th century AD Excavated objects: 26 fibulae and 383 coins
- The graves can be dated with a 10-20 years accuracy The inner chronology of fibulae can not be determined according to typology
- Aim: Classification of objects, information on workshop, trade, etc. according to composition
- Problem: Recycling of raw material

CLASSIFICATION OF FIBULAE BASED ON MAJOR COMPONENTS

LARGE ROMAN BRONZE OBJECTS (University of Bielefeld, Hungarian National Museum)

Most of them are pure tinbronze (Cu:Sn ratio 9:1), some with high Pb or Zn With a collimated beam major components of any parts of jugs, helmets, shields, etc. can be determined

SOUTH-ITALIAN BRONZE OBJECTS (I-II. C.) (University of Bielefeld, Hungarian National Museum)

Most of them are pure tinbronze (Cu:Sn ratio 9:1), some with high Pb or Zn With a collimated beam major components of any parts of jugs, helmets, shields, etc. can be determined

ROMAN SILVER COINS (Inst. of Nuclear Chemistry and Technology, Warsaw)

CHANGE IN COMPOSITION OF ROMAN SILVER COINS

CHEMISTRY

Experimental Results With PGAA

Analysis of Reagent Materials (LBNL + Budapest)

CaF₂ (Reagent grade, Baker and Adamson) $Ca(OH)_{2}$ Ca 54.3±0.9% Ca 93.6±1.9% F 44.4+1.9% H 5.04±0.005% AI 0.66±0.07% K 1.3±0.2% CI 0.150+0.003% CI 0.028±0.002 Na 0.040+0.009% Eu 54±9 ppm ZnO (Mallinckrodt) Gd 26±1 ppm Zn 100%) В 4.2±0.3 ppm CeO₂ 5.1±0.3 ppm Cd HfO₂ (98%, Aldrich Chemical Co.) Ce 99.8% HfO₂ (no detectable impurities) K 0.077±0.016% TiO₂ 0.074±0.010% S Ti 96.8% Na 0.061±0.009% K 3.1±0.2% H 0.004±0.001% Н 0.04±0.01% 31±1 ppm В Eu 0.022±0.002% Eu 11±1 ppm Gd 5.2±0.2 ppm Sm 1.8±0.1 ppm 2.0±0.2 ppm Gd 1.2±0.1 ppm В Gd_2O_3 – no detectable impurities

SUPPORTED Pt CATALYSTS

- Non-destructive test of catalysts containing noble metals has a great economical importance
- With PGAA metal content and H was also detectable
- For EUROPT catalysts the PGAA results are in good agreement with other methods

	m /	m/m (%)				
Н	1.16	±	0.025	19.01		
Al	46.40	±	0.696	28.27		
Cl	1.06	±	0.009	0.49		
Pt	0.34	±	8.8·10 ⁻³	0.03		
0*	50.66	±	1.840	52.09		

Composition of an industrial Pt/Al₂O₃ catalyst

SULFUR IN FULLERENE (Dept. of Inorganic Chemistry, Eötvös University)

PGAA spectrum of fullerene

Element	Concentration	Rel. unc	Composition
	(%)	(%)	
Н	0.012	10	0.08
С	97.1	4.5	60
S	2.88	1.3	0.67
Cl	0.003	20	0.0006

- Sulfur and other impurities were determined with PGAA
- C is an ideal matrix
- S attributed to $C_{60}S_{16}$ (clathrate) during the purification process

CEMENT AND CLINKER (Cemkut Ltd.)

- Major components of industrial cements and clinker were measured
- PGAA gives high accuracy data of Ca, Si, Al and Fe oxides
- The analysis is much shorter (2-5 hours) than the classical quality control

HIDROGEN IN AMORPHOUS ALLOYS (Res. Inst. for Solid State Physics, KFKI)

- NiZr and PdAg alloys for H storage cells
- Storage capacity and H dynamics with NMR and PGAA
- PGAA detects significantly higher H than NMR

NUCLEAR MATERIALS

⁹⁹Tc measurements

In-beam PGAA: rel. γ intensities ✓ Tc Chopped beam PGAA: ¹⁰⁰Tc β ⁻ decay ✓ Tc > rel. γ intensities ✓ NH₄TcO₄ capture and decay lines: partial xsecs > capture cross section In progress: Tc Coincidence: level scheme > capture cross section

⁹⁹Tc 0.5 g sample (n,γ) spectrum

⁹⁹Tc chopped beam (n,γ) spectra

Partial γ -ray production cross sections of capture and decay lines for a ⁹⁹Tc target

Eγ	Origin	P_{γ}	σ_{γ}^{a}	Sensitivity
(keV)		(γ/100 captures	(b)	(cps/mg)
		or decays)		
172.1	99 Tc(n, γ)	67 <u>+</u> 6	16.61 <u>+</u> 0.15	3.0
223.4	99 Tc(n, γ)	6.1 <u>+</u> 0.6	1.472±0.013	0.24
263.5	99 Tc(n, γ)	5.9 <u>+</u> 0.5	1.425 <u>+</u> 0.012	0.21
539.5	¹⁰⁰ Tc β ⁻	6.6±0.5 ^b	1.604 <u>+</u> 0.014	0.14
590.7	¹⁰⁰ Tc β ⁻	5.3 <u>+</u> 0.5	1.296 <u>+</u> 0.011	0.10
89.5	⁹⁹ Τc β ⁻	$(6.5\pm1.5)\times10^{-4}$ c		4.3×10^{-3}

Inferred total thermal neutron capture cross section of ⁹⁹Tc

Method	Basis	σ	Comment
		(b)	
¹⁰⁰ Τc β ⁻	539 γ	24.7 <u>+</u> 2.3	with P_{γ} from Ref. [9]
	591 γ	23.9 ±1.8	
	Average	24.3 ±2.2	unweighted average
99 Tc(n, γ)	$\Sigma \sigma_{\gamma}$ g.s.	21.21 <u>+</u> 0.17	lower limit
		26.5 <u>+</u> 2.6	missing $\sim 20\%$ added
Literature: EXF	OR database	19±2 b	
Harada:		24 ±4 b 22.9 ±2.6 b	

Investigation of fissile materials

- Passive techniques
 - from radioactive radiation of the isotopes
- Active techniques (irradiation with neutrons)
 - -NAA
 - PGAA
 - chopped beam PGAA
 - other neutron irradiation techniques

PGAA / NAA of uranium

Prompt lines

Decay lines

- ^{238}U \rightarrow ^{239}Np , ^{239}Pu
- 235U –

• fission prod. ¹³⁴Te \rightarrow • fission prod. ⁹⁰Rb (100 s)

• fission prod. ¹⁴⁰Ba/¹⁴⁰La)

Natural radioactivity lines: ²³⁵U, ²³⁸U

Fissionable isotope **U-235** decay spectrum - INEEL Catalog

U-235 spont. fission >> Ba-140 / La-140 spectrum - INEEL Catalog

Non-fissionable isotope

U-238 decay spectrum - INEEL Catalog

First uranium measurements

- Nat. uranil acetate and nitrate
 - PGAA
 - decay regularly after irradation
- enriched (19% and 36%) U_3O_8
 - PGAA
 - decay measurements regularly after irrad.

Main results

- Calibration curve
 - peak area ratio enrichment
 - 1 hour irradiation, 1 g U,
 - in the region of 0.1--50%
- Partial cross section for the most important lines

- rel. uncertainty $\sim 10\%$

Calibration curve from uranium enrichment measurements

New uranium measurements

- Nat. uranil-acetate
 - PGAA
 - chopped beam PGAA
 - decay measurements regularly after irrad.
- enriched (95%) U_3O_8
 - PGAA
 - chopped beam PGAA
 - decay measurements regularly after irrad.

Irradiation of 50mg U₃O₈

Background1 cpnatural activity~5decay~90total in-beam~70

1 cps ~5 cps ~90 cps ~700 cps

U-239 capture line - 4060 keV Te-134 fission line - 1279 keV

Enriched U (36% U-235)

Natural U (0.72% U-235)

Summary of PGAA results on U and Tc

Orig. nuclid	Parent nuclide	Type of meas.	Energy (keV)	Half-life	Peak count rate (cps)	Meas. sigma	Calc. sigma
			· · ·			(barn)	(barn)
²³⁸ U	²³⁹ U	PGAA	4060	0	0.98	0.192(2)	
	²³⁹ Np	Decay	278	2.36 d	0.074	0.302(0)	0.383(6)
	²³⁴ Th	Nat	92	4.468·10 ⁹ y	0.045(11)		
²³⁵ U	²³⁶ U	PGAA	6395	0	0.011	0.0038(2)	
	¹³⁴ Te	Chopped PGAA	297	0	1.60	0.22(2)	0.22(2)
	¹³⁴ Te	Chopped PGAA	1279	0	0.49	0.20(1)	0.22(2)
	¹⁴⁰ Ba	Decay	537	12.75 d	0.0122	0.066(3)	0.064(1)
	²³⁵ U	Nat	186	7.037·10 ⁸ y	0.073		
⁹⁹ Tc	⁹⁹ Tc	PGAA	172		3.0	16.61(15)	
	⁹⁹ Tc	PGAA	223		0.24	1.472(13)	
	⁹⁹ Tc	PGAA	263		0.21	1.425(12)	-
	¹⁰⁰ Tc	Decay	539	16 s	0.14	1.604(14)	-
	¹⁰⁰ Tc	Decay	591	16 s	0.10	1.296(11)	
	⁹⁹ Tc	Decay	89	211 000 y	4.3×10 ⁻³	-	-

FINAL REMARKS

- Up to now the capability of PGAA even with thermal and cold neutron beams has been tested for different kinds of samples
- The "PGAA library" (i.e. the sensitivity data) for every elements are compiled
- The non-destructive feature of the method can be exploited by many users chemists, materials scientists, geologists, archaeologists, etc.
- New methods, such as chopped beam PGAA, coincidence method open new possibilities

KK IKI Budapest **Department of Nuclear Research**

- Tamás Belgya
- Lajos Dabolczi
- Miklós Lakatos

- Gábor Molnár
- Zsolt Révay
- Zsolt Kasztovszky
 László Szentmiklósi
 - Jessie L. Weil

THANK YOU FOR YOUR COOPERATION!

Lawrence Berkeley Nat'l Laboratory

- Richard Firestone
- Jerry English
- Dale Perry
- Ka-Ngo Leung

National Institute of Standards and Technology

- Richard Lindstrom
- Rick Paul

THANK YOU FOR YOUR COOPERATION!