Î
united nations educational, scientific and cultura organization
<u>(+)</u>
international atomic energy agency

the

abdus salam international centre for theoretical physics

H4.SMR/1503 - 09

WORKSHOP ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY: MATERIALS ANALYSIS

(19 - 30 May 2003)

STATISTICS

Dr. Piotr Robouch
Institute for Reference Materials and
Measurements
European Commission - Joint Research Centre
Geel
BELGIUM

STATISTICS

- Evaluation of uncertainty of results according to ISO-GUM
- Evaluation of Inter-Laboratory Comparison (ILC)
- Quality assurance:
 - method performance (accuracy; precision; ...)
- Optimisation of measurement procedures

Statistics for evaluation of uncertainty

Normal distribution

For a set of n values x_i

Mean Value (average)

e (average)

Standard Deviation

Variance of the mean

Relative Standard Deviation

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} \left(x_i \right)$$

$$S(x_i) = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2}$$

$$V(x_i) = s^2(x_i)$$

$$RSD = \frac{s(x_i)}{\overline{x}}$$
 (absolute or %)

The Value is between the limits

$$a_{-} \dots a_{+}$$

The expectation

$$y = x \pm a$$

Assumed standard deviation:

$$s = a / \sqrt{3}$$

One can only assume that it is equally probable for the value to lie anywhere within the interval

Example of Rectangular distribution

"It is likely that the value is somewhere in that range"

Rectangular distribution is usually described in terms of: the average value and the range (±a)

Certificates or other specification give limits where the value could be, without specifying a level of confidence (or degree of freedom).

Examples:

Concentration of calibration standard is quoted as (1000 ± 2) mg/l Assuming rectangular distribution the standard uncertainty is:

$$s = u(x) = a / \sqrt{3} = 2 / \sqrt{3} = 1.16 mg / l$$

The purity of the cadmium is given on the certificate as (99.99 ± 0.01) % Assuming rectangular distribution the standard uncertainty is:

$$s = u(x) = a / \sqrt{3} = 0.01 / \sqrt{3} = 0.0058 \%$$

Triangular distribution

Distribution used when it is suggested that values near the centre of range are more likely than near to the extremes

$$y = x \pm a$$

Assumed standard deviation:

$$s = a \cdot 1 / \sqrt{6}$$

Example of Triangular distribution

Values close to x are more likely than near the boundaries

The available information concerning the value is less limited than for rectangular distribution.

Example (volumetric glassware)

The manufacture quotes a volume for the flask of (100 ± 0.1) ml at T = 20° C.

Nominal value most probable!

Assuming triangular distribution the standard uncertainty is:

$$s = u(x) = a \cdot 1/\sqrt{6} = 0.1/\sqrt{6} = 0.04 \ ml$$

In case of doubt, use the rectangular distribution

The individual observations are distributed about the best estimate of the "True Value" with a spread, which depends on the precision

The estimate of the "True Value" (μ) lies within the confidence interval (CI), with a probability of (1- α), having "n" degrees of freedom:

$$\mu = \bar{x} \pm (1 - \alpha) \% CI (n)$$
95 % $CI = t(0.05, n - 1) * s / \sqrt{n}$

Confidence Interval (2)

$\mu \pm 1$ s	68 %
$\mu \pm 2s$	95 %
$\mu \pm 3s$	99.7%

Law of "Uncertainty Propagation"

$$Y = f(X_1, X_2, ..., X_n)$$

$$u_c^2(Y) = \sum_{i=1}^{\infty} \left(\frac{\partial f}{\partial X_i}\right)^2 \cdot (u(X_i))^2$$

$$C = (a+b)$$

$$u(C) = \sqrt{u(a)^2 + u(b)^2}$$

$$C = (a - b)$$

$$C = (a * b)$$

$$C = (a / b)$$

$$C = (a * b)$$

$$C = (a / b)$$

$$\frac{u(C)}{C} = \sqrt{\left(\frac{u(a)}{a}\right)^2 + \left(\frac{u(b)}{b}\right)^2}$$

Type A evaluation of uncertainty:

statistical analysis of series of observations.

Type A standard uncertainty is measured from repeatability experiments and is quantified in terms of *the standard deviation* of the measured values

Type B evaluation of uncertainty:

by <u>other means</u> than statistical analysis (previous experiments, literature data, manufacturer's information)

[GUM, 1993]

Combined standard uncertainty, $u_c(y)$, is obtained by combining the standard uncertainties of the input quantities using the law of propagation

$$u_c^2(y) = \sum_{i=1}^{\infty} \left(\frac{\delta f}{\delta x_i}\right)^2 \cdot (u(x_i))^2$$

Expanded Uncertainty, U, is obtained by multiplying the combined standard uncertainty by a coverage factor k:

$$U(y) = k * u_c(y)$$

often
$$k = 2$$

An uncertainty is given in the form of Standard Deviation [s = u(x)]

$$R = \overline{x} \pm \Delta x$$

But what is Δx ?

- Standard deviation ?
- Rectangular distribution uncertainty?
- Triangular distribution uncertainty?
- Confidence interval w/o specified degree of freedom?
- Confidence Interval with specified degree of freedom?
- Combined Uncertainty ?
- Expanded uncertainty ? Is "k" specified ?

Standard deviation of a single measurement

O. Experimental Measurement → Type A uncertainty!

1. Single measurement with several instrumental replicates:

$$R = \overline{x} \pm s$$

S

- provided by the instrument
- calculated from (instrumental) replicates

Standard deviation of n independent measurements

2. <u>Several</u> (n) independent measurements with <u>several instrumental replicates</u>

$$R_i = \overline{x}_i \pm s_i$$

assuming that ALL s_i are similar (= s)

$$R_i = \overline{x}_i \pm s$$

$$R = (\overline{R}_i) \pm s_{mean} = (\overline{R}_i) \pm \frac{s}{\sqrt{n}}$$

Are these results different?

(Traditional) Statistical Approach

Measurement Cd content in plant 3 digested samples

1st Digestion : 22 mg/kg

 $\sigma/k\sigma$

2nd Digestion: 21 mg/kg

3rd Digestion: 20 mg/kg

mean [Cd] = 21.0 mg/kg

(stdev) s = 0.21 mg/kg

```
(mean \pm stdev) C_{cd} = (21.0 \pm 0.2) mg/kg (mean \pm 95% CI) C_{cd} = (21.0 \pm 0.5) mg/kg, with n = 3
```

t(0.05, 2) = 4.3

Measurement Cd content in plant 3 digested samples

1st Digestion : 22 mg/kg

2nd Digestion : 21 mg/kg

3rd Digestion: 20 mg/kg

mean [Cd] = 21.0 mg/kg

Combined unc. $u_c = 2.1 \text{ mg/kg}$

Uncertainty Budget calculation → Combined Uncertainty (including contribution from all parameters)

```
mean \pm Expanded uncertainty C_{Cd}= (21.0 \pm 4.2) mg/kg, with k = 2
```


Statistics for method performance studies

Precision: The closeness of agreement <u>between</u> independent <u>test results</u> obtained under stipulated conditions [ISO 5725]

Precision $7 \Rightarrow Scatter \Rightarrow uncertainty \Rightarrow$

<u>Closeness</u> of agreement between a test result of a measurement and the accepted reference value (ISO 3534-1)

Accuracy is <u>not given</u> by the spread of a normal distribution, <u>but</u> by the deviation of the arithmetic mean of a series of results from accepted reference value

Accuracy **₹** ⇒ Bias **¥** (zero)

Precision recorded under repeatability conditions:

 same laboratory, analyst, equipment, time (short interval)

Typically used for studying variation within a batch or between replicated measurements.

Within-run precision = Repeatability

Precision recorded under reproducibility conditions:

 different laboratory, analyst, equipment, time (short interval)

Typically used for studying variation on measurements made between laboratories.

Between-run precision = Reproducibility

Anova Single factor

								SUMMA	ARY				
Re	plicates	1	2	3	4	5	6	Groups	Count	Sum	Average	Variance	
Vials	1	66	68	67	69	70	69	1	6	409	68.2	2.2	
	2	66	67	68	68	68	69	2	6	406	67.7	1.1	
	3	71	67	68	69	68	70	3	6	413	68.8	2.2	
	4	66	68	67	68	68	69	4	6	406	67.7	1.1	
	5	67	67	66	69	69	68	5	6	406	67.7	1.5	
	6	65	67	67	69	68	69	6	6	405	67.5	2.3	
	7	67	68	68	68	69	69	7	6	409	68.2	0.6	
	8	67	66	66	68	68	69	8	6	404	67.3	1.5	
	9	67	67	66	69	68	69	9	6	406	67.7	1.5	
	10	66	65	67	68	69	68	10	6	403	67.2	2.2	
	11	67	67	69	68	68	70	11	6	409	68.2	1.4	
	12	67	68	69	69	68	69	12	6	410	68.3	0.7	
	13	67	67	68	69	68	68	13	6	407	67.8	0.6	
	14	67	68	68	69	68	69	14	6	409	68.2	0.6	
	15	65	66	65	68	68	67	15	6	399	66.5	1.9	

R =
$$2* \sqrt{2} * \mathbf{s}_{R}$$

r = $2* \sqrt{2} * \mathbf{s}_{r}$

	ANOVA						
Source of \		SS	df	MS	F	P-value	F crit
Betwee	n Groups	26.2	14	1.87	1.34	0.207	1.83
Withi	n Groups	104.8	75	1.40			
	Total	131.0	89				

repeatability stdev	sr	1.18	=sqrt(MSW)	
reproducibility stdev	SR	1.21	=sqrt(MSW+(MSB-MSW)/N)	
			(n replicates)	

Statistics for Inter-Laboratory Comparison (ILC), Proficiency Testing (PT)

(Traditional) Z-score

$$Z = \frac{x_{lab} - x_{ref}}{S''}$$

Difference → distance → accuracy

"Normalized" versus ...

- Target performance (i.e. 5%)
- Reference uncertainty (nominal value)
- Inter-Laboratory Comparison reproducibility

Performance evaluation:

0 < |Z| < 2: good

2 < |Z| < 3: warning \rightarrow preventive action

|Z| > 3: unsatisfactory \rightarrow corrective action

En-score according to GUM

$$En = \frac{x_{lab} - x_{ref}}{\sqrt{(u_{lab}^2 + u_{ref}^2)}}$$

"Normalized" versus ...

propagated combined uncertainties

Performance evaluation:

0 < |En| < 2 : good

2 < |En| < 3: warning \rightarrow preventive action

|En| > 3: unsatisfactory \rightarrow corrective action

The Uncertainty Budget Step-by-step Tutorial

• Model: $Y = X_1 * X_2 / (X_3 * X_4)$ part 1

RSD	stdev	value	description
??	0,02	2,46	X1
3,0%	??	4,32	X2
??	0,11	6,38	Х3
2,3%	??	2,99	X4

RSD	stdev	value	description
0,8%	0,02	2,46	X1
3,0%	0,13	4,32	X2
1,7%	0,11	6,38	Х3
2,3%	0,07	2,99	X4

RSD	stdev	value	description
0,8%	0,02	2,46	X1
3,0%	0,13	4,32	X2
1,7%	0,11	6,38	Х3
2,3%	0,07	2,99	X4
??	??	0.557	Result

• Model: $Y = X_1 * X_2 / (X_3 * X_4)$ part 2

6	RSD	stdev	value	description	X1	X2	Х3	X4
	0,8%	0,02	2,46	X1		2,46	2,46	2,46
	3,0%	0,13	4,32	X2	4,32		4,32	4,32
	1,7%	0,11	6,38	Х3	6,38	6,38		6,38
	2,3%	0,07	2,99	X4	2,99	2,99	2,99	
	??	??	0.557	Result				

_	RSD	stdev	value	description	X1	X2	Х3	X4	
6	0,8%	0,02	2,46	X1	2,48	2,46	2,46	2,46	
	3,0%	0,13	4,32	X2	4,32	4,45	4,32	4,32	
	1,7%	0,11	6,38	Х3	6,38	6,38	6,49	6,38	$(x+\Delta x)$
	2,3%	0,07	2,99	X4	2,99	2,99	2,99	3,06	
	4 00/	0004	0,557	Result	0,562	0,574	0,548	0,544	
	4,2%	0,024							
		\	7	diff	0,005	0,017	-0,009	-0,013	0,001
	$u_c = \sqrt{\sum_{i=1}^{n}}$	$\sum_{i} (y_{i} - y)$)2	· _					sumsq(diff _i)

• Model: $Y = X_1 * X_2 / (X_3 * X_4)$ part 3

RSD	stdev	value	description	X1	X2	Х3	X4	
0,8%	0,02	2,46	X1	2,48	2,46	2,46	2,46	
3,0%	0,13	4,32	X2	4,32	4,45	4,32	4,32	
1,7%	0,11	6,38	Х3	6,38	6,38	6,49	6,38	
2,3%	0,07	2,99	X4	2,99	2,99	2,99	3,06	
4,2%	0,024	0,557	Result	0,562	0,574	0,548	0,544	
			diff	0,005	0,017	-0,009	-0,013	0,001

index	3,7%	50,8%	16,1%	29,4%	100,0%
					sum

index =
$$\frac{(y_i - y)^2}{\sum_i (y_i - y)^2}$$

Major Contributor:

- Type B? ⊗
- Type A? ☺
- Replicates?
- Much work?
- Control Charts?