Energy loss of rapid light charged particles in Ion Beam Analysis

présenté par

I. C. Vickridge

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Course Objectives

- 1. Understand the basic physical approaches and principles involved in theoretical estimations of stopping powers of light ions for IBA
- 2. Develop a feeling for the main features of the stopping power curve
- 3. Understand the interplay between theory and data leading to formulation of semi-empirical expressions for stopping powers
- 4. Know how to use SRIM for stopping power calcualtions, and critically evaluate the values obtained
- 5. Acquire basic knowledge of some alternatives to TRIM/SRIM

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Course over-view

Recall of motivation Interplay between theory and data

Introduction to basic stopping theory Binary collision model Electron plasma model Local density approximation Bragg's rule, compounds ...

Introduction to TRIM/SRIM The basic equations The data files Accuracy

One or two alternatives : ICRU 49 Konac

Based heavily on :

The Stopping and Range of Ions in Solids. J. F. Ziegler, J. P. Biersack, U. Littmark. Pergamon (1985). ISBN 0-08-021603-X. 'ZBL stopping'

Stopping of energetic light ions in elemental matter. J. F. Ziegler, J. Appl. Phys. 85(3) (1999) 1249-72.

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

What is the stopping power?

Stopping cross section :

$$\varepsilon = -\frac{1}{N} \frac{dE}{dx} \text{ eVcm}^2$$

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003 Groupe de Physique des Solides CNRS et Universités de Paris 6 et 7

 $t = \rho x$

Basic features of the stopping curve

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

SRIM Monte Carlo calculation

1 MeV protons in Si

2000 incident ions

In this case,

(ICRU report 49)

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Importance of stopping powers in IBA

Thick target PIXE, PIGE

depth

Integrated yields are proportional to range, and so depend on accuracy in stopping powers if different matrices are compared

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Importance of stopping powers in IBA ERD, RBS, NRA depth profiling

$$E_{d} = E_{p} - 2\Delta E$$
$$x = \frac{2\Delta E}{dE/dx}$$

For simplicity, consider RBS on an infinitely heavy target atom at depth x, and $\Delta E \ll E_p$

For thick targets, depth scales and spectrum heights are respectively directly and inversely proportional to stopping powers

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Nuclear and electronic stopping

Nuclear stopping is due to elastic ion-atom collisions

It is easily calculated from elementary collision physics and may be neglected in the vast majority of IBA measurements.

Electronic stopping

(sometimes also referred to as inelastic stopping) is due to energy lost to target electrons.

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Real stopping data from SRIM site

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Protons in silicon

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Alphas in silicon

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Basic Stopping Theory

melectron masseelectron chargeEion energy $Z_{1,2}$ ion, target atomic number $M_{1,2}$ ion, target mass (u)vion velocity v_0 Bohr velocity

Bohr - binary ion-electron collisions. Target electron binding represented by average ionisation energy I.

Bethe-Bloch. Quantum treatment, various correction terms.

Lindhard. Neutral free electron plasma, local density approximation.

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Bohr equation

To obtain stopping power per target atom containing Z_2 electrons, integrate over all values of b : Non-relativistic. Free electrons || momentum impulse = 0 \perp momentum impulse :

$$\Delta p = \int_{-\infty}^{\infty} e \overrightarrow{E_{\perp}}(t) dt = \frac{2Z_1 e^2}{bv}$$

$$\Delta E = \frac{\left(\Delta p\right)^2}{2m} = \frac{2Z_1^2 e^4}{mv^2} \left(\frac{1}{b^2}\right)$$

 $\frac{dE}{dx} = 2\pi Z_2 \int \Delta E(b) b db$

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Bohr equation

 $\frac{dE}{dx} = 2\pi Z_2 \int \Delta E(b) b db$

 $=4\pi Z_2 \frac{Z_1^2 e^4}{mv^2} \int_0^\infty \frac{1}{b^2} bdb$

 $\frac{dE}{dx} = \frac{4\pi e^4 Z_1^2}{mv^2} Z_2 \ln\left(\frac{mv^3}{Z_1 e^2 \omega}\right)$ $\frac{dE}{dx} = \frac{4\pi e^4 Z_1^2}{mv^2} Z_2 \ln\left(\frac{2mv^2}{\langle I \rangle}\right)$

Integration limits

 b_{min} from maximum energy transfer to electron :

$$U_{\min} \Box \frac{Z_1 e^2}{mv^2}$$

 b_{max} from minimum energy transfer to bound electron of orbital frequency ω :

$$\max \frac{\Box}{\omega}$$

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

(relativistic) Bethe-Bloch equation

$$\frac{dE}{dx} = \frac{4\pi e^4 Z_1^2}{mv^2} Z_2 \left(\ln \frac{2mv^2}{\langle I \rangle} - \ln \left(1 - \beta^2 \right) - \beta^2 - \frac{C}{Z_2} - \frac{\delta}{2} \right)$$

Target atom mean ionisation energy

Shell correction Density correction

 $\frac{\text{Stopping number } L(\beta)}{\frac{dE}{dx}} = \frac{4\pi e^4 Z_1^2}{mv^2} Z_2 \Big[L_0(\beta) + Z_1 L_1(\beta) + Z_1^2 L_2(\beta) + \cdots \Big]$

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Stopping Number

$$L(\beta) = L_0(\beta) + Z_1L_1(\beta) + Z_1^2L_2(\beta) + \cdots$$

Barkas term

Bloch correction

Shell correction Density correction $L_0(\beta) = \ln\left(\frac{2mc^2\beta^2}{1-\beta^2}\right) - \beta^2 - \frac{C}{Z_2} - \ln\left\langle I\right\rangle$ -8

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Relative contributions of the different terms

Protons in Al.

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Lindhard theory

Free electron plasma

$$S_e = \int I(v,\rho) Z_1^2 \rho dV$$

I ρ is called the stopping integrand

Interaction function

$$I(v,\rho) = \frac{4\pi e^4}{mv^2} \frac{i}{\pi\omega_0^2} \int_0^\infty \frac{dk}{k} \int_{-kv}^{kv} \omega d\omega \left[\frac{1}{\varepsilon^l(k,\omega)} -1 \right]$$

 $Z_2 = \int_{\text{atomic volume}} \rho \mathrm{dV}$

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Values of I and $I\rho$

 $I(v,\rho)$

 $\rho I(v,\rho)$

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Local Density Approximation

Use electron densities $\rho(\vec{r})$ deduced from atomic models, and assume that the electrons behave locally as a free electron gas. Sum (integrate) over \vec{r}

Effective charge

Protons (and deuterons ...) are always completely stripped.

For He ions we define $Z_{eff} = \gamma Z_{He}$ Ziegler finds :

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Scaling rule

$$S_{e} = \int I(v,\rho) Z_{1}^{2} \rho dV$$

$$\frac{dE}{dx} = \frac{4\pi e^{4} Z_{1}^{2}}{mv^{2}} Z_{2} \ln\left(\frac{2mv^{2}}{\langle I \rangle}\right) \qquad S_{e} \square Z_{1}^{2}$$

$$S_e^{He}(v) = 4\gamma^2 S_e^H(v)$$

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Comparison of Lindhard theory and data

For protons and helium ions :

Above about 1 MeV/amu, theory looks ok

Discrepancies up to 20-30% below 1MeV/amu.

Use an effective proton charge $\gamma(v)$ for protons, fitted by using data for all targets. This is an empirical correction factor.

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Low energy stopping power

 $v_{\rm B}$ is velocity of electron in first hydrogen orbit : c/137 or 25 keV/amu

Lindhard, Scharff, Schiot (LSS) stopping :

$$S_e(E) \propto \frac{Z_1^{1/6} Z_2}{\left(Z_1^{2/3} + Z_2^{2/3}\right)^{3/2}} E^s$$

S=1/2 -> 'velocity proportional regime'

 $v < v_{\rm B}$

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Semi-empirical models for elemental stopping powers of protons

The game consists of finding a universal formula, which converges to the Bethe-Bloch or Lindhard form for high energies and to the velocity-dependant form at low energies, and then adjusting fit parameters to best represent reliable experimental values.

By far the most widely known and used is that proposed by ZBL and updated in TRIM and SRIM programs by Ziegler.

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003 The basic TRIM formulae for protons www.srim.org, http://www.nea.fr/abs/html/nea-0919.html

Values of coefficients

 $S_L = aE^b + cE^d$

$$S_{H} = e \frac{\ln\left(\frac{g}{E} + hE\right)}{E^{f}}$$

a	2.072
b	0.0044516
С	3.5585
d	0.53933
e	1515.2
f	0.93161
g	1790.3
h	0.035198

Values for protons in silicon, from SCOEF.ASC, published in ZBL vol 1 1985

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

	224
File : SCOEF DATA (Contains data on elemental ions and solids)	42 96 95 5 95 94 10 206 6 407 1 2542 0 99
**** Comments on this file. Do not include in computer data file.	43 0. 99. 0. 0. 1.122 0.9
<pre>ROWS 1 - 92: Column #1 = Atomic Number Column #2 = Atomic Mass of most abundant isotope Column #3 = Atomic weight of most abundant isotope Column #4 = Atomic weight of solid with normal isotopic abundance Column #5 = Density of solid in grams/cm3 Column #6 = Density of solid in units of 1E22 atoms/cm3 Column #7 = Fermi velocity of solid, in units of the Bohr velocity Column #8 = Factor determining ion screening length ROWS 93 - 184 Column #1 = Atomic Number Columns #2-9 = Proton stopping cross-section coefficients</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SCOEF DATA : VERSION - 1985	59 141 141. 140.91 6.7744 2.895 0.71202 0.9 60 142 142. 144.24 7.0019 2.923 0.67413 0.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

0.04

223

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

	11	6.0972	0.0044292	3.1929	0.45763	1363.3	0.95182	2380.6	0.081835	
	12	14.013	0.0043646	2.2641	0.36326	2187.4	0.99098	6264.8	0.0462	
	13	0.039001	0.0045415	5.5463	0.39562	1589.2	0.95316	816.16	0.047484	
	15	17.575	0.0044516	3.5505 0.0786ah	0.53933	1515.2	0.93161	1790.3	0.035198	
	16	16.126	0.0038315	0.054164	1.3104	2813 3	0.9/204	1057.6	0.0128/9	
	17	3.217	0.0044579	3.6696	0.5091	2734.6	0.96253	2187.5	0.016907	
	18	2.0379	0.0044775	3.0743	0.54773	3505.	0.97575	1714.	0.011701	
	19	0.74171	0.0043051	1.1515	0.95083	917.21	0.8782	389.93	0.18926	
	20	9.1316	0.0043809	5.4611	0.31327	3891.8	0.97933	6267.9	0.015196	
	22	0.147	0.0043718	6 2485	0.3/511	2829.2	0.95218	6376.1	0.020398	
	23	5.0611	0.0039867	2.6174	0.57957	2218 9	0.94028	5292.6	0.050263	
	24	0.53267	0.0042968	0.39005	1.2725	1872.7	0.90776	64,166	0.025009	
	25	0.47697	0.0043038	0.31452	1.3289	1920.5	0.90649	45.576	0.027469	
	26	0.027426	0.0035443	0.031563	2.1755	1919.5	0.90099	23.902	0.025363	
	22	0.16383	0.0043042	0.073454	1.8592	1918.4	0.89678	27.61	0.023184	
	29	2.3508	0.0043737	2 882	0./206/	1546.8	0.87958	302.02	0.040944	
	30	3.1095	0.0038455	0.11477	1.5037	2184.7	0.89309	67 306	0.04965	
	31	15.322	0.0040306	0.65391	0.67668	3001.7	0.92484	3344.2	0.016366	
	32	3.6932	0.0044813	8.608	0.27638	2982.7	0.9276	3166.6	0.030874	
	33	7.1373	0.0043134	9.4247	0.27937	2725.8	0.91597	3166.1	0.025008	
	34	4.89/9	0.0042937	3.7793	0.50004	2824.5	0.91028	1282.4	0.017061	
	36	1.8301	0.0043024	2.50/9	0.60822	690/.8	0.9817	628.01	0.0068055	
	37	0.42056	0.0041169	0.01695	2.3616	2252 7	0.94/22	79 752	0.0092242	
	38	30.78	0.0037736	0.55813	0.76816	7113.2	0.97697	1604.4	0.0065268	
	39	11.576	0.0042119	7.0244	0.37764	4713.5	0.94264	2493.2	0.01127	
	40	6.2406	0.0041916	5.2701	0.49453	4234.6	0.93232	2063.9	0.011844	
	41	0.33073	0.0041243	1./246	1.1062	1930.2	0.86907	27.416	0.038208	
	43	3.7229	0.0041768	4 6286	0 56769	1678	0.00315	29.669	0.032123	
	44	0.13998	0.0041329	0.25573	1.4241	1919.3	0.86326	72.797	0.08244	
	45	0.2859	0.0041386	0.31301	1.3424	1954.8	0.86175	115.18	0.029342	
	46	0.76002	0.0042179	3.386	0.76285	1867.4	0.85805	69.994	0.036448	
	47	0.3957	0.0041935	5.4689	0.41378	1712.6	0.85397	18493.	0.056471	
	49	2.5265	0.0047344	3.2337	0.63/88	1020 8	0.81959	4766.	0.1179	
	50	7.3683	0.0041007	4.6791	0.51428	1160.	0.82454	17965	0.19/22	
	51	7.7197	0.004388	3.242	0.68434	1428.1	0.83398	1786.7	0.066512	
	52	16.78	0.0041918	9.3198	0.29568	3370.9	0.90289	7431.7	0.02616	
1	55	4.2132	0.0042098	4.6753	0.57945	3503.9	0.89261	1468.9	0.014359	
i	55	0.18517	0.0036215	4.4425	2 5215	3945.3	0.90281	1340.5	0.013414	
i	56	4.8248	0.0041458	6.0934	0.57026	2300.1	0.00930	20.10	0.026393	
į	57	0.49857	0.0041054	1.9775	0.95877	786.55	0.78509	806.6	0.40882	
1	58	3.2754	0.0042177	5.768	0.54054	6631.3	0.94282	744.07	0.0083026	
1	59	2.9978	0.0040901	4.5299	0.62025	2161.2	0.85669	1268.6	0.043031	
2	61	10.853	0.004096	4.2568	0.6138	2130.4	0.85235	1704.1	0.039385	
i	62	3.6407	0.0041782	4.8742	0.57861	1267 7	0.0/55	3654.2	0.029955	
1	63	17.645	0.0040992	6.5855	0.32734	3931.3	0.90754	5156.7	0.036278	
1	64	7.5309	0.0040814	4.9389	0.50679	2519.7	0.85819	3314.6	0.030514	
1	65	5.4742	0.0040829	4.897	0.51113	2340.1	0.85296	2342.7	0.035662	
2	60 67	4.2001	0.0040667	4.5032	0.55257	2076.4	0.84151	1666.6	0.040801	
1	68	1.2707	0.0040406	4.390/	0.510/5	1626 2	0.83437	1410.4	0.03478	
1	69	5.7561	0.0040491	4.357	0.52496	2207.3	0.83796	1579 5	0.055319	
7	70	14.127	0.0040596	5.8304	0.37755	3645.9	0.87823	3411.8	0.016392	
	71	6.6948	0.0040603	4.9361	0.47961	2719	0 85249	1885 8	0 010712	

225

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.020072 .024958 .047294 .036789 .015401 .02769 .015401 .012839 .0088534 .015058 .011029 .011935 .0071303 .012042 .011747 .0092007 .0062187
89 5.9284 0.0036003 0.58341 0.86747 6990.2 0.91082 1417.1 0. 89 5.9284 0.0039695 6.4082 0.52122 4619 5 0.88083 2323 5 0.	0062187
90 5.2454 0.0039744 6.7969 0.48542 4586.3 0.87794 2481.5 0.	011282
92 2.7589 0.0039806 3.2092 0.66122 2505.4 0.82863 2053.3 0.	0091908

226

Scoef.dat continued

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

File SCOEF88.asc distributed with TRIM98

	Z	A	Ма	ıb	Ma	av	D	g/cm3	Da	at/cm3	8 Vf		scre	en s	subl			
													fact	or l	neat			
	1	001	001.	0078	001.	0080	00.	07148	6 04	4.271	1.00	0000	1.	00 (0000	0000	00000	0000000000000
	2	004	004.	0026	004.	0026	00.	12588	0 01	1.894	1.00	0000	1.	00 (00 <mark>00</mark>	0000	00000	00000000000000
	3	007	007.	0160	006.	9390	00.	52969	0 0	4.597	0.59	9782	. 9	85 3	1.67	0000	00000	0000000000000
	4	009	009.	0120	009.	0122	01.	80240	0 12	2.046	1.0	7810	1.	06	3.38	0000	00000	0000000000000
	5	011	011.	0090	010.	8110	02.	35020	0 13	3.093	1.04	4860	1.	00 !	5.73	0000	0000	0000000000000000000
(92	238	238.	0400	238.	0400	19.	04300	0 04	4.818	1.02	2570	1.	16 !	5.42	0000	00000	000000000000000000
01	0	.0121	L702	.0053	33578	1	.128	74	0.364	4197	1120	.7	1.1	2128	8	2477.	.31	.009770990
02	0	.4890	013	.0050)5124	91 0	.861	3451	0.46	74054	745	. <mark>381</mark> 5	5 1.0	422	672	7988.	.3889	.033328667
03	0	.8583	3748	.0050)1474	82 1	.604	4494	0.388	84424	1337	.3032	2 1.0	4703	33	2659.	.2306	5.018979873
04	0	.8781	L010	.0051	10493	49 5	.423	1571	0.203	31973	1200	.6151	L 1.0	211	124	1401.	.8432	2.038529280
05	1	.4607	7952	.0048	38359	29 2	.338	0238	0.442	24895	1801	.2741	L 1.0	3522	217	1784.	.1234	.020239625
06	2	.1054	14	.0049	90795	2	.087	23	0.462	258	1779	.22	1.0	1472	2	2324	45	.020269400
07	0	.6456	536	.0050	8289	4	.095	03	0.33	879	2938	.49	1.0	401	7	2911.	.08	.010721900
80	0	.7510)93	.0050	03003	3	.939	83	0.34	6199	2287	.85	1.0	117:	1	3997.	.24	.018426800
09	1	.3018	37	.0051	4136	3	.827	37	0.283	151	2829	.94	1.0	2762	2	7831.	. 3	.020940300
10	4	.7339	9096	.0044	15057	35 0	.029	8622	1.494	40358	1825	.3641	L 0.9	789	632	130.7	76313	.021576591
11	6	.0972	248	.0044	12919	01 3	.192	9400	0.45	76301	1363	.3487	7 0.9	518	161	2380.	. 6086	5.081834623
12	14	.0131	106	.0043	36459	04 2	.264	1223	0.363	32649	2187	.3659	9 0.9	909	772	6264.	.8005	.046200118
13	0	.0390)926	.0045	54166	23 6	.969	2434	0.32	97639	1688	. 3008	3 0.9	594	386	1151.	.9784	.048981572
14	2	.1781	134	.0044	14545	23 2	.604	5162	0.60	38463	1550	.2068	3 0.9	3302	245	1703.	.8459	.031619771
15	17	.5754	178	.0038	33456	45 0	.078	6935	1.23	38076	2805	.9699	0.9	728	416	1037.	.5875	.012878599
Z		a			b		С			d	e	Э		f			q	h

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Structure of SCOEF95a

This data is used in TRIM95 and SRIM2000

At	MAI	MAI	Natural	Density	Atomic	Fermi	Heat		Proton	Stopping	Coefficients	Proton	Stopping	Coefficients.	(c) 1999 by	J.F.Ziegle
Nb	Mass	Weight	Weight	(g/cm3)	Density	Vel.	Subl									
1	1	1.008	1.008	.0715	4.271E22	1.031	.00	1.28116E-02	5.33047E-0	03 6.51042	E-01 5.31902E-01	1.95901E03	1.18870E0	0 5.98263E02	9.54514E-03	
2	4	4.003	4.003	.1259	1.894E22	.160	.00	3.11787E-01	4.99529E-0	03 1.18546	<mark>E-01 9.20917E-0</mark> 1	9.84843E02	1.08223E0	0 5.54388E02	5.05072E-02	
3	7	7.016	6.941	.5340	4.633E22	.598	1.67	6.44503E-01	5.00368E-0	3 8.66544	E-01 5.67488E-01	9.62900E02	1.01566E0	0 1.62034E03	2.37767E-02	
4	9	9.012	9.012	1.8480	1.235E23	1.078	3.38	9.53561E-01	5.07406E-0	03 1.30450	E00 5.90300E-01	1.94512E03	1.05703E0	0 3.26951E02	1.30441E-02	
5	11	11.009	10.811	2.3502	1.309E23	1.049	5.73	1.53151E00	4.88520E-0	03 2.56760	E00 4.23246E-01	1.73888E03	1.03208E0	0 1.82942E03	2.00331E-02	
6	12	12.000	12.011	2.2530	1.130E23	1.000	7.41	2.40289E00	4.91497E-0	03 2.49101	E00 4.14939E-01	1.85836E03	1.01581E0	0 2.50417E03	1.81984E-02	
7	14	14.003	14.007	1.0260	4.411E22	1.058	.00	3.31007E00	4.95744E-0	03 5.40621	E-01 7.79940E-01	1.10415E03	9.67848E-	01 2.23535E03	5.31612E-02	
8	16	15.995	15.999	1.4260	5.368E22	.939	.00	9.72706E-01	5.00390E-0	03 1.35102	E00 5.49800E-01	1.25428E03	9.68356E-	01 5.09320E03	5.36453E-02	
9	19	18.998	18.998	1.1111	3.522E22	.746	.00	6.90408E-01	4.62723E-0	3.26749	E-01 1.10520E00	1.30190E03	9.43525E-	01 4.70373E01	2.80245E-02	
10	20	19.992	20.180	1.2040	3.593E22	.342	.00	2.81235E-01	4.59698E-0	03 5.25630	E-01 8.78183E-01	1.15830E03	9.38564E-	01 1.01606E01	4.14147E-02	
11	23	22.990	22.990	.9700	2.541E22	.453	1.12	2.15352E00	4.40847E-0	03 2.30923	E00 6.06001E-01	1.33224E03	9.43478E-	01 7.35116E02	5.77231E-02	
12	24	23.985	24.305	1.7366	4.303E22	.711	1.54	3.42983E00	4.36897E-0	3 2.39377	E00 5.54737E-01	1.14029E03	9.29844E-	01 2.10748E03	7.89342E-02	
13	27	26.982	26.982	2.7020	6.031E22	.905	3.36	3.89096E-02	4.54168E-0	03 4.27975	E00 4.78838E-01	1.31642E03	9.34106E-	01 5.65574E02	5.27220E-02	
14	28	27.977	28.086	2.3212	4.977E22	.974	4.70	1.33101E00	4.43533E-0	3 1.52262	E00 7.75843E-01	1.22702E03	9.14146E-	01 1.09117E03	4.44972E-02	
15	31	30.974	30.974	1.8219	3.542E22	.972	3.27	5.78119E00	3.98281E-0	3.24072	E-01 1.22769E00	6.73459E02	8.65731E-	01 1.23619E02	1.82036E-01	

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Structure of SCOEF95b

High Energy Coef:	ficents (>	>10 MeV)	Data-	Ion	Scree	ning	Values	(Lam	bda)	times	Z1*1/3											
				Qual	0.0	0.05	0.10	0.15	0.2	0.3	0.4	0.5	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	1.0	2.0
3.95328E-03 1.912	266E02 -2.	.74890E04	1.19093E-08	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
7.63853E-03 3.44	192E02 -4.	.15386E04	2.09095E-08	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
1.17654E-02 4.980	615E02 -1.	.55328E04	2.81972E-08	9.000	.840	.810	.780	.745	.710	.640	.570	.490	.410	.400	.410	.450	.620	.830	1.150	2.000	.000	.000
1.51288E-02 6.45	930E02 -5.	.53856E04	3.79586E-08	2.000	.850	.810	.770	.730	.690	.610	.540	.460	.380	.380	.400	.480	.640	.790	.880	.850	.000	.000
1.87259E-02 7.872	294E02 -6.	.72338E04	4.61142E-08	3.000	.860	.820	.780	.750	.720	.640	.530	.420	.340	.320	.340	.460	.650	.720	.770	.620	.000	.000
2.26335E-02 9.31	677E02 -5.	.31703E04	5.32503E-08	7.000	.840	.810	.780	.735	.690	.600	.510	.430	.320	.350	.360	.440	.550	.700	.700	.400	.000	.000
2.59522E-02 1.08	179E03 -1.	.01110E05	6.34985E-08	9.000	.850	.815	.780	.720	.660	.550	.490	.400	.350	.420	.500	.520	.530	.530	.500	.310	.000	.000
2.95296E-02 1.20	758E03 -1.	.00273E05	7.00728E-08	9.000	.820	.775	.730	.700	.670	.530	.430	.330	.270	.270	.300	.350	.400	.450	.440	.250	.000	.000
3.39400E-02 1.293	308E03 1.	.96043E04	6.88358E-08	7.000	.760	.715	.670	.630	.590	.500	.420	.320	.290	.300	.370	.380	.370	.350	.340	.250	.000	.000
3.59550E-02 1.445	587E03 -1.	.55505E05	8.49021E-08	6.000	.720	.675	.630	.600	.570	.470	.330	.250	.250	.290	.330	.400	.420	.410	.340	.190	.000	.000
4.05029E-02 1.55	189E03 -4.	.56637E04	8.52664E-08	2.000	.700	.640	.580	.550	.520	.420	.340	.290	.400	.420	.420	.390	.320	.190	.110	.030	.000	.000
4.29121E-02 1.70	731E03 -1.	.88841E05	9.99305E-08	7.000	.660	.615	.570	.530	.490	.400	.320	.300	.420	.450	.420	.350	.230	.120	.000	.000	.000	.000

Correction to Fermi Velocity Data ---Qual 00 50 70 100 200 500 700 1000 2000 5000 7000 10000 10 20 9.00 1.00 1.03 .94 .88 .89 .90 .95 1.04 1.01 .97 1.01 1.00 1.00 1.00

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Comparison of SRIM2000 and SRIM2003

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Accuracy of SRIM Stopping Power Calculations

Table taken directly from www.srim.org

	Approx.	11	a lifer	SRIM-2003	SRIM-2003
A REAL PROPERTY.	12.00	SRIM-1998	SRIM-2003	1.11116	
2	Data Pts.			(within 5%)	(within 10%)
H ions	8300	4.5 %	4.2 %	74 %	87 %
He ions	6500	4.6 %	4.1 %	76 %	89 %
Li ions	1400	6.4 %	5.1 %	72 %	83 %
Be - U Ions	9000	8.1 %	6.1 %	58 %	82 %
Overall Accuracy		6.1 %	4.8 %	69 %	86 %

Table Notes:

The above table includes all data points. If wacko points are omitted (those differing from SRIM by more than 25%) then all of the above accuracy numbers would be reduced by about 20%. The overall accuracy of SRIM-2003 then reduces to 4.0%.

Approx. Data Points : Current total data points used in SRIM plots.

SRIM-1998 : Comparison of SRIM-1998 stopping to experimental data. SRIM-1998 was last major change in stopping powers.

SRIM-2003 : Current stopping power calculation

SRIM-2003 (within 5%) : Percentage of experimental data within 5% of the SRIM values.

SRIM-2003 (within 10%) : Percentage of experimental data within 10% of the SRIM values.

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Stopping in compounds

For a compound $I_i J_j K_k$... Bragg's rule of stopping power linear additivity states :

$$\mathcal{E}_{compound} = \frac{i\mathcal{E}_{I} + j\mathcal{E}_{J} + \dots}{i + j + \dots}$$
e.g. 1 MeV ⁴He in SiO₂
$$= \frac{\sum_{i=1}^{n} n \mathcal{E}_{N}}{\sum_{n=1}^{n} n}$$
e.g. 1 MeV ⁴He in SiO₂
$$\mathcal{E}_{SiO_{2}} = \frac{\mathcal{E}_{Si} + 2\mathcal{E}_{O}}{3}$$
$$= \frac{61.2 + 2 \times 43.45}{3}$$
$$= 49.37 \text{ eV}/10^{15} \text{ at cm}^{-2}$$

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

The Ziegler cores and bonds approach

For heavier elements, Bragg's rule is good, but for some lighter elements a more refined approach, based on seperate aditivity for atomic cores and molecular bonds gives better results. This is Ziegler's 'cores and bonds' approach.

J. F. Ziegler and J. M. Manoyan, Nucl, Inst. Methods, B35, 215-228 (1988)

```
# TABLE OF COMPOUNDS AND DATA. Table is organized as shown below.
     The left hand character in each line indicates its purpose :
#
         ! = Header for various Tables (e.g. Nuclear Materials, Gases...)
         * = Target Description for Table (e.g. Air, Bone, Water...)
  Next Line = Numerical Data-Line for target. Data Line is :
#
         (Name), (Density g/cm3), (Number of elements), (Atomic No.), (Atom %), ...
#
#
     !!!! Maximum Number of elements in a target = 8,
#
  NOTE: Can use composition by Mass Percent (Indicate by preceding Name by "%")
     For example, for BONE in both Atomic percent and Mass percent:
#
#
         Atomic % = "Bone", 1.92, 6, 1, 39.3, 6, 15.1, 7, 3.5, 8, 31.7, 40, 6.5, 15, 3.9
              % = "%Bone", 1.92, 6, 1, 3.37, 6, 1.29, 7, 0.3, 8, 2.72, 40, 0.56, 15, 0.33
         Mass
  Next Line = Numerical Bond-Structure data for target. Bonding Line is :
#
               (H-H)(H-C)(H-N)(H-O)(C-C)(C=C)(C=C)(C-N)(C-O)(C=O)(C-F)(C-C1)
               (N≡N) (N-O) (O=O) (S-H) (S-C) (S-F)
         $ = Comments on target (maximum of 8 lines / target)
#
   *** After the above is input, the next compound starts.
         Look at some of the examples below, and this will be clearer.
```

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Compound.dat entries : water

```
NUCLEAR PHYSICS MATERIALS
                                          Atomic Stoichiometry
                             Density
                                          (Atoms/Molecule or Atom Percent)
     Common Name
                             (q/cm3)
*Air
                           .00125
                                       0-23.2, N-75.5, Ar-1.3
"Air", .00125, 3, 8, 23.2, 7, 75.5, 18, 1.3
$
*Water (liquid)
                                      H-2, 0-1
                        1.00
"Water Liquid", 1.0, 2, 1, 2, 8, 1
$Chemical Formula: H — O — H
Ś
$There is about an 8% increase in the peak of the stopping power
$for ions in water vapour relative to the liquid. (The peak of the
$stopping occurs at an energy of about 100 keV/amu times the 2/3
Spower of the ion's atomic number.) Above the peak the phase
$difference begins to disappear. This calculation is for the
$LIQUID phase.
*Water (vapor)
                          (qas)
                                       H-2, 0-1
"Water vapor", 0.00125, 2, 1, 2, 8, 1
$Chemical Formula: H — O — H
Ś
$There is about an 8% increase in the peak of the stopping power
$for ions in water vapour relative to the liquid. (The peak of the
$stopping occurs at an energy of about 100 keV/amu times the 2/3
Spower of the ion's atomic number.) Above the peak the phase
$difference begins to disappear. This calculation is for the
$GAS phase.
```


SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Compound.dat entries : concrete, graphite, paraffin

```
*Concrete
                          2.34 (±.15) C-23, O-40, Si-12, Ca-12, H-10, Mg-2
"Concrete", 2.34, 6, 6, 23, 8, 40, 14, 12, 20, 12, 1, 10, 12, 2
$Concrete has a wide variation in density and composition. The above
$description is for poured structural concrete with 10% moisture
$content. Concrete block will have a density of about 2.05 g/cm3.
$Ranges of concrete composition are : C (8-25%), O (38-60%), Si (8-18%).
$Concrete composition can be analyzed cheaply by commercial laboratories.
Ś
                 2.26
*Graphite (carbon)
                                       C-6
"Graphite (carbon)", 2.26, 1, 6, 6
0 0 0 0 6 3 0 0 0 0 0 0 0 0 0 0 0
$Chemical — C = C —
             / \
$Formula
           — C C —
Ś
           \\ //
Ś
            — c — c —
Ś
$Graphite has a wide variation in density and composition. There are
$several different layered structures called graphite. The above
$formulation is typical.
*Paraffin
                                     H-2, C-1
                          0.89
"Paraffin", 0.89, 2, 1, 2, 6, 1
0200 1000000 000 000
$Density variation of paraffin is 0.87 - 0.91 g/cm3.
SChemical
                н н
$Formula
$
$
Ś
```


SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

ICRU Report 49 ISBN 0-913394-47-5

Published in 1992/3 - refers primarily to pre-1985 Ziegler, Biersack, Varelas formulations and semi-empirical fits.

Has a good general presentation of the main elements of stopping theory for light rapid particles, and fairly comprehensive description of different measurement methods.

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Konac et al stopping powers

Protons in Silicon

$$S_e(E) = \frac{E^s \ln(e + \beta E)}{P(E)}$$

$$P(E) = \alpha_0 + \alpha_1 E^{\frac{1}{4}} + \alpha_2 E^{\frac{1}{2}} + \alpha_3 E^{1+s}$$

G. Konac et al. NIMB 136-138 (1998) 159-165 H and He in Si, C 1-1000 keV/amu

maximum difference ~1% *for protons in Si*

$$S_e(E) = \frac{E^s \ln(e + \beta E)}{P(E)}$$

$$P(E) = \alpha_0 + \alpha_1 E^{\frac{1}{2}} + \alpha_2 E + \alpha_3 E^{1+s}$$

G. Konac et al. NIMB 146 (1998) 159-165 All ions in C and Si 0.01-100 MeV/amu

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Table 1 Fit parameters for S(E) and W(E) curves ^{*}

	'H/Si	² H/Si	¹ H/C	³ He/Si	⁴He/Si	⁴ He/C
5 ^b	0.37	0.37	0.39	0.52	0.52	0.49
χo	4.16×10^{-2}	3.66×10^{-2}	3.40×10^{-2}	8.24×10^{-3}	7.93×10^{-3}	1.36×10^{-3}
, 1	-1.47×10^{-1}	-1.24×10^{-1}	-3.93×10^{-2}	-2.02×10^{-2}	-1.93×10^{-2}	2.47×10^{-2}
,	1.80×10^{-1}	1.52×10^{-1}	2.09×10^{-2}	2.28×10^{-2}	2.21×10^{-2}	-1.81×10^{-2}
. c	2.79×10^{-1}	2.93×10^{-1}	7.89×10^{-1}	8.18×10^{-2}	8.25×10^{-2}	1.88×10^{-1}
d	15.7	15.7	36.5	15.7	15.7	36.5
M, C	17.2	16.2	14.9	10.5	10.0	6.4

^a Use reduced energies E/M in units of MeV/amu in Eqs. (1) and (2) for E to obtain $S_e(E)$ in units of eV cm²/10¹⁵ at and $W_e(E)$ in units of eV² cm²/10¹² at. Fitted range: $1 \le E/M \le 1000$ keV/amu.

^b For Si the exponents s were derived by comparing backscattering spectra for H and He isotopes [21], whereas those for C are best fit values as obtained by use of Eq. (1).

^c Bethe/Bloch theory: $\alpha_3 E = k E/8\pi Z_1^2 Z_2 e^4$, k = 4m/M; these values differ by about 10% from those listed.

^d Figures obtained by use of the Bethe/Bloch relation: $\beta E = kE/I_0Z_2$, k = 4m/M, with $I_0 = 10$ eV.

^e bM is given in units of (amu/MeV).

G. Konac et al. NIMB 136-138 (1998) 159-165 H and He in Si, C 1-1000 keV/amu

Konac coefficients

G. Konac et al. NIMB 146 (1998) 159-165 All ions in C and Si 0.01-100 MeV/amu

Table 2

Fit coefficients for electronic stopping cross-sections in silicon. Energy range: $0.01 \le E \le 100$ MeV/amu

Ion		<i>"</i>	N .	<i>N</i> -	N .	Ra
1011		μų	<u>ا</u> م	u2	u 3	μ
'H	0.68	3.64×10 ⁻³	-9.70×10 ⁻³	5.90×10 ⁻²	3.12×10 ⁻¹	15.7
4He	0.63	2.73×10 ⁻³	-4.95×10 ⁻³	2.32×10 ⁻²	7.03×10 ⁻²	15.7
вC	0.53	1.30×10 ⁻³	-6.12×10-4	6.55×10 ⁻³	6.89×10 ⁻³	15.7
⁴⁸ Ti	0.52	7.94×10 ⁻⁴	-9.74×10 ⁻⁵	1.19×10 ⁻³	4.33×10 ⁻⁴	15.7
52Cr	0.53	7.13×10 ⁻⁴	-6.35×10-5	1.17×10 ⁻³	3.28×10 ⁻⁴	15.7
⁵⁸ Ni	0.55	6.91×10^{-4}	-6.63×10 ⁻⁵	9.34×10 ⁻⁴	2.58×10 ⁻⁴	15.7
⁷⁴ Ge	0.51	7.51×10 ⁻⁴	-4.15×10 ⁻⁵	7.41×10 ⁻⁴	1.86×10 ⁻⁴	15.7
⁷⁹ Br	0.52	6.26×10 ⁻⁴	-4.25×10-5	7.06×10 ⁻⁴	1.45×10 ⁻⁴	15.7
93Nb	0.53	5.49×10 ⁻⁴	-2.82×10-5	6.02×10 ⁻⁴	1.02×10 ⁻⁴	15.7
¹⁰⁷ Ag	0.49	6.15×10 ⁻⁴	-1.74×10 ⁻⁵	4.45×10 ⁻⁴	7.58×10 ⁻⁵	15.7
¹²⁷ I	0.51	5.48×10 ⁻⁴	-1.85×10 ⁻⁵	4.03×10 ⁻⁴	6.02×10 ⁻⁵	15.7
¹⁹⁷ Au	0.51	4.55×10 ⁻⁴	-9.20×10 ⁻⁶	2.65×10 ⁻⁴	2.15×10-5	15.7
²⁰⁹ Bi	0.51	4.49×10 ⁻⁴	-8.70×10^{-6}	2.53×10 ⁻⁴	1.85×10 ⁻⁵	15.7

^a Obtained by use of the Bethe-Bloch formula with a mean ionization potential of $I = Z_2 \times I_0 = 140$ eV [6].

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Special case of 2 MeV ⁴He in Si

Climent-Font, A., U. Watjen, et al. (1992). *Quantitative RBS Analysis using RUMP. On the accuracy of the He stopping in Si.* <u>Nuclear Instruments & Methods in Physics Research, Section B</u> (Beam Interactions with Materials and Atoms) **71**: 81-86.

• "Rump" stopping is 10% or so too high (TRIM85 or 98 stopping powers).

W.N. Lennard, G.R. Massoumi, T.W. Simpson, I.V. Mitchell, Nucl. Instr. and Meth. B 152 (1999) 370.

• Konac et al measurement confirmed

M. Bianconi, F. Abel, J.C. Banks, A. Climent Font, C. Cohen, B.L. Doyle, R. Lotti, G. Lulli, R. Nipoti, I. Vickridge, D. Walsh, E. Wendler. *The Si surface yield as a calibration standard for RBS*. Nuclear Instruments and Methods in Physics Research B 161-163 (2000) 293-296.

• RBS surface plateau height for ⁴He, 1-3 MeV, good with Konac stopping powers

N.P. Barradas, C. Jeynes, R.P. Webb, E. Wendler. *Accurate determination of the stopping power of 4He in Si using Bayesian Inference*. Nucl. Instr. And Meth. B 194 (2002) 15-25.

	a	b	С	d	e	f	g	h
ZBL	2.072	0.0044516	3.5585	0.53933	1515.3	0.93161	1790.3	0.035198
Barradas	0.6286	0.0422970	3.3416	0.54056	1499.7	0.93180	2042.1	0.033552

2% correction to above three papers

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Bianconi values

Amorphised Si target, interlaboratory comparison to determine plateaux heights H₀

296

M. Bianconi et al. | Nucl. Instr. and Meth. in Phys. Res. B 161-163 (2000) 293-296

Table 3

Surface RBS yield (H_0) for Si as a function of the energy calculated using different stopping power data available in the literature (see text)^a

	H_0 counts/(μC	msr keV)			
	1.0 MeV	1.5 MeV	2.0 MeV	2.5 MeV	3.0 MeV
Experiment	58.5	28.8	18.3	12.7	9.47
RUMP SRIM2000	57.2 57.6	27.7 28.1	17.1	12.0	9.06
KKKNS	60.5	29.5	18.3	12.8	9.69

"The average experimental data are shown for comparison.

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Particular case : 150 keV protons in SiO₂

Nuclear resonance profiling via ${}^{18}O(p,\alpha){}^{15}N$

A value of 475 keV/mg.cm⁻² has been largely verified by comparison with multiple complementary methods in Paris.

 SRIM 2000 value :
 509 keV/mg.cm⁻²

 SRIM 2003 value :
 502 keV/mg.cm⁻²

Conclusion : The semi-empirical fits from SRIM undoubtedly provide the best overall summary of our knowledge of stopping powers, however in any particular case they may vary by more than 10% from the 'true' value that only God knows.

If you have a solid and reliable measurement, use that rather than the SRIM value.

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

What we haven't talked about

Phase effects

Much stopping data (e.g. N_2 , O_2) has been measured in gas targets. The stopping power of these atoms in solids is not necessarily the same as in the gas phase. This also the case for inert gases, however here there is no phase effect (J. Ziegler, pers.comm.) (Van der Waals solids)

Heavy ion stopping

A similar Z^2 scaling rule from proton stopping is applied. All the hard work is concerned with finding the effective charge of the ion in the stopping medium

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003

Excercises

1. Getting stopping power values.

Compare the values of stopping for 2 MeV ⁴He in silicon from TRIM98, SRIM2000, SRIM2003, and the values found by Konacs et al, Lennard et al, and Bianconi et al. Compare these values with that determined from the 1985 TRIM book.

2. Compare calculation with data

Compare the calculated SRIM2003 value with data, via the website www.srim.org. You can also browse other entries, including tutorials and physics on this extensive site

- 3. Build a TRIM entry for a new compound :e.g. sucrose using cores and bonds approach
- 4. *Investigate phase effects*. E.g. try SRIM for water vapour and liquid water.

Glucose data

Example : glucose $C_6H_7(OH)_5O$, $\rho=1.5$ g.cm⁻³

HOHO OH

The Chain form of Glucose

The Ring form of Glucose

SMR1503 Workshop on Nuclear Data for Science and Technology : Material Analysis. ICTP Trieste, 19-30 May 2003