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PHYSTCS OF THE INTERACTION OF CHARGED PARTICLES WITH NUCLEI

An atomic nucleus is a strongly bound system of nucleons located in a small domain with a
typical size of

/?»(l.l-s-1.5)-A1/3fin (1 fm= 10~13cm) (1)

Nucleons are hold together inside nuclei due to nuclear forces. These forces are strong
attractive forces acting only at short distances. They possess property of saturation, due to
which nuclear forces are attributed exchange character (exchange forces). Nuclear forces
depend on spin, not on electric charge, and are not central forces. The nature of the nuclear
forces has not yet fully been clarified.

Nuclear forces are said to be strong forces, in the sense that they are at least 100 times greater
than very strong Coulomb forces taken at short nuclear distances of about 1 fm. The short
range of nuclear forces leads to a strict demarcation of the regions where only long-range
Coulomb forces, or only nuclear forces show up as the latter suppress the Coulomb forces at
short distances

The dependence of the force on the space coordinates is described by means of the potential.
The presence of one of the interacting bodies is expressed through the potential as a function
of the distance from the body center and the force at the point r, directed from the first body
to the second, is found as a potential derivative with respect to the space coordinates at this
point.

Assuming nucleus is a uniformly charged sphere the electrostatic potential energy for the
projectile-nucleus system can be written as

M for r>R

for r<R
ZR ( & j

where Z and z are charge numbers of the nucleus and the projectile respectively.

Nuclear forces are also introduced through the potential energy of the nucleon interaction.
The positive potential creates repulsive forces, and the negative potential attractive forces.

Therefore, the potential energy is positive if it
corresponds to repulsive forces, and it is
negative for attractive forces. As a result, the
potential energy of the point proton interaction
with the nucleus may be presented as is shown
in Fig. 1
The Coulomb repulsion changes abruptly to
attraction at the distance of the radius of action
of nuclear forces, i.e. at the boundary of the
nucleus R. The transition from repulsion to
attractions proceeds, though rapidly but

Fig.l continuously, in the region of the space



coordinate R. So, to a certain degree of accuracy the nuclear potential is pictured in the form
of a square potential well which is about 40-^50 MeV deep.

For a charged projectile to reach the range of action of nuclear forces, it should possess some
kinetic energy T sufficient to overcome the Coulomb potential barrier of height

Zze2

R
(3)

which is of the order of 1 MeV even in the interaction of singly charged particles with the
lightest nuclei.

According to quantum mechanics the transparency of the Coulomb barrier is given by the
formulae

(4)

where |i = Mm
M + m

is reduced mass, r\ =R and r-i is derived from the relation T =
Zze2

Thus though electric charge of atomic nuclei hinders the initiation of nuclear reactions with
low energy charged particles the reactions are still feasible at energies below the potential
barrier. These are so-called under-barrier reactions. The penetrability of Coulomb barrier
increases very rapidly as T approaches Be (eq.3).Therefore, if T does not greatly differ from

Be, the under-barrier reactions take place with
remarkable probability.

If the interaction is solely due to electric forces
the differential cross section of elastic scattering
is derived from energy and angular momentum
conservation laws. As far as the law of the
interaction (i.e. dependence of the force on the
distance) is known it is possible to find a
dependence of the scattering angle 9 on the
impact parameter b which is expressed in a non-
relativistic case by the relation

tan 9 =
IZze
mv2b

(5)

Fig.2
For a single unmoveable nucleus placed on the

path of the ion beam of intensity equal to TV particles per square cm in 1 sec the number of the
ions scattered in the angle interval from 9 to Q+dQ is dN = 2%bdbN where b and db are derived
from eq.(5). The value

, dN . , „
do = = 2nb db

N
(6)



is differential cross section which is expressed for the target containing n nuclei per unit area
by the well known Rutherford formulae

(7)

Distinct of pure Coulomb scattering the cross section cannot be calculated from an algebraic
formulae in case of the nuclear interaction.

Nuclear scattering is considered below for the simplest case of the projectile with no charge..
According to quantum mechanics a particle state is described by the wave function \|/, which
is obtained as a solution of the wave equation. For the case of elastic scattering of spinless
non-identical particles the wave equation has a form of Schro dinger equation with a
spherically symmetric potential V(r)

2m<~ — n fs\
- U , (8)

where

Prior to scattering the wave function \|/ for the particle with a given momentum/? has a form
of a plane wave:

V = e' f e , (10)

where A; is a propagation vector

Here X = XI 2K , where A, is de Broglie wavelength.
This function is a solution of the eq.(8) in case of V{r) = 0, i.e. the equation of the form

(12)

and is normalized to correspond to the flux density equal to the projectiles velocity.

In the course of scattering the plane wave interacts with the field of nucleus V(r), that gives
rise to a spherical wave divergent from the center of the interaction. This wave has a form of

ikr



Thus the last stage of the scattering process (after scattering) is depicted by a superposition of
the two waves - plane and spherical ones:

(14)

Here 9 is a scattering angle; /(9) is an amplitude of the divergent wave; the \lr factor stands
for decreasing of the flux in reverse proportionality to the square of the distance.

The square of the modulus of the scattered wave amplitude is equal to the differential cross
section

da

dQ.
(15)

This is easy to prove. By definition the differential cross section da is equal to the fraction
dNIN of the initial particles flux N scattered into the given solid angle dQ.. Assuming the
density of particles in the primary beam being equal to unity one obtains N= v, where v is the
particles velocity. For dN one obtains

Fig.3

ikr

dN = / (0) vr2 sin0 dQ Jcp (16)

Taking into account that velocity does not change in the
elastic scattering and that sin0<i9<i(p=<iQ one finally obtains
that

da =
dN / (6) V W Q

N r2v
dQ (17)

or

dQ
(18)

The angular distribution of the scattered particles is defined by the fld) function. For the
quantitative analysis of the elastic scattering eq. (8) and (12) are considered in spherical
coordinates. The general solution of these equations has the form of

(19)
/=o

where Ri (r) is a radial wave function; P/(cos9) is Legendre polynomial (Pi=l, P2=cos9,
P2=(3cose-l)/2, ...).



Far from the center of scattering (at large distances r) the radial function for each of / can be
Jb-iK)

represented in form of two partial spherical waves one of which is converging e ^ 2> and

the other is divergent e ^ 2K

For the initial stage depicted by a plane wave both the waves have equal amplitudes and

Rkl{r)~e
i\kr-r\ -i\kr-l

(20)

So the plane wave expressed through an expansion over Legendre polynomials has a form of

1=0 likr
P/(cos0)

/ kr-l

— e
-i kr-l

(21)

Here each of the spherical waves corresponds to the particles moving with given orbital
momentum / and is characterized by the angular
distribution P/(cos9) (see Fig.4).

Suppose the projectile posseses kinetic momentum p
and angular momentum /. Then from comparison
between classical and quantum mechanical relations
for the modulus of the angular momentum

(22)

Fig.4
follows that

(23)

i.e. the initial beam behaves as if it were subdivided in cylindrical zones with radii defined by
eq. (23) as shown in Fig.5.
In the process of scattering an additional divergent spherical wave
arises. So the ratio between convergent and divergent waves
changes. The change of the ratio can be formally taken into
account by a coefficient at the divergent wave

Fig.5

(24)

In case of the elastic scattering the fluxes for the convergent and divergent waves should be
equal to each other for each of/. This means that |5/|2=1. So the factor Si can be written as



b[ = e (25)

where 5/ is called a phase shift.

Physically the phase shift is explained by the difference of the wave velocity in the presence
of the nuclear forces field and outside

V(r),xP(r) the nucleus as is illustrated in Fig.6.

The partial wave after scattering has
then a form of

Fig.6

. ikr

;=0 Llrir

Ru(r)~e
/|fr-/^28,j -i^b-r-

(26)

The solution of eq. ( ) for the final stage
of scattering is

kr-l-\ -i\kr-l-
2>-e (27)

The following relation between the scattering amplitude and phases can be derived

'i&l -l)P ;(cos6). (28)

Summing up, the differential cross section for elastic scattering is calculated from eq. (15), the
scattering amplitude being expressed through phase shifts 5/ according to eq.(28). The phase
shifts for partial waves are calculated by resolving Schro dinger equation (8) with assumed
potential V{r). This equation is split into angular and radial ones. The asymptotic general
solution for radial equation is

\jK r
(29)

The phase shifts 8/ are defined by the edge conditions. The phase shifts are functions of k and
/ but do not depend on the scattering angle.

If the projectile is charged it interacts with combined Coulomb and nuclear fields of the target
nucleus. The relation for the scattering amplitude is then

1
lik /=0

(30)

where^/c(9) and Gi are amplitude and phase shift of the Coulomb scattering respectively.



The Si values defined by eq.(25) can be considered as elements of some diagonal matrix
which is called a scattering matrix. Tn case of pure elastic scattering phase shifts 5/ are real
numbers. However they become complex if inelastic scattering is also present in the scattering
process. This corresponds to decreasing of the amplitude of the divergent waves i.e. \Si\<].

In case a projectile possesses non zero spin all the ideology described above retained valid.
However, the equations become more complicated since radial wave equation splits into
(2s+l) equation. Suppose projectiles are protons which spin is _. Then spin of bombarding
particle may be combined with angular momentum / by two ways to produce the total angular
momentum j=l+_.

The proton elastic scattering differential cross section is obtained in this case through
2 2

resolving of Schro dinger equations for partial waves asdo/dQ- A(Q) + B(Q) , the

scattering amplitudes A(Q) and B(Q) being defined by the following relations

1=1

(31)

/=0

where fc(Q) is an amplitude of Coulomb scattering, G/ are Coulomb phase shifts, Pi(cosQ) are
Legendre polynomials, rf(C0&) are associated Legendre polynomials, i^and £f are
scattering matrix elements for different spin orientation, A: is a wave number.

The above representation of the elastic scattering process produces the cross section with a
smooth dependence on energy. Some rather broad resonances called "shape (or size)
resonances" are observed only at energies when conditions for standing waves to form in the
nucleus potential well are fulfilled (Fig. 7).
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The considered so far mechanism of scattering is called direct or potential scattering since it
proceeds through direct interaction of a single bombarding particle with a potential well
representing a nucleus. Nuclear interaction at low energies can proceed also in two stages
through the mechanism of a compound nucleus (Fig. 8). The first stage of the interaction is the
absorption of the bombarding particle by the target nucleus and the production of an
intermediate, or compound, nucleus. The compound nucleus is always highly excited because
the absorbed particle brings both its kinetic energy and the bond energy of the absorbed
nucleons into the produced nucleus. The second stage is the decay of the compound nucleus
with the emission of this or that particle. The original particle may always be such a particle,
and here again the original nucleus is formed. A typical lifetime for a compound nucleus is
~10"14 sec that is very long as compared with the time of direct interaction defined as a time
(10~23-̂ 10~21 sec) needed for the bombarding particle passes through the region occupied by
the nucleus potential well.

Compound
Nucleus

Absorbtion

Compound
Nucleus Decay

Fig.8

The compound nucleus has discreet energy levels as shown in Fig. 9 and so the cross section
of the elastic scattering through this mechanism has a resonance structure. Because of the
relatively long lifetime and due to the uncertainty relation (written in energy-time coordinates
it is AE • At > ti) the widths of the compound nucleus levels are rather small. So are the
widths of the resonances observed in the cross section.

One of the ways to take resonance scattering into account is to add Breit-Wigner resonance
terms to the diagonal elements of the scattering matrix:

Sf = exp(2A,*) exp(-2|if) + exp(2i<|>
En-E--iT

(32)

where X) +i\ij is the off-resonance nuclear phase shift describing the elastic scattering of
protons of energy E from spin zero nuclei. The quantities EQ, T, and Fp are the energy, total
width and partial elastic width, respectively. The subscript / is the relative angular momentum
of the proton and the target in units of ^ . The plus sign refers to the case when J=l+_ and the
minus sign to the case when J=l— _. The quantity (J)p is a resonance phase shift.
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Because of the interference between potential and resonance scattering the excitation function
has a typical structure with resonances pictured as dips and bumps rather than as Breit-Wigner
functions (Fig.10,11).
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If nuclear reactions contribute to the total cross section along with elastic scattering this
should be someway taken into account. Though some progress has been achieved in
microscopic theory of nuclear reactions it is practical to apply a phenomenological approach
consisting in consideration of the projectile interaction with the nucleus as a whole, the
nucleus being represented by an appropriate potential. The potential parameters are found
through fitting theoretical calculations to the available experimental data. To make this
approach more physical the potential shape is derived from the known features of the
nucleon-nucleon interaction and from distributions of matter and charge in the nucleus.

In the so-called optical model nucleus is represented by means of a complex potential. The
interaction of the projectile with the nucleus is then reduced to de-Broglie's wave refraction
and absorption by a opaque sphere. The name of the model originates from the formal
analogy with the light plane wave passing through a semitransparent sphere.

As well as refraction and absorption of the light is described by a complex index

n = nr+iKa (33)

the complex potential of the form

U=V+iW (34)

is used to take into account scattering and absorption of the projectile by the nucleus. The real
part of the potential is responsible for scattering whereas the imaginary part stands for
absorption.

The standard form of the optical potential is as follows:

U{r) = Uc (r) + UR (r) + iU, (r) + Uso (/•), (35)
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where Uc is Coulomb potential defined by eq.(2),

Fig.12

(36)

(37)

(38)

(39)

(40)

The potential terms represent, in sequence, the real
central volume potential of the depth FR, the imaginary
central surface potential of the depth Wo (volume
absorption is negligible at low energies), and the
surface spin-orbit potential of the depth Vso, while fx(r)
is a Saxon-Woods formfactor, Rx is a half value radius,
ax is a diffuseness parameter, A is a target mass number,
m% is a 71-meson mass, c is light velocity, / and s denote
angular momentum and spin operators respectively.

Due to more than 30 years of application of the optical model the general features of
phenomenological optical potential parameters are well established. An intensive study of the
low energy anomalies in the optical potential behaviour was made in early 80s. The
peculiarities, that were found, are as follows. The strength parameters often have strong

energy dependence in the vicinity of the
Coulomb barrier. The real potential radial
dependence is of more complicated than Saxon-
Woods form. The imagine part of potential
reveals non-systematic dependence on nucleus
mass number. Absorption is peaked at the
nucleus surface. The radius of the imaginary
potential diminishes with decreasing energy
while its diffuseness increases. Calculations in
framework of the optical model are very sensitive
to the parameters used. So the results obtained
with global sets such as the potentials obtained
by Perey or Becchetti and Greenlees appear to be
unrealistic. Several attempts have been made to
develop a global set for low energy region but
reliable results may be expected only in case of
calculations with parameters fitted to the
experimental data. Authors of the recent IAEA
co-ordinated research project claime to produce a
Reference Input Parameter Library (Fig. 13) with
optical model parameters for low energy proton

T- n scattering included.
Fig.13 B

Handbook for calculations of
nuclear reaction data

Rofere-rtGe input parameter library
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It is evident from Figs. 14 and 15 that calculations with RIPL input parameters produce actually
cross sections absolutely inconsistent with experimental data.
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In most cases of charged
particles low energy scattering
the contribution of the reaction
channels is negligible and so the
imaginary potential is close to
zero. The calculated cross
section is extremely sensitive to
this parameter as illustrated in
Fig. (16). As far as the imaginary
part of the potential is equal to
zero the cross section is
represented by S - m a t r i x
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formalism rather than by the optical model.

It is interesting to note that the differential cross section at higher energies is insensitive to the
spin-orbit potential (38) and it influences only polarization data. In the region of separated
resonances such is not the case. Because of the spin-orbit interaction the energy levels split
with respect to the total angular momentum as is shown in Fig. 17.
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As a result the distance between split resonances strongly depends on the spin-orbit potential
(see Fig. 18).
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For the reactions induced by low energy deuterons at light nuclei it was assumed that the main
contribution to the cross section of the process is given by the following three mechanisms:
direct stripping, resonant mechanism and in some cases a compound nucleus mechanism. Tt
was accepted, that the complete amplitude T of process is T=D + R, where D is the amplitude
of the direct process of stripping, which was calculated within the framework of a method of
deformed waves without the account of effects of a recoil nucleus, and R-is the amplitude of
resonant process, calculated in frameworks of a single level approximation. The compound
mechanism contribution if any is incoherent and it may be simply added. Complete and
partial width of formation and disintegration of resonances in the system, which are necessary
in order to calculate the amplitude of R, were defined by fitting the model predictions to the
available experimental cross sections of elastic deuteron scattering and (d,p)-reaction. The
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satisfactory description of the experimental data for 12C(d,p0)
13C reaction is feasible (see

Fig. 19). However, for a reliable description of a whole set of (d,p)-reaction data a
development of the model in several directions is required.
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The important source of the nuclear level information for light nuclei is Ajzenberg-Selove's
compilation published in several volumes of Nucl. Phys. Now it is available on-line at
www.1iinl.duke.edu/nucldata/fas/fasjistshtml. The compilation comprises tables of adopted
nucleus level properties, level diagrams, short discussions, and references. An example of the
level diagram is shown in Fig.20.

If you want to find out the characteristics of a particular nuclear reaction X(a,b)Y, you may
find that reaction discussed in three places in the compilation: under the residual nucleus Y,
under the compound nucleus (X+a), or occasionally under the target nucleus X. If you are
mainly interested in the excitation curve, resonance, yields, or angular distributions in the
resonance region, then look for the reaction under the compound nucleus. If you are mainly
interested in emitted-particle groups, then look for the reaction under the residual nucleus.

As an example, consider the energy level diagram for 17F, illustrated by Fig. 20. The energy
levels of F are depicted schematically as horizontal lines on what might be thought of as a
square potential well. The bottom horizontal line represents the ground state. Broad energy
levels are shown crosshatched; uncertain levels are indicated by dashed lines. The small digits
at the right end of the energy-level lines indicate the angular momentum comprises parity,
and isobaric spin of the level near which they are shown. Vertical lines connecting energy
levels represent electromagnetic transitions (usually y-ray emission).

Scattered about the page are the reactions that lead to formation of l7F-nucleus. For some of
these reactions qualitative thin-target excitation curves are depicted above the Q-value lines
and alongside the energy-level diagram.
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