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NRA - Nuclear Reaction Analysis
M. Mayer
Max-Planck-Institut fiir Plasmaphysik, EURATOM Association, 85748 Garching, Germany

® Measurement methods for NRA

® Reaction kinematics

® Resonant and non-resonant NRA, cross section data sources
® Proton induced reactions




l;— Overview

NRA - Nuclear Reaction Analysis
® Quantitative determination of selected light elements

® Quantitative depth profiling of selected light elements
® |sotopic tracing of specific light isotopes

® Particle - Particle reactions
® Particle - Gamma reactions
® Particle - Neutron reactions




l;— Introduction: Particle - Particle reactions W

b

M, + M, > M3 + M, + Energy (endothermic reactions less useful)




l:— Measurement Methods

¢ Exothermic reactions result in high energetic reaction products
= Above backscattered high Z components from target
= Often allows absorber foil in front of detector
- Background free
- Allows detectors with large solid angle
necessary due to small reaction cross sections
- But: deteriorated depth resolution due to absorber foils




l:— Measurement Methods (2)

Comparable equipment to RBS measurement

® Particle detection and energy measurement with
solid state surface barrier detectors

® Accelerator, beam transport system identical to RBS

Additional needs for NRA:

® Absorber foil(s) in front of detector

® Optimum reaction angle may require additional detectors
® High energy protons may require thicker detector

Beam Defining  In-Line Faraday 1
Aperture Cup

Incident I
Beam l Il ! |

Electron

Suppressor




Measurement Methods (3)

Filtering methods of unwanted particles

Unwanted particles may be
¢ Backscattered particles of incident beam
¢ Other reaction products

1. Absorber foil technique
Advantage: Simple
Disadvantage: Degraded depth resolution

2. Electrostatic or magnetic deflection




Measurement Methods (4) W

Filtering methods of unwanted particles (continued)

4. Thin detector technique

Used when proton and o peaks overlap and o peak contains more information

5. Coincidence technique
Both reaction products are measured in coincidence at corresponding angles
Advantage: Low background; excellent depth resolution
Disadvantage: Only for transmission geometries (thin foil)
possibly large particle flux to detector = detector lifetime




l;_— Warning! W

Nuclear reactions (wanted or unwanted) can result in high levels of radiation

= y-radiation
= neutron-radiation
—> activation of sample and beam system

Always contact your local radiation protection or health physics professional
before undertaking measurements involving nuclear reactions!
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®* Measurement methods for NRA

® Reaction kinematics

® Resonant and non-resonant NRA, cross section data sources
® Proton induced reactions

® Deuteron induced reactions

® 3He and “He induced reactions

®* NRA for hydrogen analysis




l:— Reaction Kinematics

Primed quantities in E3 Light
C.M. system.




l:— Reaction Kinematics (2)

Primed quantities in Es tiga
C.M. system.




Reaction Kinematics (3)

Some reactions result in “reverse kinematics” at backward angles:
D(d,p)T D(®He,p)*He D(3He,*He)p

D(®He,*He)p at 165°
Energies in keV

800 keV
3He 4He SHe
800 1780
700 1880

‘He
600 1990
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Non-Resonant and Resonant NRA

®* Non-Resonant NRA:
Slowly varying cross section
= Analysis identical to RBS, taking NRA kinematics into account

® Resonant NRA:
Resonant cross section, width ~ several keV
— Change of incident ion energy for depth profiling
= Special analysis techniques required

%

l Increase of beam energy

%
/t5 ke
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Cross Section Data Sources m

® Most nuclear reaction cross sections were
measured in the years 1950 - 1970 for nuclear physics research

= goal was nuclear physics, not materials analysis
= many data for non-optimal angles
— most data published only in graphical form

®* Data compilation by R.A. Jarjis, Nuclear Cross Section
Data for Surface Analysis, University of Manchester, UK 1979
2 volumes, 600 pages — unpublished
still the most comprehensive compilation of cross section data (RBS + NRA)




l;— R33 File Format

Comment: These cross sections have been digitized from the publication
cited below. No error of either the energy and or the sigma is given.

Version: R33

Source: P.F.Alkemade et al. Nucl. Instr. Meth. B35 (1988) 135
Name: Gyorgy Vizkelethy

Serial Number: 0

Reaction: 180(p,a)15N

Distribution: Energy

Composition:

Masses: 1.000, 18.000, 4.000, 15.000

Zeds: 1,8,2,7

Qvalue: 3980.40, 0.00, 0.00, 0.00, 0.00
Theta: 155.00
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l:— Proton Induced Reactions

Most useful reactions with protons:

® "Li(p,a.)*He Q=17.3 MeV
* 11B(p,u)8Be Q= 8.5MeV
® 180(p,a)!5N Q= 4.0 MeV

Can be used for depth profiling




l:_— Proton Induced Reactions (2) W

ao:r.,.,,---;n--'l""l“': Q = 3980 keV
i 180(p,0)"°N : -

. : oo 165° . E, = 3310 keV for
g Ep=629keV

40 [

30 |-

o (mb/sr)




S W

®* Measurement methods for NRA

® Reaction kinematics

® Resonant and non-resonant NRA, cross section data sources
® Proton induced reactions

® Deuteron induced reactions

® 3He and “He induced reactions

®* NRA for hydrogen analysis




Deuteron Induced Reactions

¢ Almost all light elements have deuteron induced reactions
with positive Q-value

® Mostly (d,p) is used, but (d,a) and (d,3He) are available

¢ Compound nuclei usually has many excited states
= many groups of emitted particles: *N(d,p4.;)"°N, "°F(d,p,_¢)*°F
= may result in interference of different peaks




l:— Deuteron Induced Reactions (2)

Most useful reactions with deuterons:

® 12C(d,p)3C Q= 2.72MeV
* 4N(d,pe)’®™N Q= 8.62 MeV (p,)
®160(d,pe4)70 Q= 1.92 MeV (p,)

® Low stopping power for incident deuterons and exit protons
= not suitable for depth profiling
= use (d,a) for depth profiles




l:— Deuteron Induced Reactions (3)

b
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l:— Deuteron

Induced Reactions (4)
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o— Deuteron Induced Reactions (5)
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Deuteron Induced Reactions (6)
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l:— Deuteron Induced Reactions (7)

Example: 834 keV deuterons on SiO,/Si
6 = 135°, 12 um Mylar absorber
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l:— 3SHe Induced Reactions

Most useful reactions with 3He:

* D(®He,p)*He Q= 18.35 MeV
* D(*He,a)'H Q= 18.35MeV
®* %Be(®*He,py4)""B Q= 10.32 MeV (p)
®* 12C(3He,pg.1)*N Q= 4.78 MeV (p,)

® Many other light elements have 3He induced reactions
with positive Q-value




l:— 3He Induced Reactions (2)

b
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l:__ 3He Induced Reactions (3) W

2.5 MeV 3He, 0 = 135°, Mylar absorber
Sample containing D, Be, C

D(3He,p)*He, Q = 18.35 MeV

400 E, = 12.4 MeV
D = Range in Si: 1 mm
300 = Only partly stopped in
200 Si detector, typical thickness
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—— 3He Induced Reactions (4)

2.5 MeV 3He, 06 = 165°, no Mylar absorber
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l:— “He Induced Reactions

b

® Only few light elements with positive Q-values
¢ Complicated cross sections with many resonances

= Usually not useful
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l:— NRA for Hydrogen Analysis

NRA for hydrogen analysis uses the resonant nuclear reaction
BN + 'H — 12C + “He + y (4.43 MeV)  at 6.385 MeV "°N energy

The v is observed, not the charged particles
As in all resonance methods, the beam energy is varied

Hydrogen
detection / /

resonance /
kwmdovy //

—~| |~ ~75A

15N+ / / /

Beam /
6.385 = 0.005 MeV
resonance energy
/Y, /,

[ Increase of beam energy

v
/t5 ke




I:— NRA for Hydrogen Analysis (2)

Typical experimental setup (University at Albany)

Rotatable
Insulating surface-barrier
detector - Gate

Photomultiplier coupling\ -300V valve
S —
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detector i Bias ring Variable
Heated aperture
%@ B filament

Rotatable / ]\
sample \

wheel




l:— NRA for Hydrogen Analysis (3)

Depth x as function of incident energy E

R

_E-E

res

YT dEd ’ :
E/dx E
E .  energy of resonance VA

dE/dx stopping power ~ constant

Yield Y as function of hydrogen concentration n(x)

dE




l:_- NRA for Hydrogen Analysis (4) W

Advantages:
® Very good sensitivity and depth resolution
® Can be used at normal incidence = less sensitive to surface roughness

Disadvantages:

® Low probing depth
® Not applicable for delicate samples (hydrocarbons): lon beam induced loss of H
- Larger sample damage by °N than by light ions

- Change of beam energy requires large fluence
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