united nations educational, scientific and cultural organization

the **abdus salam** international centre for theoretical physics

H4.SMR/1503 - 12

WORKSHOP ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY: MATERIALS ANALYSIS

(19 - 30 May 2003)

RBS - Rutherford Backscattering Spectrometry

Dr. Matej Mayer Max-Planck-Institut Fuer Palsmaphysik EURATOM Association Garching GERMANY

RBS - Rutherford Backscattering Spectrometry

M. Mayer

Max-Planck-Institut für Plasmaphysik, EURATOM Association, 85748 Garching, Germany

- History
- Scattering geometry and kinematics
- Rutherford cross section and limitations
- RBS spectra from thin and thick films
- Stopping power and energy loss
- Detector resolution
- Energy loss straggling
- Cross sections from selected light elements
 - incident ¹H
 - incident ⁴He

RBS - Rutherford Backscattering Spectrometry

- Widely used for near-surface layer analysis of solids
- Elemental composition and depth profiling of individual elements
- Quantitative without reference samples (≠ SIMS, sputter-XPS,...)
- Non-destructive (≠ SIMS, sputter-XPS,...)
- Analysed depth: 2 μm (He-ions); 20 μm (protons)
- Very sensitive for heavy elements: ≈ ppm
- Less sensitive for light elements \Rightarrow NRA

Rutherford Backscattering (RBS) is

- Elastic scattering of protons, ⁴He, ^{6,7}Li, ...
 - ≠ Nuclear Reaction Analysis (NRA): Inelastic scattering, nuclear reactions
 - ≠ Detection of recoils: Elastic Recoil Detection Analysis (ERD)
 - ≠ Particle Induced X-ray Emission (PIXE)
 - \neq Particle Induced γ -ray Emission (PIGE)

• RBS is a badly selected name, as it includes:

- Scattering with non-Rutherford cross sections
- Back- and forward scattering
- Sometimes called Particle Elastic scattering Spectrometry (PES)
- Ion beam Analysis (IBA) acronyms: G. Amsel, Nucl. Instr. Meth. B118 (1996) 52

© Matej Mayer

2003

Sir Ernest Rutherford (1871 - 1937)

1911: Rutherford's scattering experiments: ⁴He on Au ⇒ Atomic nucleus, nature of the atom

RBS as materials analysis method

 1957: S. Rubin, T.O. Passell, E. Bailey, "Chemical Analysis of Surfaces by Nuclear Methods", *Analytical Chemistry* 29 (1957) 736

"Nuclear scattering and nuclear reactions induced by high energy protons and deuterons have been applied to the analysis of solid surfaces. The theory of the scattering method, and determination of O, Al, Si, S, Ca, Fe, Cu, Ag, Ba, and Pb by scattering method are described. C, N, O, F, and Na were also determined by nuclear reactions other than scattering. The methods are applicable to the detection of all elements to a depth of several μ m, with sensitivities in the range of 10⁻⁸ to 10⁻⁶ g/cm²."

History (2)

- 1970's: RBS becomes a popular method due to invention of silicon solid state detectors
- 1977: H.H. Andersen and J.F. Ziegler Stopping Powers of H, He in All Elements
- 1977: J.W. Mayer and E. Rimini Ion Beam Handbook for Materials Analysis
- 1979: R.A. Jarjis
 Nuclear Cross Section Data for Surface Analysis
- 1985: M. Thompson

Computer code RUMP for analysis of RBS spectra

- 1995: J.R. Tesmer and M. Nastasi Handbook of Modern Ion Beam Materials Analysis
- 1997: M. Mayer

Computer code SIMNRA for analysis of RBS, NRA spectra

• History

Scattering geometry and kinematics

- Rutherford cross section and limitations
- RBS spectra from thin and thick films
- Stopping power and energy loss
- Detector resolution
- Energy loss straggling
- Cross sections from selected light elements
 - incident ¹H
 - incident ⁴He

Scattering Geometry

IBM geometry

Incident beam, exit beam, surface normal in one plane $\Rightarrow \alpha + \beta + \theta = 180^{\circ}$ Advantage: Simple

Cornell geometry

Incident beam, exit beam, rotation axis in one plane $\Rightarrow \cos(\beta) = -\cos(\alpha)\cos(\theta)$ Advantage:

large scattering angle and grazing incident + exit angles good mass and depth resolution simultaneously

General geometry

 α, β, θ not related

Scattering Kinematics: Example (2)

IPP

2003

Mass Resolution

$$\Delta E_1 = E_0 \frac{dK}{dM_2} \Delta M_2 \qquad \Longrightarrow \qquad \delta M_2 = \frac{\delta E}{E_0} \left(\frac{dK}{dM_2}\right)^{-1}$$

 δM_2 : Resolvable mass difference δE : Energy resolution of the system

J.R. Tesmer and M. Nastasi, Handbook of Modern Ion Beam Materials Analysis, MRS, 1995 \Rightarrow Improved mass resolution with increasing M₁

But: For surface barrier detectors $\delta E = \delta E(M_{l})$ $\delta E(1)$: 12 keV $\delta E(4)$: 15 keV $\delta E(12)$: 50 keV \Rightarrow optimum mass resolution for $M_{l} = 4 - 7$

Heavier M_1 only useful with magnetic analysers, time-of-flight detectors

- History
- Scattering geometry and kinematics
- Rutherford cross section and limitations
- RBS spectra from thin and thick films
- Stopping power and energy loss
- Detector resolution
- Energy loss straggling
- Cross sections from selected light elements
 - incident ¹H
 - incident ⁴He

Rutherford Cross Section

- Neglect shielding by electron clouds
- Distance of closest approach large enough that nuclear force is negligible
 - \Rightarrow Rutherford scattering cross section

$$\sigma_{\rm R}(E,\theta) = \left(\frac{Z_1 Z_2 e^2}{4E}\right)^2 \\ \times \frac{4\left[\left(M_2^2 - M_1^2 \sin^2 \theta\right)^{1/2} + M_2 \cos \theta\right]^2}{M_2 \sin^4 \theta \left(M_2^2 - M_1^2 \sin^2 \theta\right)^{1/2}}$$

Note that:
$$\sigma_R \propto \frac{Z_1^2 Z_2}{E^2}$$

Sensitivity increases with

- increasing Z₁
- increasing Z₂
- decreasing E

Shielding by electron clouds gets important at

- low energies
- low scattering angles
- high Z_2

Shielding is taken into account by a shielding factor $F(E, \theta)$

 $\sigma(E,\theta) = F(E,\theta) \,\sigma_{R}(E,\theta)$

 $F(E, \theta)$ close to unity

 $F(E, \theta)$ is obtained by solving the scattering equations for a shielded interatomic potential:

$$V(r) = \frac{Z_1 Z_2 e^2}{r} \varphi(r / a)$$

 φ : Screening function

Use Thomas-Fermi or Lenz-Jenssen screening function

a: Screening radius $a = 0.885a_0 (Z_1^{2/3} + Z_2^{2/3})^{-1/2}$

 a_0 : Bohr radius

Shielded Rutherford Cross Section (2)

For all θ : Andersen et al. (1980)

Non-Rutherford Cross Section

Cross section becomes non-Rutherford if nuclear forces get important

- high energies
- high scattering angles
- low Z_2

Energy at which the cross section deviates by > 4% from Rutherford at $160^{\circ} \le \theta \le 180^{\circ}$ Bozoian (1991) ¹H: E^{NR}_{Lab} = 0.12 Z₂ - 0.5 [MeV]

⁴He: $E^{NR}_{Lab} = 0.25 Z_2 + 0.4$ [MeV]

Linear Fit to experimental values (¹H, ⁴He) or optical model calculations (⁷Li)

Accurate within ± 0.5 MeV

J.R. Tesmer and M. Nastasi, Handbook of Modern Ion Beam Materials Analysis, MRS, 1995

- History
- Scattering geometry and kinematics
- Rutherford cross section and limitations
- RBS spectra from thin and thick films
- Stopping power and energy loss
- Detector resolution
- Energy loss straggling
- Cross sections from selected light elements
 - incident ¹H
 - incident ⁴He

Convolution with experimental energy resolution Assume Gaussian energy resolution function f(x) with standard deviation w

RBS-Spectrum of a thin layer (2)

$$f(x) = \frac{1}{\sqrt{2\pi}w} e^{-\frac{(x-x_0)^2}{2w^2}}$$

Count density function $n(E) = \frac{Q}{\sqrt{2\pi}w}e^{-\frac{(E-KE_0)^2}{2w^2}}$

Counts
$$N_i$$
 in channel i $N_i = \int_{E_i^{Low}}^{E_i^{High}} n(E) dI$

RBS-Spectrum of a thick layer

- Target is divided into thin sublayers ("slabs")
- Calculate backscattering from front and back side of each sublayer taking energy loss into account Energy at front side $E_1 = E_0 - \Delta E_{in}$

Starting energy from front side $E_1 = E_0 - \Delta E_{10}$ Starting energy from front side $E_1' = K E_1$ Energy at surface $E_1^{out} = E_1' - \Delta E_1^{out}$ Energy at back side $E_2 = E_1 - \Delta E$

Starting energy from back side $E_2' = K E_2$ Energy at surface $E_2^{out} = E_2' - \Delta E_2^{out}$

For each isotope of each element in sublayer
 ⇒ "Brick"

RBS-Spectrum of a thick layer (2)

Area Q of the brick:

$$Q = N_0 \Omega \sigma(E) \frac{\Delta x}{\cos \alpha}$$

Q: Number of counts N_0 : Number of incident particles Ω : Detector solid angle $\sigma(E)$: Differential scattering cross section Δx : Thickness of sublayer (in Atoms/cm²) α : Angle of incidence

How to determine $\sigma(E)$?

- Mean energy approximation: Use $\sigma(\langle E \rangle)$, with $\langle E \rangle = E_1 - \Delta E/2$
- Mean cross section <_σ>:

$$<\sigma>=\frac{\int\limits_{E_2}^{E_1}\sigma(E)dE}{E_1-E_2}$$

 \Rightarrow More accurate, but time consuming

RBS-Spectrum of a thick layer (3)

Shape of the brick:

- Height of high energy side $\propto \sigma(E_1)$
- Height of low energy side $\propto \sigma(E_2)$
- use linear interpolation

Better approximations:

- Height of high energy side $\propto \sigma(E_1)/S_{eff}(E_1)$
- Height of low energy side $\propto \sigma(E_2)/S_{eff}(E_2)$
- S_{eff}: Effective stopping power, taking stopping on incident and exit path into account
- use quadratic interpolation with additional point <E>

RBS-Spectrum of a thick layer (4)

RBS-Spectrum of a thick layer: Example

IPP

RBS-Spectra: Example (1)

Nb: 1.0×10^{17} at/cm² Co: 2.2×10^{17} at/cm²

M. Mayer et al., Nucl. Instr. Meth. B190 (2002) 405

IPP

- History
- Scattering geometry and kinematics
- Rutherford cross section and limitations
- RBS spectra from thin and thick films
- Stopping power and energy loss
- Detector resolution
- Energy loss straggling
- Cross sections from selected light elements
 - incident ¹H
 - incident ⁴He

Stopping Power

⁴He in Ni

Electronic stopping power:

- Andersen, Ziegler (1977):
 - H, He in all elements
- Ziegler, Biersack, Littmarck (1985):
 All ions in all elements
- Several SRIM-versions since then
- Additional work by Kalbitzer, Paul, ...
- Accuracy: 5% for H, He
 10% for heavy ions

• Nuclear stopping power:

- Only important for heavy ions or low energies
- Ziegler, Biersack, Littmarck (1985):
 - All ions in all elements using ZBL potential

J.F. Ziegler, Helium - Stopping Powers and Ranges in All Elements, Vol. 4, Pergamon Press, 1977

Stopping Power (2)

Stopping in compounds:

consider compound $A_m B_n$, with m + n = 1

S_A is stopping power in element A

 S_B is stopping power in element B

What is stopping power S_{AB} in compound?

Bragg's rule (Bragg and Kleeman, 1905):

 $S_{AB} = m S_A + n S_B$

Bragg's rule is accurate in:

Metal alloys

Bragg's rule is inaccurate (up to 20%) in:

- Hydrocarbons
- Oxides
- Nitrides

• ...

Other models for compounds

- Hydrocarbons:
 Cores-and-Bonds (CAB) model
 Ziegler, Manoyan (1988)
 Contributions of atomic cores
 and chemical bonds between atoms
- Large number of experimental data, especially for hydrocarbons, plastics, ...

Evaluation of Energy Loss

Question: Energy E(x) in depth x?

 \Rightarrow Taylor expansion of E(x) at x = 0:

$$E(x) = E(0) + x \frac{dE}{dx}\Big|_{x=0} + \frac{1}{2} x^2 \frac{d^2 E}{dx^2}\Big|_{x=0} + \frac{1}{6} x^3 \frac{d^3 E}{dx^3}\Big|_{x=0} + \dots$$
$$\frac{dE}{dx} = -S$$
S: Stopping points

S: Stopping power

$$\frac{d^{2}E}{dx^{2}} = \frac{d}{dx}(-S) = -\frac{dS}{dE}\frac{dE}{dx} = S'S$$

$$\frac{d^{3}E}{dx^{x}} = \frac{d}{dx}(S'S) = \frac{dS'}{dx}S + S'\frac{dS}{dx} = -S''S^{2} - S'^{2}S$$

$$\Rightarrow E(x) = E_0 - xS + \frac{1}{2}x^2SS' - \frac{1}{6}x^3(S''S^2 + S'^2S) + \dots$$

S, S', S'' evaluated at x = 0

3 MeV ⁴He in Pt

L.R. Doolittle, Nucl. Instr. Meth. B9 (1985) 344

- History
- Scattering geometry and kinematics
- Rutherford cross section and limitations
- RBS spectra from thin and thick films
- Stopping power and energy loss
- Detector resolution
- Energy loss straggling
- Cross sections from selected light elements
 - incident ¹H
 - incident ⁴He

Silicon Detector Resolution

Principle of operation:

- Creation of electron-hole pairs by charged particles
- Separation of electron-hole pairs by high voltage V
 - \Rightarrow Number of electron-hole pairs \propto Particle energy
 - \Rightarrow Charge pulse \propto Particle energy

Limited energy resolution due to:

- Statistical fluctuations in energy transfer to electrons and phonons
- Statistical fluctuations in annihilation of electron-hole pairs

Additional energy broadening due to:

- Preamplifier noise
- Other electronic noise

Silicon Detector Resolution (2)

Si Detector Resolution for Heavy Ions Typical values (FWHM): • H 2 MeV: 10 keV Shown are Particle Names 000 He 2 MeV: 12 keV Detector Resolution (keV) Li 5 MeV: 20 keV Ne С 8 В Ad-hoc fit to experimental data: He FWHM resolution (keV) Н o Ñ $= C_1 (Z_1)^{C2} (\ln E_{\rm keV})^{C3} - C_4 (Z_1)^{C5} / (\ln E_{\rm keV})^{C6}$ $C_n = 0.0999288, 1.1871, 1.94699, 0.18, 2.70004,$ 0.1 Particle Energy (MeV) 100 9.29965 J.F. Ziegler, Nucl. Instr. Meth. B136-138 (1998) 141

Better energy resolution for heavy ions can be obtained by:

- Electrostatic analyser (Disadva
- Magnetic analyser
- Time-of-flight

- (Disadvantage: large)
- (Disadvantage: large)
 - (Disadvantage: length, small solid angle)

- History
- Scattering geometry and kinematics
- Rutherford cross section and limitations
- RBS spectra from thin and thick films
- Stopping power and energy loss
- Detector resolution
- Energy loss straggling
- Cross sections from selected light elements
 - incident ¹H
 - incident ⁴He

Slowing down of ions in matter is accompanied by a spread of beam energy

\Rightarrow energy straggling

- Electronic energy loss straggling due to statistical fluctuations in the transfer of energy to electrons
- Nuclear energy loss straggling due to statistical fluctuations in the nuclear energy loss
- Geometrical straggling due to finite detector solid angle and finite beam spot size
- Multiple small angle scattering
- Surface and interlayer roughness

Due to statistical fluctuations in the transfer of energy to electrons

 \Rightarrow statistical fluctuations in energy loss

Energy after penetrating a layer Δx : <E> = E₀ - S Δx

- <E> mean energy
 - S stopping power

\Rightarrow only applicable for mean energy of many particles

	•—
	_ ••

- / -

Electronic Energy Loss Straggling (2)

Shape of the energy distribution?

$\Delta E/E_0$		
< 10%	Vavilov theory	Low number of ion-electron collisions Non-Gaussian
10% – 20%	Bohr theory	Large number of ion-electron collisions Gaussian
20% – 50%	Symon theory	Non-stochastic broadening due to stopping Almost Gaussian
50% – 90%	Payne, Tschalär theory	Energy below stopping power maximum Non stochastic squeezing due to stopping Non-Gaussian
		INCIDENT ION
		SAMPLE -Depth x1 Vavilov
		Gaussian Depth x2
: Mover		1 Depth x ₃

Vavilov Theory

Vavilov 1957

P.V. Vavilov, Soviet Physics J.E.T.P. 5 (1957) 749

Valid for small energy losses

 \Rightarrow Low number of ion-electron collisions

 \Rightarrow Non-Gaussian energy distribution with tail towards low energies

Mostly replaced by Bohr's theory and approximated by Gaussian distribution

- ⇒ Total energy resolution near the surface usually dominated by detector resolution due to small energy loss straggling
- \Rightarrow Only necessary in high resolution experiments

Bohr Theory

Bohr 1948

N. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 18 (1948)

Valid for intermediate energy losses

- \Rightarrow Large number of ion-electron collisions
- \Rightarrow Gaussian energy distribution

Approximations in Bohr's theory:

- lons penetrating a gas of free electrons
- lons are fully ionised
- Ion velocity >> electron velocity ⇒ stationary electrons

• Stopping power effects are neglected

$$\sigma_{Bohr}^2 = 0.26 Z_1^2 Z_2 \Delta x$$

- σ^2_{Bohr} variance of the Gaussian distribution [keV²]
- Δx depth [10¹⁸ atoms/cm²]
- Z₁ atomic number of incident ions
- Z₂ atomic number of target atoms

Improvements to Bohr Theory

Chu 1977

J.W. Mayer, E. Rimini, Ion Beam Handbook for Material Analysis, 1977

Approximations in Chu's theory:

- Binding of electrons is taken into account
- Hartree-Fock electron distribution
- Stopping power effects are neglected

$$\sigma_{Chu}^2 = H\left(\frac{E}{M_1}, Z_2\right)\sigma_{Bohr}^2$$

⇒ Smaller straggling than Bohr

Additive rule proposed by Chu 1977

J.W. Mayer, E. Rimini, Ion Beam Handbook for Material Analysis, 1977

consider compound $A_m B_n$, with m + n = 1 σ_A^2 is variance of straggling in element A σ_B^2 is variance of straggling in element B

 $\sigma_{AB}{}^2 = \sigma_A{}^2 + \sigma_B{}^2$

σ_A²Straggling in element A in a layer m Δx σ_B²Straggling in element B in a layer n Δx

Propagation of Straggling in Thick Layers

Consider particles with energy distribution

- Energy above stopping power maximum
 higher energetic particles ⇒ smaller stopping
 ⇒ non-stochastic broadening
- Energy below stopping power maximum higher energetic particles ⇒ larger stopping ⇒ non-stochastic squeezing

C. Tschalär, Nucl. Instr. Meth. **61** (1968) 141 M.G. Payne, Phys. Rev. **185** (1969) 611

 $\sigma_f^2 = \left(\frac{S_f}{S_i}\right)^2 \sigma_i^2 + \sigma_{Chu}^2$

Multiple and Plural Scattering

etc.

Multiple small angle deflections

- Path length differences on ingoing and outgoing paths
 ⇒ energy spread
- Spread in scattering angle
 - \Rightarrow energy spread of starting particles
- P. Sigmund and K. Winterbon, Nucl. Instr. Meth. 119 (1974) 541
- E. Szilagy et al., Nucl. Instr. Meth. **B100** (1995) 103

Large angle deflections (Plural scattering)

- For example: Background below high-Z layers
- W. Eckstein and M. Mayer, Nucl. Instr. Meth. B153 (1999) 337

500 keV ⁴He, 100 nm Au on Si, θ = 165°

Energy (keV)

- History
- Scattering geometry and kinematics
- Rutherford cross section and limitations
- RBS spectra from thin and thick films
- Stopping power and energy loss
- Detector resolution
- Energy loss straggling
- Cross sections from selected light elements
 - incident ¹H
 - incident ⁴He

Thresholds for non-Rutherford scattering [MeV]• For ¹H: $E \approx 0.12 Z_2 - 0.5$ • For ⁴He: $E \approx 0.25 Z_2 + 0.4$ Z_2 for Non-Rutherford scattering1H4He1 MeV1232 MeV216

J.R. Tesmer and M. Nastasi, Handbook of Modern Ion Beam Materials Analysis, MRS, 1995

Non-Rutherford Scattering: Example

1.5 MeV H, θ = 165° 6x10¹⁷ at/cm² Be, C, O on Si

M. Mayer, unpublished

Typical problem for light elements: Overlap with thick layers of heavier elements \Rightarrow High cross sections wishful

© Matej Mayer 2003

- Many non-Rutherford scattering cross sections were measured in the years 1950 - 1970 for nuclear physics research
 ⇒ goal was nuclear physics, not materials analysis
 ⇒ most data published only in graphical form
- Since 1980 to now non-Rutherford scattering cross sections are measured for RBS analysis
 - \Rightarrow some data published in graphical form and tabular form
 - \Rightarrow for typical angles of RBS
- Data compilation by R.A. Jarjis, Nuclear Cross Section Data for Surface Analysis, University of Manchester, UK 1979
 2 volumes, 600 pages → unpublished still the most comprehensive compilation of cross section data (RBS + NRA)

- Data compilation by R.P. Cox et al. for J.R. Tesmer and M. Nastasi, Handbook of Modern Ion Beam Analysis, MRS 1995
 Digitised (or tabulated) data from original publications in RTR file format
- These data are available at SigmaBase: ibaserver.physics.isu.edu/sigmabase/ or www.mfa.kfki.hu/sigmabase/ Also included in the computer code SIMNRA
- Data compilation by M. Mayer since 1996
 Digitised (or tabulated) data from original publications (or authors) in R33 file format
 Most of these data are available at SigmaBase
 Included in the computer code SIMNRA

- History
- Scattering geometry and kinematics
- Rutherford cross section and limitations
- RBS spectra from thin and thick films
- Stopping power and energy loss
- Detector resolution
- Energy loss straggling
- Cross sections from selected light elements
 - incident ¹H
 - incident ⁴He

$^{12}C(p,p)^{12}C$

High to very high cross section above 500 keV

Typical energies for RBS:

- 1500 or 2500 keV
 - \Rightarrow smooth cross section
 - \Rightarrow easy data evaluation, thick layers
- ≈ 1740 keV
 - \Rightarrow maximum sensitivity

SIMNRA Home Page http://www.rzg.mpg.de/~mam

$^{14}N(p,p)^{14}N$

¹⁴N(p,p)¹⁴N High to very high cross section 80 Ramos 178° but: large scatter of data 70 Cross Section [Ratio to Rutherford] Rauhala 170° Guohua 170° Olness 167° 60 Lambert 165° 50 40 30 20 10 0 2500 3500 4000 500 1000 1500 2000 3000 E [keV]

SIMNRA Home Page http://www.rzg.mpg.de/~mam

¹⁶O(p,p)¹⁶O

High to very high cross section

Typical energies for RBS:

- 1500 or 2500 keV
 - \Rightarrow smooth cross section
 - \Rightarrow together with C
- \approx 3470 keV
 - \Rightarrow maximum sensitivity

SIMNRA Home Page http://www.rzg.mpg.de/~mam

²⁷Al(p,p)²⁷Al

Small cross section

Many resonances

 \Rightarrow complicated spectrum

Not useful for RBS with protons

SIMNRA Home Page http://www.rzg.mpg.de/~mam

Si(p,p)Si

Small cross section

- \Rightarrow advantageous if used as substrate
- Typical energies for RBS:
- 1500 1600 keV
- \Rightarrow small background from substrate
- 1670 or 2090 keV
 - \Rightarrow maximum sensitivity

SIMNRA Home Page http://www.rzg.mpg.de/~mam

- History
- Scattering geometry and kinematics
- Rutherford cross section and limitations
- RBS spectra from thin and thick films
- Stopping power and energy loss
- Detector resolution
- Energy loss straggling
- Cross sections from selected light elements
 - incident ¹H
 - incident ⁴He

¹²C(α,α)¹²C • Small cross section at E < 3000 keV ⇒ not suitable for RBS

- High and smooth cross section around 4000 keV
- Maximum sensitivity at 4270 keV

J.R. Tesmer and M. Nastasi, Handbook of Modern Ion Beam Materials Analysis, MRS, 1995

- Small cross section at E < 3000 keV
 - \Rightarrow not suitable for RBS
- Several useful resonances at higher energies

J.R. Tesmer and M. Nastasi, Handbook of Modern Ion Beam Materials Analysis, MRS, 1995

$$16O(\alpha,\alpha)^{16}O$$
• Widely used resonance at 3040 keV
$$\int_{0}^{0} \int_{0}^{0} \int$$

J.R. Tesmer and M. Nastasi, Handbook of Modern Ion Beam Materials Analysis, MRS, 1995

J.R. Tesmer and M. Nastasi, Handbook of Modern Ion Beam Materials Analysis, MRS, 1995

Computer Simulation Codes

	Program	Author	Since
	RUMP	M. Thompson Cornell University USA	1983
Spectrum _ simulator	RBX	E. Kótai Research Institute for Particle and Nuclear Physics Hungary	1985
	_ SIMNRA	M. Mayer Max-Planck-Institute for Plasma Physics Germany	1996
resolution	- DEPTH	E. Szilágyi Research Institute for Particle and Nuclear Physics Hungary	1994
profile	- WINDF	N. Barradas Technological and Nuclear Institute Sacavem Portugal	1997