the

abdus salam international centre for theoretical physics

SMR.1508-9

SUMMER SCHOOL ON PARTICLE PHYSICS

16 June - 4 July 2003

A NEW CHARMING AND STRANGE MESON IN BaBar

Special Lecture
F. FERRONI

Universita' di Roma "La Sapienza"
Roma
ITALY

A new charming and strange meson in BaBar

Fernando Ferroni
Universita' di Roma 'La Sapienza'

Outline

- BaBar and PEPII
- CP physics at BaBar
- Charm bound states
- Ds(2317) et al.
- Theoretical excitation
- Conclusions

BaBar Mission

- Study CP violation in B sector
- Study B rare decays (b->s $\gamma, b->s I l, b->d \gamma . .$.
- Make use of the high luminosity for studying charm and τ physics
- Be ready for New Physics

CP violation and Standard Model

- CP violation generated by complex coupling constant
- Quark mixing matrix

Cabibbo Kobayashi Maskawa matrix $\quad \lambda=\sin \left(\theta_{\text {Cabibbo }}\right)$
$V=\left(\begin{array}{lll}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right) \quad V \cong\left[\begin{array}{ccc}1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\ -\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\ A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1\end{array}\right]$

- 3 quark generations \rightarrow one non-removable phase

The 'Triangles'

(a)

- CKM matrix is unitary B_{d} system
$V_{u d} V_{u b}{ }^{*}+V_{c d} V_{c b}{ }^{*}+V_{t d} V_{t b}{ }^{*}=0 \Rightarrow$
phases \rightarrow angles α, β, and γ (OK, I know, ϕ_{2}, ϕ_{1} and ϕ_{3})

CP violation proportional to triangle area:
measure sides and angles independently

CP violation in B system

> CPV through interference of decay amplitudes
> CPV through interference of mixing diagram
> CPV through interference between mixing and decay amplitudes

Directly related to CKM angles for single decay amplitude

The Golden Channel

$C P$ Eigenstate:

$$
\eta_{C P}=-1
$$

CP parameter

$$
\begin{aligned}
& \operatorname{Im} \lambda_{b \rightarrow c \overline{c s}}=\eta_{f_{c p}} \operatorname{Im}\left\{\frac{V_{c b} V_{c s}^{*}}{V_{c b}^{*} V_{c s}} \times \frac{V_{+b} V_{+d}^{*}}{V_{+b}^{*} V_{t d}} \times \frac{V_{c d}^{*} V_{c s}}{V_{c d} V_{c s}^{*}}\right\}=\eta_{f_{c P}} \operatorname{Im} \frac{V_{+d}^{*}}{V_{t d}}=\eta_{f_{c P}} \sin 2 \beta \\
& \text { Quark } B^{\circ} \quad K^{\circ} \\
& \text { subprocess mixing mixing }
\end{aligned}
$$

$$
A_{f_{C P}}(t)=\frac{\Gamma\left(\bar{B}_{\text {phys }}^{0}(t) \rightarrow f_{C P}\right)-\Gamma\left(B_{\text {phys }}^{0}(t) \rightarrow f_{C P}\right)}{\Gamma\left(\bar{B}_{\text {phys }}^{0}(t) \rightarrow f_{C P}\right)+\Gamma\left(B_{\text {phys }}^{0}(t) \rightarrow f_{C P}\right)}=-\operatorname{Im} \lambda_{t_{C P}} \sin \Delta m_{d} t
$$

Time dependent CP asymmetries

$a_{f C P}(\Delta t)=\frac{N\left[\bar{B}_{p \text { phs }}^{0} \rightarrow f_{C P}(\Delta t)\right]-N\left[B_{p h y s}^{0} \rightarrow f_{C P}(\Delta t)\right]}{N\left[\bar{B}_{p h y s}^{0} \rightarrow f_{C P}(\Delta t)\right]+N\left[B_{p h y s}^{0} \rightarrow f_{C P}(\Delta t)\right]}$
F. Ferroni- ICTP

Neutral B Time Evolution

$L=1 B^{\circ} \overline{B^{\circ}}$ system requires antisymmetric initial-state wave function in $\gamma(45)$ frame:

$$
\begin{aligned}
S\left(t_{f}, t_{b}\right)= & 1 / \sqrt{2}\left[B_{p h y s}^{0}\left(t_{f}, \theta, \varphi\right) \bar{B}_{p h y s}^{0}\left(t_{b}, \pi-\theta, \varphi+\pi\right)\right. \\
& \left.-\bar{B}_{p h y s}^{0}\left(t_{f}, \theta, \varphi\right) B_{p h y s}^{0}\left(t_{b}, \pi-\theta, \varphi+\pi\right)\right] \sin \theta
\end{aligned}
$$

(θ, φ) are wrt e^{-}beam direction;
(f, b) are the forward (backward) going B meson, with ($\theta_{f}<\pi / 2$) and $t_{f}=t_{b}$ until one B meson decays Consequently $B^{\circ} \overline{B^{O}}$ evolves coherently until one B mesons decays

- At any given time, until one of the B mesons decays, there is exactly one B^{0} and one \bar{B}^{0} including at time $\Delta t=t_{C P}-t_{\text {tag }}=0$
- CP/Mixing oscillation clock only starts ticking at the time of the first decay, relevant time parameter is Δt
- Half of the time the CP eigenstate B decays first $(\Delta t<0)$

Neutral B Time Evolution

Evolution for $B^{0}\left(\bar{B}^{0}\right)$ state at $t_{C P}=0$

For coherent source, integrated asymmetry is zero: must do a time-dependent analysis

$$
\int_{-\infty}^{+\infty} F(\Delta t) d \Delta t=\int_{-\infty}^{+\infty} F(\Delta t) d \Delta t
$$

Experimental Technique for B -

factories

Requires a new type of

Symmetric (CESR)

Asymmetric (boosted):

F. Ferroni- ICTP

The crucial parameter

At $Y(4 S)$ center of mass energy in a symmetric collider : $Y(4 S)->B^{0} \bar{B}^{0}$ and $p\left(B^{0}\right) \sim 300 \mathrm{MeV}$. Given the 1.6ps lifetime, $\beta \gamma c \tau \sim 3 * 160 * 0.3 / 5 \sim 30 \mu$ Much beyond the possibility of vertexing capability of a Silicon Vertex Tracker. Not to mention the confusion of which (B) is which.
If you collide $9 \mathrm{GeV} e^{-}$on $3 \mathrm{GeV} e^{+}$you have the same $C M$ energy with some boost $\beta \gamma=\left(\mathrm{E}_{e^{-}}-\mathrm{E}_{e^{+}}\right) / \mathrm{E}_{C M}$ $\sim 0.5-0.6$ and the separation becomes $\beta \gamma c \tau \sim 250 \mu$. Moreover you can assignntracks to each B

The B-factory output

BaBar and PEP-II @ SLAC

PEP II

High luminosity asymmetric B factory @ $\Upsilon(4 \mathbf{S})$

$9 \mathrm{GeV}^{-}$on $3.1 \mathrm{GeV}^{+}$
 $\Upsilon(4 S)$ boost: $\quad<\beta \gamma>\approx 0.55$

BaBar result on $\sin 2 \beta$

2641 tagged events (78\% purity; 66\% tagged)

$\sin 2 \beta=0.741 \pm 0.067 \pm 0.034$

Averaging over the world

compare-constrain

June 18, 2003
F. Ferroni- ICTP

Description of charmed bound

 states (c \bar{q})

A fair description is an Hydrogen like bound state with some striking difference, like the the need of incorporating in the potential both the asymptotic freedom and the confinment

State classification (I)

In analogy with H atom the most convenient classification of states is given in terms of:
$j=1+s_{1} \quad$ (l orbital angular momentum; $s_{1}=$ light quark spin)
(j is conserved in the limit that m_{c} goes to ∞)

Example: for P-wave states, $j=3 / 2$ and $1 / 2$ are possible (spin-orbit separation)

However one shall take into account the hyperfine structure (spin-orbit coupling of heavy quark, spin-spin........)

State classification (II)

This way the degeneracy is further reduced.
The quantity conserved is $\mathrm{J}=\mathrm{j}+\mathrm{s}_{2}$
(remember $\mathrm{j}=1+\mathrm{s}_{1}$ and $\mathrm{s}_{2}=$ heavy quark spin)
Example: for P -wave states where $\mathrm{j}=3 / 2$ and $1 / 2$ are possible you can have $\mathrm{J}=2,0$ (and since $\mathrm{I}=1$; $\mathrm{S}=\mathrm{s}_{1}+\mathrm{s}_{2}=1$) spin triple \dagger states or $J=1$ (with $I=1 ; S=s_{1}+s_{2}=1,0$) spin singlet or triplet states.

One last thing: Parity (P) is defined as $P=(-1)^{L+1}$

Zoology

The particles will be classified therefore according to:
${ }^{2 S+1} L_{J}$ and J^{P} plus a nickname that identifies the entire family.

Back to our practical case, the mesons formed by a cs quark pair will be all called D_{s}.
The ground state will be $(I=0, s=0)$ therefore ${ }^{1} S_{0} 0^{-}\left(D_{s}\right)$ and the other $(l=0, s=1)$ will be classified as ${ }^{3} S_{1} 1^{-}\left(D^{*}{ }_{s}\right)$

The P -wave states

$$
\begin{aligned}
& { }^{2 S+1} L_{J} \quad \text { and } \quad J^{P} \\
& l=1, S=0:{ }^{1} P_{1} 1^{+} \\
& l=1, S=1:{ }^{3} P_{2} 2^{+} \\
& l=1, S=1:{ }^{3} P_{0} 0^{+} \\
& l=1, S=1:{ }^{3} P_{1} 1^{+}
\end{aligned}
$$

An important role will be still played by $\mathrm{j}=1+\mathrm{s}_{1}$ which is almost conserved. The ground states have $j=1 / 2$ making difficult the decay of the P-wave

Potential model (orthodoxy)

$$
\mathcal{H}=\mathcal{H}^{(0)}+\frac{1}{m_{h}} \mathcal{H}^{(1)}+\frac{1}{m_{h}^{2}} \mathcal{H}^{(2)}+\ldots
$$

Total wavefunction

- n, the number associated with the radial excitations:
- ℓ, the orbital angular momentum;
- j, the total angular momentum of the light quark;
- m, the component of j along the \hat{y} axis;
- J, the total angular momentym of the system;
- M, the component of y along the \hat{z} axis;

Clebsch-Gordan

- S, the spin of the heavy quark along the \hat{y} axis;

M. Di Pierro and E. Eichten
hep-ph/0104208

The potential

$$
\begin{aligned}
& \mathcal{H}^{(0)}=\gamma^{0}\left(-i \not \partial+m_{q}\right)+V(r) \\
& V(r)=M_{h}+\gamma^{0} V_{s}(r)+V_{v}(r) \\
& V \sim V_{v} \sim 1 / r \quad \text { Asymptotic freedom } \\
& V_{v}(r)=-\frac{4}{3} \int|\Phi(x)|^{2} \frac{\alpha_{s}}{|\mathbf{r}-\mathbf{x}|} \mathrm{d}^{3} x=-\frac{4}{3} \frac{\alpha_{s}}{r} \operatorname{erf}(\lambda r)
\end{aligned}
$$

$$
V \sim V_{s} \sim r ; V_{s}(r)=b r+c \quad \text { confinement }
$$

to make the story short

$H\left(n^{j} L_{J}\right)$	$m_{\text {exp. }}$	E^{0}	$E^{\text {phys. }}$	$\phi(\%)$
$D_{s}\left(1^{\frac{1}{2}} S_{0}\right)$	1.969	1.988	1.965	
$D_{s}\left(1^{\frac{1}{2}} S_{1}\right)$	2.112	1.988	2.113	
$D_{s}\left(1^{\frac{1}{2}} P_{0}\right)$		2.374	2.487	
$D_{s}\left(1^{\frac{3}{2}} P_{1}\right)$	2.535	2.353	2.535	-11.62
$D_{s}\left(1^{\frac{3}{2}} P_{2}\right)$	2.573	2.353	2.581	
$D_{s}\left(1^{\frac{1}{2}} P_{1}\right)$		2.374	2.605	11.62

F. Ferroni- ICTP

graphically (till a month ago)

if the experimentalists were to blindly believe theoreticians, the game would be over and no new particles could have been observed

indeed the first missing state

Surprise...........!!!!!!!!!!!

Back to reality: a new particle is borne

Step 1: Find a D_{s}
Step 2) Find a π^{0}
Step 3) Make the invariant mass $D_{s} \pi^{0}$
Step 4) according to theory: observe nothing and go home thanks to Nature: see a bump and be happy

Law of nature: theoreticians always win. They start to write papers!

$$
D_{s}>K^{+}+K^{+} \pi^{+}
$$

Already in this simple system there are two possibilities:
$D_{s}->\Phi \pi(\Phi->K K)$ or $D_{s} \rightarrow K^{*} K\left(K^{*}->K \pi\right)$

Note please: $P \rightarrow V P$

June 18, 2003
charge conjugation implied everywhere

Experimental issues

- Separation of π from K
- Invariant mass and vertexing
- Improve signal over background making use of helicity in $\mathrm{P}->\mathrm{VP}$ decay

My only experimental pride: the

$4 \times 1.225 \mathrm{~m}$
Synthetic Fused Silica
Bars glued end-to-end
「. rerroni- ILIF

Telling a Kaon from a pion

Cleaning up using helicity angle

P-> VP followed by V->PP

expect $\cos ^{2} \theta$

June 18, 2003
F. Ferroni- ICTP

Finally the D_{s} we like

signal
sidebands (for background
studies)
F. Ferroni- ICTP

Combine D_{s} with a π^{0}

New

The threshold $m\left(K^{+} K^{-} \pi^{+} \pi^{0}\right) \mathrm{GeV} / \mathrm{c}^{2}$
behaviour
June 18, 2003
F. Ferroni- ICTP

Ds(2317)-> $D_{s} \pi^{0}$

$$
\begin{aligned}
& m=2316.8+/-0.4 \mathrm{MeV} \\
& \sigma=8.4+/-0.4 \mathrm{MeV}
\end{aligned}
$$

This is perfectly consistent with the prediction of our MonteCarlo simulation for a state essentially Zero width.
${ }_{\text {F. Ferroni- ICTP }} \sigma=\sqrt{\sigma_{\text {intrinsic }}^{2}+\sigma_{\text {exp }}^{2}}$

Any other decay mode?

F. Ferroni- ICTP

Not this one $\left(D_{s}(2317)->D_{s} \gamma\right)$

F. Ferroni- ICTP

Nor these two $\left(D_{s}(2317)->D_{s} \gamma \gamma\right)$

June 18, 2003

And not even $\left(D_{s}(2317)->D_{s} \pi^{0} \pi^{0}\right)$

$D_{s}(2317)->D_{s} \pi^{0} \gamma$ is not positive

 either

June 18, 2003

Another state exists

June 18, 2003

$$
m\left(D_{s J}^{+}(2457)\right)=2.457 \pm 0.001 G e V / c^{2}
$$

One more element (and then a break)

Although not the unique possibility the distribution of the π^{0} angle in the $D_{s}(2317)$ rest frame w.r.t. the flight direction suggests a Spin 0 state

F. Ferroni- ICTP

Summary so far

- A new cs̄ state has been discovered
- It has a mass of 2317 MeV which is in strong disagreement with the prediction of the potential models
- It is most likely a 0^{+}state of very narrow width
- There is a hint for an additional state at 2460 MeV (also narrow)

Trigger to many papers

Spin-Orbit and Tensor Forces in Heavy-quark Light-quark Mesons: Implications of the new D_s state at 2.32 GeV	R.N. Cahn, J.D. Jackson	hep-pl/0305012 May 1
Implications of a $D K$ Molecule at 2.32 GeV	T. Barnes, F.E. Close, H.J. Lipkin	hep-ph/0305025 May 2
Observed $D _s(2317)$ and tentative $D(2030)$ as the charmed cousins of the light scalar nonet	E.v. Beveren, G. Rupp	hep-ph/0305035 May 5
B Decays as Spectroscope for Charmed Four-quark States	H-Y. Cheng, W-S. Hou	hep-ph/0305038 May 5
Chiral Multiplets of Heavy-Light Mesons	W.A. Bardeen, E.J. Eichten, C.T. Hill	hep-ph/0305049 May 5
Description of the $D^{*} \mathrm{~s}(2320)$ resonance as the $D \pi$ atom	A.P. Szczepaniak	hep-ph/03050460 May 6
Using Radiative Transitions to Test the $1^{3} \mathrm{P}_{0}(\mathrm{c}$ bar (s)) Nature of the D_sJ(2317) State	S. Godfrey	hep-ph/0305122 May 12
Understanding D_sJ(2317)	P. Colangelo, F. De Fazio	hep-ph/0305140 May 13
The $D_{-} \mathrm{sJ}(2317)$: what can the Lattice say?	G.S. Bali	hep-ph/0305209 May 19
BABAR resonance as a new window of hadron physics	K. Terasaki	hep-ph/0305213 May 20

Different paths

- Revised potential model for $\left(0^{+} 1^{+}\right) c \bar{s}$ doublet hep-ph/0305012
- Dr atom
- Lattice predi ${ }^{\text {hep-ph/03050460 }}$
- Exotic DK molecule hep-ph/0305209
- Chiral simmetry hep-ph/0305049

Revised potential

Spin-Orbit and Tensor Forces in Heavy-quark Light-quark Mesons: Implications of

$$
\begin{aligned}
& \text { the New } D_{s} \text { State at } 2.32 \mathrm{GeV} \\
& \text { Robert N. Cahn and J. David Jackson } \\
& \text { Lanence Berkeley Nadional Laboratory } \\
& 1 \text { Cprlober Rd., } \\
& \text { Bertares, EA 95780] } \\
& V_{\text {quaxi-atatic }}=V+S+\left(\frac{V^{\prime}-S^{\prime}}{T}\right) \ell \cdot\left(\frac{\sigma_{1}}{4 m_{1}^{2}}+\frac{\sigma_{2}}{4 m_{2}^{2}}\right)+\left(\frac{V^{\prime}}{r}\right) \ell \cdot\left(\frac{\sigma_{1}+\sigma_{2}}{2 m_{1} m_{2}}\right) \\
& +\frac{1}{12 m_{1} m_{2}}\left(\frac{V^{\prime}}{r}-V^{\prime \prime}\right) S_{12}+\frac{1}{6 m_{1} m_{2}} \nabla^{2} V \sigma_{1} \cdot \sigma_{2}
\end{aligned}
$$

The discovery of the $D_{s, J}^{*}(2317)$ has provided an important clue to heavy-quark light-quark spectroscopy by nailing down a p-wave state with $j=1 / 2$. Puzzles remain. The anticipated discovery of the accompanying $j=1 / 2$ state with $J=1$ should add important new information, but it is not likely to resolve all the questions we have described.

June 18, 2003
F. Ferroni- IC

DK molecule

Implications of a DK Molecule at 2.32 GeV

$$
\text { T.Barnes* } \quad \text { F.E.Close }{ }^{\dagger} \quad \text { H.J.Lipkin }{ }^{\ddagger}
$$

The best studied candidates for meson-m molecules are the $f_{0}(980)$ and $a_{0}(980)$, which are wi believed to have large or perhaps dominant $\mathrm{K} \overline{\mathrm{K}}$ con nents. This sector of the quark model was studie detail by Weinstein and Isgur [11], who concluded conventional quark model forces gave rise to attract in the $\mathrm{I}=0$ and $\mathrm{I}=1 \mathrm{~K} \overline{\mathrm{~K}}$ channels that are sufficie strong to form bound states. Their conclusions regar the nature of these attractive forces may also be rele for the 2.32 GeV BaBar signal, as the $\mathrm{K} \overline{\mathrm{K}}$ and systems share several important features.

1) J^{PC} and flavor quantum numbers of an $\mathrm{L}=0 \mathrm{~h}$ pair,
2) a binding energy of at most about $50-100 \mathrm{MeV}$,
3) strong couplings to constituent channels, and
4) anomalous electromagnetic couplings relative 1 pectations for a quark model state.

summary of experimental tests

In summary: Challenges for experiment, which may help to determine the nature and dynamics of this state, include:

- A better measure of the width to see if it may be much narrower than 10 MeV ;
- A search for the mode $\mathrm{D}_{s}^{++} \pi$; the presence of $\mathrm{D}_{s}^{+} \pi$ and absence of $D_{s}^{*+} \pi$ would uniquely select $J^{P}=0^{+}$ (assuming strong or electromagnetic transitions);
- A search for the purely electromagnetic decay mode $\mathrm{D}_{s}^{+} \gamma$ (which is forbidden if the state is 0^{+}) and the E1 transition to $\mathrm{D}_{s}^{*+} \gamma$, to establish whether this partial width is markedly different from the 2 keV predicted for a $c \bar{s}$ state;
- A search for charged partners appearing in $\mathrm{D}_{3}^{+} \pi^{ \pm}$ that should exist if this is an isovector state;
- Search for the ${ }^{3} \mathrm{P}_{0} \mathrm{D}_{s}\left(0^{+}\right) c \bar{s}$ state with a mass of $\approx 2.5 \mathrm{GeV}$; mass shifts relative to the $\mathrm{D}_{\mathrm{s} .} .=1,2$ partners may help quantify the dynamics leading to a DK bound state; seek other possible narrow states below 2.36 GeV , and determine their J^{P}.

Dr atom

Description of the $D_{s}^{*}(2320)$ resonance as the $D \pi$ atom
Adam P. Szczepaniak
Physics Department and Nuclear Theory Center

Indiana University, Bloomington, Indiana 47405

strong flavor-singlet attraction between the pion and the $c \bar{s}$ mesons. Since $m_{\pi} / m_{c \bar{q}}<10 \%$ one could consider the BaBar state as a result of a pion being captured by a nonrelativistic (even static) charmed meson. Since the width of the resonance measured by $\mathrm{BaBar},(\Gamma \leqq 10 \mathrm{MeV}$) is small compared to the energy difference between nearby coupled channels, e.g. $\left|m_{D_{z}^{*}(2320)}-m_{D K}^{t r}\right|=40 \mathrm{MeV}$, channels other than the measured $D_{s} \pi$ should be unimportant.

In summary we have found that using reasonable assumptions regarding flavor-independent interactions between the pion and the charmed-strange mesons, with natural parameters it is possible to reproduce a narrow resonance in the $D \pi$ spectrum. Such states should also be present in other charge modes, e.g. $D_{s} \pi^{ \pm}$. We have also checked that our findings are insensitive to the details of a formulation, e.g. we studied the nonrelativistic F. Fi approximation and used the N / D method [6].

Lattice calculation

The $D_{s, J}^{+}(2317):$ what can the Lattice say?
Gunnar S. Bali ${ }^{+}$
Department of Physics Ef Astronowy. The University of Glasgow, Glasgow G12 8QQ, Scodand

TABLE II: The $0^{+}-0^{-}$mass splitting in the heavy-light system for two sea quarks in the static limit and in the quenched approximation, for the B and D systems in NRQCD [20] and for the D system with relativistic quarks [21]. The errors do not include uncertainties in the overall scale which we estimate to be about 5 \% for $n_{f}=2$. All numbers are in units of MeV .

	$n f=2$ n static	static	NRQCD	NRQCD	relativ.
	n	n	$h=b$	$h=c$	$h=c$
$h \bar{s}$	$468(43)$	$384(50)$	$345(55)$	$465(50)$	$495(25)$
$h \bar{d}$	$472(85)$	$299(114)$	$370(50)$	-	$465(35)$

Relativistic split (495) much larger than quenched static (384) suggesting an equivalent correction to unquenched static. It would give a $0^{+}-0^{-}$split of 600 MeV -> Ds(2.57(0.11)).

The quenched NRQCD or relativistic Model would give $\sim 2.47 \mathrm{GeV}$

None will give 2.317 !!!!!!

The chiral simmetry

Chiral Multiplets of Heavy-Light Mesons

William A. Bardeen, Estia J. Eichten, Christopher T. Hill*
Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510, USA

The spinweighted center of mass of any ($0^{+}, 1^{+}$) multiplet will have a universal $\Delta M\left(m_{Q}\right)$ above the corresponding spinweighted groundstate in all heavy-light systems. This is weakly dependent upon m_{Q}, and approaches a universal value $\Delta M(\infty)$ in the heavy-quark symmetry limit limit, $m Q \rightarrow \infty$.

The observed $D_{g}\left(0^{+}\right)$resonance in BABAR measures $\Delta M\left(m_{c}\right) . \quad \Delta M\left(m_{c}\right)$ is therefore determined by the mass difference of the $D_{s}\left(0^{+}, 2317\right)$ and the groundstate $D_{s}\left(0^{-}, 1969\right)$ to be:

$$
\begin{equation*}
\Delta M\left(m_{c}\right)=349 \mathrm{MeV} \tag{23}
\end{equation*}
$$

A predicted value of $\Delta M(\infty) \approx 338 \mathrm{MeV}$ was obtained in [4] from a fit to the HL chiral constituent-quark model.

June 18, 2003
F. Ferroni- ICTP

looks predictive

Using $\Delta M\left(m_{c}\right)$ we predict the $D_{s}\left(1^{+}\right)$mass:

$$
M\left(D_{s}\left(1^{+}\right)\right)=(2460) \mathrm{MeV}
$$

Also explain the narrow width

Understanding $D_{s J}(2317)$
P. Colangelo and F. De Fazio
isospin violating transition $D_{s 0} \rightarrow D_{s} \pi^{0}$
Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy

$$
\begin{aligned}
& \mathcal{L}_{\text {mixing }}=\frac{\tilde{H}}{2} \frac{m_{d}-m_{u}}{\sqrt{3}} \pi^{0} \eta \\
& \mathcal{M}=\left(\begin{array}{ccc}
\sqrt{\frac{1}{2}} \pi^{0}+\sqrt{\frac{1}{6}} \eta & \pi^{+} & K^{+} \\
\pi^{-} & -\sqrt{\frac{1}{2}} \pi^{0}+\sqrt{\frac{1}{6}} \eta & K^{0} \\
K^{-} & \bar{K}^{0} & -\sqrt{\frac{2}{3}} \eta
\end{array}\right) \\
& \left.\Gamma\left(D_{s 0} \rightarrow D_{s} \pi^{0}\right)=\frac{1}{16 \pi} \frac{h^{2}}{f^{2}} \frac{M_{D_{s}}}{M_{D_{s 0}}} \frac{m_{d}-m_{u}}{m_{s}-\frac{\pi \sigma_{d}+m_{u}}{2}}\right)^{2}\left(1+\frac{m_{\pi^{0}}^{2}}{\left|\vec{p}_{\pi^{0}}\right|^{2}}\right)\left|\vec{p}_{\pi^{0}}\right|^{3}
\end{aligned}
$$

take the challenge and change experiment

This is a different technique.
Take a BB event. Look for B decaying as $B \rightarrow D^{(*)}{ }_{s} D$ and study the $D^{(*)}{ }_{s}$

Here they demonstrate that
$D_{s}(2460)->D^{*}{ }_{s} \pi^{0}$
occurs

Fully uncover $D_{s}(2460)$

Here they demonstrate that
$D_{s}(2460)->D_{s} \gamma$ occurs

Since D_{s} is a spin 0 state, this decay positively shows that
$D_{s}(2460)$ is not a spin 0 particle

in fair agreement with predictions

Summary of $B \rightarrow D D_{s J}^{*}$ (Belle, preliminary)

B decay channel	Yield (ΔE)	$B\left(10^{-4}\right)$
$D D_{s, J}^{*}(2320), D_{s, I}^{*}(2320) \rightarrow D_{s} \pi^{0}$	$18.8{ }_{-4.8}^{+5.4}$	$9.9-2.5 \pm 3.0$
$D D_{s, t}^{*}(2320), D_{s, ~}^{*}(2320) \rightarrow D_{s}^{*} \gamma$	$<12-7$	<8.7
$D D_{s, J}^{*}(2460), D_{s, ~}^{*}(2460) \rightarrow D_{s}^{*} \pi^{0}$	$16.7{ }_{-4.1}^{+4}$	$25.8-6.0 \pm 7.7$
$D D_{s_{s} J}^{*}(2460), D_{s_{J} J}^{*}(2460) \rightarrow D_{s} \gamma$	$21.8{ }_{-5.1}^{+5.8}$	$5.3{ }_{-1.3}^{+1.4} \pm 1.6$
$D D_{s, J}^{*}(2460), D_{s, J}^{*}(2460) \rightarrow D_{s}^{*} \gamma$	<10.6	<6.1
$D D_{s, J}^{*}(2460), D_{s, J}^{*}(2460) \rightarrow D_{s} \pi^{0}$	<3.5	<1.4
$D D_{s, T}^{*}(2460), D_{s, l}^{*}(2460) \rightarrow D_{s i} \pi^{+} \pi^{-}$	<3.5	<1.1

$$
\frac{B\left(D_{s,}^{*}(2460) \rightarrow D_{s y} \gamma\right)}{B\left(D_{s J}^{*}(2460) \rightarrow D_{s}^{*} \pi^{2}\right)}=0.21 \pm 0.07 \pm 0.03
$$

\rightarrow consistent with theoretical prediction (W.A.Bardeen, E.J.Eichten and C.T.Hill (hep-ph/0305049))

J^{P} assignement of $D_{s}(2460)$

In the $B->D_{s}(2460) D$ decay (followed by $\left.D_{s}(2460)->D_{s} \gamma\right)$ measure the angle between $D_{s}(2460)$ momentum in the B rest frame and D_{s} momentum in the $D_{s}(2460)$ rest frame.

Expect $\sin ^{2} \theta$ if $J^{P}=1^{+}$
It looks really like $D_{s}(2317)$ and $D_{s}(2460)$ are the missing $0^{+}, 1^{+}$state of cs system with

L=1

So far this has been the harvest

June 18, 2003

Conclusions

- Charm physics is nice and full of surprises
- Never believe too much to theorists
- BaBar and Belle will get you alive for a couple of more years

Physics is a joy of life. Do it as best as you can.

