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The problem

Processes with weak coupling: g is small.

_c_
Non-perturbative: e.g. tunneling P oc e a2

Exclusive initial state.



Baryon number violation

in high-energy electroweak processes

The standard model of electroweak interactions is formulated in

terms of bosonic fields describing γ , W±, Z and the Higgs

particle, and fields describing fermionic particles.

The configurations of the bosonic fields can be classified into

inequivalent topological sectors.

Generally in electroweak processes, as in all known particle

interactions, net baryon number NB = NB — rig is conserved.

By a subtle quantum-mechanical effect (renormalization

anomaly) NB changes if the process changes the topology of

the fields.



SU(2)-Higgs theory

S = I dx4

- 1)

We consider spherically symmetric configurations described by two

complex fields and one real field:

χ(r, t), %(r, t), φ(r, t), 0(r, t), a(r, t).

5 t)iX{ri t) parameterize the transverse components of A μ ,

r, t ) , 0(r, t) parameterize Φ, a(r, t) the radial component of

in the A0 = 0 gauge.)



Action and Field topology

>oo

S = 4 π dt I dr

-Re(ixV)-Ar^(|<^-l)

Non-trivial topology occurs because in the state of lowest energy

(vacuum) |χ| = χ0 > 0, |φ| = φ 0 > 0.

Regularity demands χ(r = 0, t) = χ ( r = oo, t) = const:

vacuum states are characterized by their topological winding

number Q.
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In a transition where AQfO also ANB^O (ANB=3AQ)



Sectors with different Q are separated by an energy barrier:
•p

Sphaleron
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The sphaleron is an unstable solution lying on top of the barrier.

For E > Esph Q can change in a classical evolution.

For E < Esph Q can change only through quantum mechanical

tunneling.



Can a two particle collision induce ΔQ ^ 0 with appreciable
probability, and, if so, at what energy?

Use semiclassical methods (g is small), but the initial state is not an
inclusive state.
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Semiclassical technique

Consider the inclusive multiparticle probability of tunneling from a

"microcanonical" state with energy E = E/g2 and number of

particles N = N/g2\

where sum is performed over all states \i) and | / ) in different
A. A.

topological sectors, and PE, PN are projection operators onto

subspaces of fixed energy and number of particles. Take then

TV —» 0. (Rubakov, Tinyakov, 92, Rubakov, Son, Tinyakov, 92)



Writing a functional integral representation and making use of a

saddle point approximation one can arrive to the following

prescription:

The fields must solve the classical equations of motion.

Fort <C 0 or t S> 0 expand in normal modes a(k):

E = l/g2fdkou(k)\a(k)\2, N=l/g2fdk\a(k)\2

a(k) = e-ea(k)*tort
a(k) = a(k)*tort > 0
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Tunneling probability

4TT

-F(E, N) = N6 + ET + 2 Re[iS] + Re

where:

Bi = 1 f dk[a(k)a(-k)e-2iUkU - a(k)a(-k)e2iωkti
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Energy vs. incoming particle number

N 4

In A topology changing processes are classically allowed, in B they

can only occur through tunneling.
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Classically forbidden processes

Saddle point approximation leads to solving the evolution equations

along a complex time contour:

Imt T

hyperbolic eqs.

hyperbolic eqs.
elliptic eqs.

Ret
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Computational method

Discretize the Lagrangian keeping exact gauge invariance.

Solve the equations of motion globally (elliptic equations cannot be

evolved) at all space-time nodes, i.e. solve Nr x Nt(x5 complex)

non-linear equations:

-start from an approximate solution;

-use Newton-Raphson method

= 0 i =

this is a set of Nr x Nt ( x 5 complex) linear equations.

φt is coupled only to φt+1 and (j)t-i- eliminate alternate time slices,

which requires full 5 N r x 5 N r matrix manipulations, and reduce to

boundary conditions for fields at initial and final times.
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Computational challenges

Nature of PDEs change from hyperbolic to elliptic to hyperbolic

again: solve equations globally.

Field equations are non-linear and boundary conditions demand

continuation complex phase-space (a(k) ^ a(k)*)\ solve by

deformation procedure.

Very large number of degrees of freedom: eliminate alternate time

slices.

Gauge invariance implies redundant degrees of freedom: use

gauge covariant discretization and A0 = 0 gauge.

Time translation invariance implies presence of zero-mode in the

deformation procedure: avoid by replacing a(k) = exp(—0)a{k)

with a(k) = exp(—0)a{k) for just one of the modes.
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Configuration forT/2 = 2 and θ = 3. E/Esph = 0.86, NαW = 0.74.

Rotate. Animate.

P i

0

- P i
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One further problem: solutions apparently cannot be continued

beyond the sphaleron's energy - the fields evolve back into the

original topological sector.

P i

Configuration for T/2 = 2 and θ = 3.35.E/Esph = 1.04,

Rotate. Animate.

= 0.94.
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Origin of the problem and Solution

As one crosses the barrier energy, the solutions stay on top of the

barrier for progressively longer times: clue found in the analysis

of a quantum-mechanical model with a single oscillator hitting a

barrier. (Bonini, Cohen, Rebbi and Rubakov, 1999).

The final boundary condition should then be truly applied at

asymptotic times (numerically impossible).

A suitable regularization procedure allows one to go around the

singularity structure and recover a saddle-point solution.

(Bezrukovand Levkov, quant-ph/0301022).
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Tunneling solution at an energy larger than the sphaleron's energy:

- P i

Configuration for T/2 = 0.2 and θ = 1.8. E/Esph = 1.24, NαW = 0.98.

Rotate. Animate.
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Conclusions

The research shows that the semiclassical procedure of Rubakov,

Son and Tinyakov, coupled to suitable computational techniques,

can produce quantitative results for semi-inclusive, weakly

coupled non-perturbative processes.

The study opens new dimensions for the application of

computational methods to quantum field theory.

It illustrates the power of coupling analytical methods with

advanced computational techniques.
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