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| ecture 1:

e Limitations of the Standard Model

e [he SUSY algebra

e Consequences of the SUSY algebra, SUSY multiplets



The Standard Model (SM) cannot be the ultimate theory

— doesn’t contain gravity

— further problems: “hierarchy problem’, ...

Up to which energy scale A can it be valid?

— A < Mp| ~ 10'° GeV (inclusion of gravity effects necessary)

— stability of Higgs potential:
[T. Hambye, K. Riesselmann '97]

— hierarchy problem:
= dMZ ~ N?
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Higgs mass unstable w.r.t. large quantum corrections



The hierarchy problem

Consider loop corrections to propagators < corrections to particle masses

1
A(p?) ~
) p? —m? + > (p?)

Photon self-energy in QED:

e

gl gl
W@W Z'V'V(O) — 0

et

consequence of U(1) gauge invariance of QED = photon stays massless

Av_vl(pQ) — O for p2 — 0



Electron self-energy in QED:

A dk
m for A — oco: Zeewme/ = —InA

= logarithmically divergent correction to electron mass, dme

Within QED: divergence can be removed via renormalization
= k — oo possible

QED as effective theory, underlying more fundamental theory at scale A

= cutoff scale A

For A = Mp|: dme =~ 2= me log(Mp|/me) = 0.2me

= modest correction, proportional to me

reason: chiral symmetry in limit me — 0, e — €?75%);

= breaking proportional to me = symmetry “protects’ me



Contribution of heavy fermions to Higgs self-energy:

f
O
f
2
b0 > [ 4 1 S
¢ N—QN(f))\f/dk(kQ_m]%—l—(kQ_m]%)Q)
b0 5 d*k > dk)
o > ~—2N(f))\< — 4+ 2m? [ —
for A — oo: / f /k2 /k

= quadratically divergent!

For A = Mp: 5M£ ~ M3 = 5MG§ ~ 1030 Mg (Mg 1 TeV)

no additional symmetry for M¢ — 0, no protection against large corrections
= in general: scalar masses tend to be near highest mass scale of the theory

= hierarchy problem, extreme fine-tuning necessary to get small M¢



= Hierarchy problem is instability of small Higgs mass to large corrections
in a theory with a large mass scale in addition to the weak scale

E.g.: Grand Unified Theory (GUT): 5M£ ~ MoguT)?

Even if A\ = 0O at tree level: non-zero coupling regenerated by radiative
corrections: 6M£ ~ O(a/m){(vguT)? (cf. ‘Little Higgs' models)

Would need a symmetry to suppress many orders of perturbation theory

Hierarchy problem is not just a problem of the Higgs mass;

problem: why is My <€ MguT, Mp;, Why iS Veoulomb = VNewton !

Note however: there is another fine-tuning problem in nature, for which we
have no clue so far — cosmological constant



Supersymmetry:

Symmetry between fermions and bosons

Q|boson)
Q|fermion)

|fermion)
|Iboson)

SUSY: additional contributions from scalar fields:

,. f
f // \\

o N o ) ¢
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f

" ~ [ 4 1 1 . L
>~ N(f) Af/d k R~ + PR~ + terms without quadratic div.
L Ir

for A — oo: Z?ngQN(f) S\f N2



= quadratic divergencies cancel for
N(fL) = N(fr) N(f)
OE V-
Af = A¥

complete correction vanishes if furthermore

For m]% — m]% + A2 A= >\]2c, “soft SUSY breaking”

oo 2 A2
:>Zf+f N(f))\fA -+
= correction stays acceptably small if mass splitting is of weak scale

= realized if mass scale of SUSY partners

MSUSY 5 1 TeV

= SUSY at TeV scale provides attractive solution of hierarchy problem



Other recent proposals for solving hierarchy problem in models with extra
spatial dimensions:

E.g.: Gravity in large extra dimensions
[N. Arkani-Hamed, S. Dimopoulos, G. Dvali '98]

Gravity propagates in d large extra spatial dimensions

fundamental Planck scale in 4 4+ )-dimensional space, My, is of order 1 TeV

Mp) = Vy MZT°

= large value of Mp, related to relatively large volume V5 (1073 m—-10—1> m
for 6 = 2—6) of extra dimensions



The SUSY algebra

Symmetry: a group of transformations that leave Lagrangian invariant
generators of the group fulfill certain algebra

Noether’'s theorem: symmetries < conservation laws

Unification of fundamental interactions?

electroweak and strong interactions:

described by gauge theories: internal symmetries

v, Z, W*: spin 1

gravity:

described by general relativity: invariance under space—time transformations

graviton G: spin 2



Space—time symmetries: Poincaré group

Lorentz transformations:

MPY = —MYP (6 generators), translations PP (4 generators)
continous group: Lie-group

particle states characterized by eigenvalues of mass and spin

For later use it is convenient to describe spin % particles not in terms of
4-component ‘Dirac spinors’ but in terms two 2-component ‘Weyl spinors’

Spinor representation of the Lorentz group

Form (complex) linear combinations of the generators of rotations and
Lorentz boosts such that commutation relations become

T T = e BR[0T U =0

— two SU(2) algebras, commute with each other

— Lorentz group is equivalent to a (complexified) version of SU(2) x SU(2)
(— SL(2, ©))



— Representations of Lorentz group are labelled by two ‘spins’, 71, 5o,

where j1,jo = 0,3, 1,... as usual for SU(2)

Basic representations:

(%,O): LEFT-handed 2-component Weyl spinor, g
(O,%): RIGHT-handed 2-component Weyl spinor, ¢°

The two component Weyl spinors ¢, (left-handed) and ¥ (right-handed)
transform under Lorentz transformations as follows:

Yo = Mg vy = (M*)O-??Zg
W o= (MTHM0 @ = () S0

where M = exp(z’%(ﬁ— i3)) and J and @ are the three rotation angles and
boost parameters, respectively

= spinors with undotted indices (first two components of Dirac spinor)
transform according to (%,O)—representation of Lorentz group,

spinors with dotted indices (last two components of Dirac spinor)
transform according to (O,%)—representation



Internal symmetries, e.g. gauge symmetries
QED: ¢ — @My, A, — A, + 9\, generator: Q, group U(1)
QCD: SU(3), SM: SU(2) x U(1)

generators T% of internal symmetries satisfy Lie algabra, [Ta,Tb} — 4 faber,,

‘“Trivial’ extension of Poincaré group, 7% commute with Poincaré generators
[PF. T =0, [M*, T =0

= direct product

(Poincaré group) ® (internal symmetry group)

Particle states characterized by maximal set of commuting observables:

|m781ﬁ783/ \Q7I7I37Y7°°;>

space—time internal
quantum numbers



Direct product = no irreducible multiplets containing particles with
different mass or different spin

= Look for extension of space—time symmetry with new generators Qq
such that

[QOMMMV] # O or [QOMPM] # 0

But: general “no go theorems’ of QFT

Coleman—Mandula theorem '67:

Any Lie-group containing Poincaré group P and internal symmetry group
G must be direct product PR G

No go theorem can be evaded if instead of Lie-group (generators fulfill
commutator relations):
[Gol'fand, Likhtman '71] [Volkov, Akulov '72] [Wess, Zumino '73]

Anticommutator: {A, B} = AB + BA

= ‘graded Lie algebra’, ‘superalgebra’



Haag, Lopuszanski, Sohnius theorem '75:

no direct symmetry transformations between fields with different integer
spins

= particles with different spin in the same multiplet only possible for
SUSY theories, Q|boson) = |fermion), Q|fermion) = |boson)

symmetry generator Q: fermionic operator, needs to have spin 1/2

E.g.: 3

spin 2 — S|oin7 — spin 1
graviton gravitino photon

@ changes spin (behavior under spatial rotations) by %

= SUSY transformation influences in general both space—time and
internal quantum numbers



Simplest case:
only one fermionic generator QQ, (and conjugate @B’ a=1,2, =1,2)

= N = 1 SUSY algebra:
[Qa, Pul = |Q, Pu| = O
[Qa, MM] = i (d"),” Qg
{Qa,Qs} ={Q4, @5} = 0
{Qa,Qst = 2(cM)aPu

Haag, Lopuszanski, Sohnius theorem = only possibility

Po = H, [Qa,H] =0 = conserved charge

= SUSY: symmetry that relates bosons to fermions

unique extension of Poincaré group of symmetries of D = 4
relativistic QFT

‘generalizes classical notion of a dimension to quantum domain’
‘so beautiful it must be true ...’



Consequences of the SUSY algebra

Global SUSY transformation:

{QO&) Qa} — \Q(O-M)ozo'zp,uj
constant translation in space—time

If SUSY transformations are made local
= space—time transformation differing from point to point

Invariance under local SUSY transformations:

= invariance under local coordinate change
= general relativity

= |ocal SUSY includes gravity, called “supergravity”

In the following: mostly global SUSY transformations considered
(flat space—time)



Qo changes spin of particle by %

Qao|boson) = |fermion), Qq|fermion) = |boson)

Consider fermionic state |f) with mass m: bosonic state |b) = Qql|f)

P2|f) = m?|f)
= P2|b) = P2Qalf) = QaP?|f) = Qam?|f) = m?|b)

= for each fermionic state there is a bosonic state with the same mass

= states are paired bosonic < fermionic



{Qa Q) = 200, Pu
= {Qa, Gy} 50" = 20" 507 Py = 4P,
o8

QQMV

v=0= 1 =P =5{QaQ}5" =i ({euel} +{ez2b})
where 07M)ad55'{170 y O 703}adﬁ (Uﬂ)adf::gMV(UV)adﬁ (5M)d0455(aﬂ)ad

and Qg4 = (Qa)T

{Q@-,QZ} = QZ-Q;r + QIQZ-: hermitean operator, eigenvalues > 0O

= for any state |a): (a|H|a) > O
spectrum of H is bounded from below, > 0

= NO negative eigenvalues



State with lowest energy: vacuum state |0)
if vacuum state is symmetric, i.e. Q|0) = 0, QT|0) = 0 for all Q

= vacuum has zero energy, (0O|H|0) = Eyac =0

For spontaneous symmetry breaking: vacuum state is not invariant

= If SUSY is spontaneously broken, i.e. Q4|0) # O,
then (O|H|0) = Evac > 0

= non-vanishing vacuum energy



SUSY multiplets:

Particularly important: massless representations

go to reference frame where P, = (E,0,0, E)

= Q1,Q4 = 0 as operators; thus left with Q5,Q, only

1 _ 1
TaE2: al = TAE2

define a =

= annihilation and creation operators: {a,a'} = 1,{a,a} = 0,{al,a’} =0

start with state of lowest helicity A\g

application of o' = one additional state with helicity \g —I—%

= one fermionic + one bosonic state

(N SUSY generators = 2¥~1 bosonic and 2¥~1 fermionic states)

= equal number of bosonic and fermionic states in supermultiplet



Most relevant multiplets (possess also CPT conjugate ‘mirrors’):

e chiral supermultiplet: —%,O

Weyl fermion (quark, lepton, ...) + complex scalar (squark, slepton)

e vector supermultiplet: —1,—%

Gauge boson (massless vector) + Weyl fermion (gaugino)

e graviton supermultiplet: —2, —3

graviton -+ gravitino



Summary of Lecture 1:

e Standard Model cannot be the ultimate theory

Hierarchy problem, ...
= strong motivation for low-energy (TeV scale) SUSY

e SUSY: relates bosons to fermions
SUSY algebra involves anticommutators: ‘graded Lie algebra’
SUSY is unique extension of Poincaré group of space—time symmetries

local SUSY includes gravity: “supergravity”

e Exact SUSY & FEyagc =0
Spontaneous breaking of global SUSY = FEvyac >0

e SUSY multiplets: states are paired bosonic «— fermionic
chiral, vector, graviton supermultiplet, ...



