united nations educational, scientific and cultural organization ganization unternational atomic energy agency

the **abdus salam** international centre for theoretical physics

SMR.1508 - 20

SUMMER SCHOOL ON PARTICLE PHYSICS

16 June - 4 July 2003

LECTURES ON SUPERSYMMETRY

Lecture I

G. WEIGLEIN Dept. of Physics. IPPP University of Durham Durham U.K.

Lectures on Supersymmetry

Georg Weiglein IPPP Durham

Trieste, 06/2003

Lecture 1:

• Limitations of the Standard Model

• The SUSY algebra

• Consequences of the SUSY algebra, SUSY multiplets

The Standard Model (SM) cannot be the ultimate theory

- doesn't contain gravity
- further problems: "hierarchy problem", ...

Up to which energy scale Λ can it be valid?

 $- \Lambda < M_{\rm Pl} \approx 10^{19} \, {\rm GeV}$ (inclusion of gravity effects necessary)

– hierarchy problem: Higgs mass unstable w.r.t. large quantum corrections $\Rightarrow \delta M_{\rm H}^2 \sim \Lambda^2$

The hierarchy problem

Consider loop corrections to propagators \Leftrightarrow corrections to particle masses

$$\Delta(p^2) \sim \frac{1}{p^2 - m^2 + \Sigma(p^2)}$$

Photon self-energy in QED:

consequence of U(1) gauge invariance of QED \Rightarrow photon stays massless

$$\Delta_{\gamma\gamma}^{-1}(p^2)
ightarrow 0$$
 for $p^2
ightarrow 0$

Electron self-energy in QED:

 \Rightarrow logarithmically divergent correction to electron mass, $\delta m_{\rm e}$

Within QED: divergence can be removed via renormalization $\Rightarrow k \rightarrow \infty$ possible

QED as effective theory, underlying more fundamental theory at scale $\Lambda \Rightarrow$ cutoff scale Λ

For $\Lambda = M_{\text{Pl}}$: $\delta m_{\text{e}} \approx 2 \frac{\alpha}{\pi} m_{\text{e}} \log(M_{\text{Pl}}/m_{\text{e}}) \approx 0.2 m_{\text{e}}$

$$\Rightarrow$$
 modest correction, proportional to $m_{\rm e}$
reason: chiral symmetry in limit $m_{\rm e} \rightarrow 0$, $\psi_{\rm e} \rightarrow e^{i\gamma_5 \theta} \psi_{\rm e}$

 \Rightarrow breaking proportional to $m_{e} \Rightarrow$ symmetry "protects" m_{e}

Contribution of heavy fermions to Higgs self-energy:

$$\begin{split} & \oint & \oint & \phi \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ f^{f} \sim -2 \; N(f) \; \lambda_{f}^{2} \int d^{4}k \left(\frac{1}{k^{2} - m_{f}^{2}} + \frac{2m_{f}^{2}}{(k^{2} - m_{f}^{2})^{2}}\right) \\ & & & \\ & &$$

 \Rightarrow quadratically divergent!

For $\Lambda = M_{\rm P}$: $\delta M_{\phi}^2 \sim M_{\rm P}^2 \Rightarrow \delta M_{\phi}^2 \approx 10^{30} M_{\phi}^2$ ($M_{\phi} \lesssim 1 \text{ TeV}$) no additional symmetry for $M_{\phi} = 0$, no protection against large corrections \Rightarrow in general: scalar masses tend to be near highest mass scale of the theory \Rightarrow hierarchy problem, extreme fine-tuning necessary to get small M_{ϕ} ⇒ Hierarchy problem is instability of small Higgs mass to large corrections in a theory with a large mass scale in addition to the weak scale

E.g.: Grand Unified Theory (GUT): $\delta M_{\phi}^2 \approx \lambda \langle v_{GUT} \rangle^2$

Even if $\lambda = 0$ at tree level: non-zero coupling regenerated by radiative corrections: $\delta M_{\phi}^2 \approx \mathcal{O}(\alpha/\pi) \langle v_{\text{GUT}} \rangle^2$ (cf. 'Little Higgs' models) Would need a symmetry to suppress *many* orders of perturbation theory

Hierarchy problem is not just a problem of the Higgs mass; problem: why is $M_{W} \ll M_{GUT}, M_{Pl}$, why is $V_{Coulomb} \gg V_{Newton}$?

Note however: there is another fine-tuning problem in nature, for which we have no clue so far – cosmological constant

Supersymmetry:

Symmetry between fermions and bosons

 $Q|boson\rangle = |fermion\rangle$ $Q|fermion\rangle = |boson\rangle$

SUSY: additional contributions from scalar fields:

for $\Lambda \to \infty$: $\Sigma_{\tilde{f}}^{\phi\phi} \sim 2 N(\tilde{f}) \tilde{\lambda}_f \Lambda^2$

 \Rightarrow quadratic divergencies cancel for

$$N(\tilde{f}_L) = N(\tilde{f}_R) = N(f)$$

 $\tilde{\lambda}_f = \lambda_f^2$

complete correction vanishes if furthermore

$$m_{\tilde{f}} = m_f$$

For
$$m_{\tilde{f}}^2 = m_f^2 + \Delta^2$$
, $\tilde{\lambda}_f = \lambda_f^2$, "soft SUSY breaking"
 $\Rightarrow \Sigma_{f+\tilde{f}}^{\phi\phi} \sim N(f) \lambda_f^2 \Delta^2 + \dots$

⇒ correction stays acceptably small if mass splitting is of weak scale

 \Rightarrow realized if mass scale of SUSY partners

$$M_{
m SUSY} \lesssim 1 \, {
m TeV}$$

 \Rightarrow SUSY at TeV scale provides attractive solution of hierarchy problem

Other recent proposals for solving hierarchy problem in models with extra spatial dimensions:

E.g.: Gravity in large extra dimensions [*N. Arkani-Hamed, S. Dimopoulos, G. Dvali '98*]

Gravity propagates in δ large extra spatial dimensions

fundamental Planck scale in $4 + \delta$ -dimensional space, M_* , is of order 1 TeV

 $M_{\mathsf{Pl}}^2 = V_\delta \ M_*^{2+\delta}$

⇒ large value of M_{Pl} related to relatively large volume V_{δ} (10⁻³ m−10⁻¹⁵ m for $\delta = 2-6$) of extra dimensions

The SUSY algebra

Symmetry: a group of transformations that leave Lagrangian invariant generators of the group fulfill certain algebra Noether's theorem: symmetries \Leftrightarrow conservation laws

Unification of fundamental interactions?

electroweak and strong interactions:

described by gauge theories: internal symmetries

 γ , Z, W^{\pm} : spin 1

gravity:

described by general relativity: invariance under space-time transformations

graviton G: spin 2

Space-time symmetries: Poincaré group

Lorentz transformations:

 $M^{\rho\nu} = -M^{\nu\rho}$ (6 generators), translations P^{ρ} (4 generators)

continous group: Lie-group

particle states characterized by eigenvalues of mass and spin

For later use it is convenient to describe spin $\frac{1}{2}$ particles not in terms of 4-component 'Dirac spinors' but in terms two 2-component 'Weyl spinors'

Spinor representation of the Lorentz group

Form (complex) linear combinations of the generators of rotations and Lorentz boosts such that commutation relations become

$$\left[J_i^{\pm}, J_j^{\pm}\right] = i\epsilon_{ijk}J^{\pm,k}; \quad \left[J_i^{+}, J_j^{-}\right] = 0$$

- \Rightarrow two SU(2) algebras, commute with each other
- ⇒ Lorentz group is equivalent to a (complexified) version of SU(2) × SU(2) $(\rightarrow$ SL(2, C))

⇒ Representations of Lorentz group are labelled by two 'spins', j_1, j_2 , where $j_1, j_2 = 0, \frac{1}{2}, 1, \ldots$ as usual for SU(2)

Basic representations:

 $(\frac{1}{2}, 0)$: LEFT-handed 2-component Weyl spinor, ψ_{α} $(0, \frac{1}{2})$: RIGHT-handed 2-component Weyl spinor, $\bar{\psi}^{\dot{\alpha}}$

The two component Weyl spinors ψ_{α} (left-handed) and $\bar{\psi}^{\dot{\alpha}}$ (right-handed) transform under Lorentz transformations as follows:

$$\psi_{\alpha}' = M_{\alpha}{}^{\beta}\psi_{\beta}; \qquad \bar{\psi}_{\dot{\alpha}}' = (M^{*})_{\dot{\alpha}}{}^{\beta}\bar{\psi}_{\dot{\beta}}$$

$$\psi^{\prime\alpha} = (M^{-1})_{\beta}{}^{\alpha}\psi^{\beta}; \quad \bar{\psi}^{\prime\dot{\alpha}} = (M^{*-1})_{\dot{\beta}}{}^{\dot{\alpha}}\bar{\psi}^{\dot{\beta}}$$

where $M = \exp(i\frac{\vec{\sigma}}{2}(\vec{\vartheta} - i\vec{\varphi}))$ and $\vec{\vartheta}$ and $\vec{\varphi}$ are the three rotation angles and boost parameters, respectively

⇒ spinors with undotted indices (first two components of Dirac spinor) transform according to $(\frac{1}{2}, 0)$ -representation of Lorentz group, spinors with dotted indices (last two components of Dirac spinor) transform according to $(0, \frac{1}{2})$ -representation

Internal symmetries, e.g. gauge symmetries

QED: $\psi \to e^{iQ\lambda}\psi$, $A_{\mu} \to A_{\mu} + \partial_{\mu}\lambda$, generator: Q, group U(1) QCD: SU(3), SM: SU(2) × U(1)

generators T^a of internal symmetries satisfy Lie algabra, $\left[T^a, T^b\right] = i f^{abc} T_c$

'Trivial' extension of Poincaré group, T^a commute with Poincaré generators $[P^{\mu}, T^a] = 0$, $[M^{\mu\nu}, T^a] = 0$

 \Rightarrow direct product

(Poincaré group) \otimes (internal symmetry group)

Particle states characterized by maximal set of commuting observables:

 $|\underbrace{m, s; \vec{p}, s_3}; \underbrace{Q, I, I_3, Y, \ldots}_{\text{space-time}}\rangle$ space-time internal quantum numbers Direct product \Rightarrow no irreducible multiplets containing particles with different mass or different spin

⇒ Look for extension of space–time symmetry with new generators Q_{α} such that $[Q_{\alpha}, M^{\mu\nu}] \neq 0$ or $[Q_{\alpha}, P^{\mu}] \neq 0$

But: general "no go theorems" of QFT

Coleman–Mandula theorem '67:

Any Lie-group containing Poincaré group P and internal symmetry group G must be direct product $P \otimes G$

No go theorem can be evaded if instead of Lie-group (generators fulfill commutator relations):

[Gol'fand, Likhtman '71] [Volkov, Akulov '72] [Wess, Zumino '73]

 $[\ldots,\ldots] \to \{\ldots,\ldots\}$

Anticommutator: $\{A, B\} = AB + BA$

 \Rightarrow 'graded Lie algebra', 'superalgebra'

Haag, Lopuszanski, Sohnius theorem '75:

no direct symmetry transformations between fields with different integer spins

 \Rightarrow particles with different spin in the same multiplet only possible for SUSY theories, $Q|boson\rangle = |fermion\rangle$, $Q|fermion\rangle = |boson\rangle$

symmetry generator Q: fermionic operator, needs to have spin 1/2

E.g.: spin 2
$$\rightarrow$$
 spin $\frac{3}{2}$ \rightarrow spin 1
graviton gravitino photor

Q changes spin (behavior under spatial rotations) by $\frac{1}{2}$

⇒ SUSY transformation influences in general both space-time and internal quantum numbers Simplest case:

only one fermionic generator Q_{α} (and conjugate $\bar{Q}_{\dot{\beta}}$, $\alpha = 1, 2, \dot{\beta} = 1, 2$) $\Rightarrow N = 1$ SUSY algebra:

$$[Q_{\alpha}, P_{\mu}] = \left[\bar{Q}_{\dot{\beta}}, P_{\mu}\right] = 0$$

$$[Q_{\alpha}, M^{\mu\nu}] = i (\sigma^{\mu\nu})_{\alpha}{}^{\beta} Q_{\beta}$$

$$\left\{Q_{\alpha}, Q_{\beta}\right\} = \left\{\bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\right\} = 0$$

$$\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\} = 2(\sigma^{\mu})_{\alpha\dot{\alpha}} P_{\mu}$$

Haag, Lopuszanski, Sohnius theorem \Rightarrow only possibility

 $P_0 = H$, $[Q_\alpha, H] = 0 \Rightarrow$ conserved charge

⇒ SUSY: symmetry that relates bosons to fermions unique extension of Poincaré group of symmetries of D = 4 relativistic QFT 'generalizes classical notion of a dimension to quantum domain' 'so beautiful it must be true'

Consequences of the SUSY algebra

Global SUSY transformation:

$$\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\} = \underbrace{2(\sigma^{\mu})_{\alpha\dot{\alpha}}P_{\mu}}_{\alpha\dot{\alpha}}$$

constant translation in space-time

If SUSY transformations are made local

⇒ space-time transformation differing from point to point

Invariance under local SUSY transformations:

- \Rightarrow invariance under local coordinate change
- \Rightarrow general relativity
- \Rightarrow local SUSY includes gravity, called "supergravity"

In the following: mostly global SUSY transformations considered (flat space-time)

 Q_{α} changes spin of particle by $\frac{1}{2}$

 $Q_{\alpha}|\text{boson}\rangle = |\text{fermion}\rangle, Q_{\alpha}|\text{fermion}\rangle = |\text{boson}\rangle$

Consider fermionic state $|f\rangle$ with mass m: bosonic state $|b\rangle=Q_{\alpha}|f\rangle$ $P^{2}|f\rangle=m^{2}|f\rangle$

$$\Rightarrow P^2|b\rangle = P^2 Q_\alpha |f\rangle = Q_\alpha P^2 |f\rangle = Q_\alpha m^2 |f\rangle = m^2 |b\rangle$$

 \Rightarrow for each fermionic state there is a bosonic state with the same mass

\Rightarrow states are paired bosonic \leftrightarrow fermionic

$$\left\{ Q_{\alpha}, \bar{Q}_{\dot{\beta}} \right\} = 2\sigma^{\mu}_{\alpha\dot{\beta}}P_{\mu}$$

$$\Rightarrow \left\{ Q_{\alpha}, \bar{Q}_{\dot{\beta}} \right\} \bar{\sigma}^{\alpha\dot{\beta}}_{\nu} = 2\underbrace{\sigma^{\mu}_{\alpha\dot{\beta}}\bar{\sigma}^{\alpha\dot{\beta}}_{\nu}}_{2g^{\mu}_{\nu}}P_{\mu} = 4P_{\nu}$$

 $\nu = 0 \Rightarrow H = P_0 = \frac{1}{4} \left\{ Q_{\alpha}, \bar{Q}_{\dot{\beta}} \right\} \bar{\sigma}_0^{\alpha \dot{\beta}} = \frac{1}{4} \left(\left\{ Q_1, Q_1^{\dagger} \right\} + \left\{ Q_2, Q_2^{\dagger} \right\} \right)$ where $(\sigma^{\mu})_{\alpha \dot{\alpha}} \equiv \{ 1, \sigma^1, \sigma^2, \sigma^3 \}_{\alpha \dot{\alpha}}; \quad (\sigma_{\mu})_{\alpha \dot{\alpha}} = g_{\mu\nu} (\sigma^{\nu})_{\alpha \dot{\alpha}}; \quad (\bar{\sigma}^{\mu})_{\dot{\alpha}\alpha} \equiv (\sigma^{\mu})_{\alpha \dot{\alpha}}$ and $\bar{Q}_{\dot{\alpha}} = (Q_{\alpha})^{\dagger}$

 $\left\{Q_i, Q_i^{\dagger}\right\} = Q_i Q_i^{\dagger} + Q_i^{\dagger} Q_i$: hermitean operator, eigenvalues ≥ 0

 \Rightarrow for any state $|\alpha\rangle$: $\langle \alpha|H|\alpha\rangle \geq 0$

spectrum of H is bounded from below, ≥ 0

 \Rightarrow no negative eigenvalues

State with lowest energy: vacuum state $|0\rangle$

if vacuum state is symmetric, i.e. $Q|0\rangle = 0$, $Q^{\dagger}|0\rangle = 0$ for all Q

 \Rightarrow vacuum has zero energy, $\langle 0|H|0\rangle = E_{\rm vac} = 0$

For spontaneous symmetry breaking: vacuum state is not invariant

- $\Rightarrow \text{ If SUSY is spontaneously broken, i.e. } Q_{\alpha}|0\rangle \neq 0,$ then $\langle 0|H|0\rangle = E_{\text{vac}} > 0$
- \Rightarrow non-vanishing vacuum energy

SUSY multiplets:

Particularly important: massless representations go to reference frame where $P_{\mu} = (E, 0, 0, E)$ $\Rightarrow Q_1, Q_1 = 0$ as operators; thus left with Q_2, Q_2 only define $a = \frac{1}{\sqrt{4E}}Q_2$, $a^{\dagger} = \frac{1}{\sqrt{4E}}\overline{Q}_2$

 \Rightarrow annihilation and creation operators: $\{a, a^{\dagger}\} = 1, \{a, a\} = 0, \{a^{\dagger}, a^{\dagger}\} = 0$

start with state of lowest helicity λ_0 application of $a^{\dagger} \Rightarrow$ one additional state with helicity $\lambda_0 + \frac{1}{2}$

\Rightarrow one fermionic + one bosonic state

(N SUSY generators $\Rightarrow 2^{N-1}$ bosonic and 2^{N-1} fermionic states)

\Rightarrow equal number of bosonic and fermionic states in supermultiplet

Most relevant multiplets (possess also CPT conjugate 'mirrors'):

• chiral supermultiplet: $-\frac{1}{2}, 0$

Weyl fermion (quark, lepton, ...) + complex scalar (squark, slepton)

• vector supermultiplet: $-1, -\frac{1}{2}$

Gauge boson (massless vector) + Weyl fermion (gaugino)

• graviton supermultiplet: $-2, -\frac{3}{2}$

graviton + gravitino

Summary of Lecture 1:

 Standard Model cannot be the ultimate theory Hierarchy problem, . . .
 ⇒ strong motivation for low-energy (TeV scale) SUSY

• SUSY: relates bosons to fermions

SUSY algebra involves anticommutators: 'graded Lie algebra' SUSY is unique extension of Poincaré group of space-time symmetries local SUSY includes gravity: "supergravity"

• Exact SUSY $\Leftrightarrow E_{vac} = 0$

Spontaneous breaking of global SUSY $\Rightarrow E_{Vac} > 0$

 SUSY multiplets: states are paired bosonic ↔ fermionic chiral, vector, graviton supermultiplet, ...