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Lecture 2

Construction of SUSY field theories

N> 1 SUSY

Soft SUSY breaking

The Minimal Supersymmetric Standard Model (MSSM)



More on spinors:

The components of the spinors are Grassmann variables, i.e. anticommuting
c-numbers

Raising and lowering of indices through the totally antysymmetric e-tensor:

^ = , < * = | ° 1)]€aQ = €.. = (° -1

-10/ af3 I 1 0

In particular ,
ca ,0:7^ sa
e p - e ' e 7 / 3 - d ^ -

The product of two Grassmann spinors is defined through

= eaCa = eaeaPc0 = -eaPCpea =
= eac

a = -caea = c,e



The γ-matrices are defined by

V ( ~1 0
M ( ( ) a a V 5 0 1 2 3

T = • 7 = ;γ 5 7 7 =
\ (^) a a 0 /

have the usual commutation relation, {7^, 7^} = 2 g ^ ; follows from

The Lorentz covariant expressions involving 4-component Dirac spinors can
be written in two-component notation using

a



Superspace and superfields

For compact representation of SUSY transformations

=>* 'fermionic variables' 0a, 0a introduced: anticommuting c-numbers

(Grassmann variables)

E.g.: translations, generators PM, parameters of transformation x^

N = 1 SUSY, generators Qα, Qa, parameters of transformation θα, 0a

Extension of 4-dim. space-time by coordinates 6a, 0a\ superspace

Point in superspace: X =

Superfield:



Taylor expansion in Grassmann variable: θαθβθγ = 0

Taylor expansion terminates after second term, i.e. φ(θ) = a + θψ + θθ f
(00 = 0a0a)

Integration: Jdθ = 0, JdOO = 1

d2θ = -\e

= / d2θ(a + θψ + θθ f) = f

With Grassmann variables:

SUSY algebra can be written in terms of commutators only

[OQ.OQ] =

[θQ,θQ] = [0Q,0Q] = 0

[P^.OQ] = [P^M = 0

can be treated like Lie-group with anticommuting parameters



SUSY transformations

Group element of finite SUSY transformation:

= exp i

in analogy to group elements for Lie-groups

, £ are independent of x^: global SUSY transformation

Transformation of superfield: S(y,£,£)</)(x,0,0)

Use Hausdorff's formula (eAeB = ...) and SUSY algebra

representations of generators obtained from infinitesimal transformation of
superfield

= idf,, Qα = -i



Definition of covariant derivatives

Dα = -ida-

Anticommutation relations of Qα, Dα:

{Qα, Dβ} = {Qa, D$} = {Qα, D$} = 0

{Dα,Dβ} =

{Qa,Qa} =

{Da,Da} = -2i

Dα, Da anticommute with SUSY generators

are invariant under SUSY transformations

+ |Q) ,Dα] = 0, [(ξQ + fQ), Ail = 0



General superfield in component form

Most general form of field depending on x, 0, 0:

, θ, 0) = (f(x) + θψ(x) + 0x(x) + θθF(x) + OOH(x) +

(OO)OX(x) + (00)0£(aO + (00)(00)D(x)

Further terms vanish because of θθθ = 0

Components (can be complex):

, F, H, D: scalar fields

^\ vector field

, x, A, ξ: Weyl-spinorfields

Too many components in 4-dim. for irreducible representation of SUSY

with spin < 1 (chiral or vector multiplet)

representation is reducible

(not all component fields mix with each other under SUSY transf.)



Irreducible superfields (smallest building blocks) from imposing
conditions on general superfield
conditions need to be invariant under SUSY transformations:

= 0: left-handed chiral superfield

= 0: right-handed chiral superfield

= o t ; vector superfield

Usefulness of two-component spinors:

SM fermions: left-handed and right-handed components transform
differently

need superfields with only two fermionic degrees of freedom

chiral superfields describe left- or right-handed component of SM fermion
+ scalar partner



in components

, 0, 0) = ip(x)

- (θθ)F(x)

Lp, F: scalar fields, ψ: Weyl-spinor field

F: auxiliary field, unphysical (has mass dimension 2)

RH χ SF:

$(x, 0,0) =



Transformation of component fields under infinitesimal SUSY transf.

, 0,0) = i(ξQ + fQ)0(x, 0,0)

Comparison with

, 0, 0) = Scp + V265ip - . . . - (θθ)δF

determination of Sip, δψ, δF:

Sip = y/2^ boson —> fermion

fermion -^ boson

total derivative



Vector superfield in components:

V(x, 0, 0) = c(x) + iθχ(x) - i6x(x) + θ

i(θθ)(M(x) + iN(x)) - -{00){M{x)

i(00)0 (\(x)

n \ real vector field —> describes gauge boson

(V must transform as adjoint representation of gauge group)

Number of components can be reduced by SUSY gauge transformation

where /\(x,6,6) is a chiral superfield and g is the gauge coupling

can perform a transformation such that χ(x) = c(x) = M(x) = N(x) = 0

"Wess-Zumino gauge"



Wess-Zumino gauge removes many unphysical degrees of freedom

still leaves "ordinary" gauge freedom, e.g. A^(x) —> A^(x) + d^X(x) for

abelian theory

Wess-Zumino gauge not preserved under SUSY transformations

Transformation of component fields under infinitesimal SUSY transf.

5\ = . . . , Svp = . . . , . . . , δD = -

D transforms into a total derivative



Supersymmetric Lagrangians

Aim: construct an action that is invariant under SUSY transformations:

S [ d4xL(x) = 0

Satisfied if L—>£+ total derivative

F and D terms (the terms with the largest number of θ and 0 factors) of
chiral and vector superfields transform into a total derivative under SUSY
transformations

Use F-terms and D-terms to construct an invariant action:

= I d 4 x [ 2 + I 2 2 0S= I dAx( [ d2θLf + I d20d20Cd

If Φ is a LHχSF => Φ n is also a LHχSF (since D^n = 0 for D^ = 0)

products of chiral superfields are chiral superfields, products of vector
superfields are vector superfields



F-term Lagrangian:

ijk

Terms of higher order in Φi lead to non-renormalizable Lagrangians

F-term Lagrangian contains mass terms, scalar-fermion interactions

( • superpotential), but no kinetic terms

D-term Lagrangian:

1 = / d2θd2θV

D-term Lagrangian contains kinetic terms



Example: the Wess—Zumino Lagrangian

Construction of Lagrangian from chiral superfields

vector superfield,

Auxiliary field F can be eliminated via equations of motion

• ^ - E ai + ^mijcPj +



Lagrangian for scalar fields ^ and spinor fields ^ with the same mass m

contains couplings of type hff and hhf with the same strength

SUSY implies relations between masses and couplings

£ can be rewritten as kinetic part + contribution of superpotential V:

2 +1

C = (

-E dV
dcp,

2

2 d2V _ 1 <92V*

2dtfdtf

V determines all interactions and mass terms

Special case ai = 0: Wess-Zumino model



In order to include vector bosons need to construct Lagrangian containing
also vector superfields

Further requirement: gauge invariance

Kinetic terms for gauge fields from field strength

Supersymmetric Lagrangian in the Wess—Zumino gauge for chiral
superfields φi (with component fields <^, VO a r | d vector superfields Va

(with component fields vfi, λ a ) :

c =

d2V 1 <92V*

2 dip* dip*

= awl + ^rriijipiipj + ^XijkPiPjPk'- holomorphic function of chiral sf.



The potential V is the sum of the F-terms and D-terms and reads

2

i

dV

dcp,

1

2 a

All couplings are determined either by gauge couplings or the superpotential

E.g.: D-term in potential V: quartic scalar interaction is given by the gauge
coupling (in contrast to the SM case)

The ξa-term (called the Fayet-Iliopoulos term) can be present only for U(1)
gauge fields

The requirement of gauge invariance imposes constraints on the coefficients
j and A ^ of the superpotential V

The (gauge) covariant derivatives are (fabc are the structure constants of
the gauge group)



Summary on construction of SUSY Lagrangians:

Construct Lagrangians for N = 1 SUSY from chiral superfields and vector
superfields:

multiplets containing pairs of fields with the same mass, spin differs by 1

Fermion Yukawa interactions and scalar quartic self-interactions are
determined by the superpotential

Gauge interactions determine couplings of the gauge fields

Many relations between couplings



N > 1 SUSY

So far: N = 1 SUSY, simplest case, only one fermionic generator and its

hermitean adjoint: Qα,

one superpartner for photon: photino

N-extended SUSY: N generators QαA, QP

B, A = 1 , . . . , N

TV superpartners for the photon, . . .

Generalization of anticommutator relation:

— a vAB

X
AB = -XBA\ "central charges"



Problem:

helicity +12 and helicity - \ fermions are in same supermultiplet

(e.g.: hypermultiplet for N = 2 SUSY)

=>* helicity +12 and - ^ fermions need to transform in the same way under

gauge transformations

not possible for chiral fermions of electroweak theory

TV > 1 SUSY theories are 'non-chiral'

TV = 1 SUSY theories are the best candidates for a realistic low-energy

theory (extension of the SM)

However: N > 1 SUSY have interesting properties

e.g.: N = 4 SUSY field theory (flat space) is finite

Seiberg-Witten solution in N = 2 SUSY, . . .



Soft SUSY breaking

Exact SUSY: mf = ra?-, . . .

in a realistic model: SUSY must be broken

Only satisfactory way for model of SUSY breaking:

spontaneous SUSY breaking

Specific SUSY-breaking schemes (see below) in general yield effective

Lagrangian at low energies, which is supersymmetric except for explicit soft

SUSY-breaking terms

Soft SUSY-breaking terms: do not alter dimensionless couplings

(i.e. dimension of coupling constants of soft SUSY-breaking terms > 0)

no quadratic divergences (in all orders of perturbation theory)

scale of SUSY-breaking terms: M S USY < 1 TeV



Classification of possible soft breaking terms:
[L. Girardello, M. Grisaru '82]

scalar mass terms: m2

trilinear scalar interactions: AIJKΦIΦ -\- h.c

gaugino mass terms: iraAA

bilinear terms: BIJΦIΦJ + h.c

linear terms:

relations between dimensionless couplings unchanged

no additional mass terms for chiral fermions



Unconstrained MSSM:

no particular SUSY breaking mechanism assumed, parameterization of
possible soft SUSY-breaking terms

=>* relations between dimensionless couplings unchanged
no quadratic divergencies

most general case:

105 new parameters: masses, mixing angles, phases

Good phenomenological description for universal breaking terms
(FCNC, . . .)

Scenarios for SUSY breaking =>* prediction for soft SUSY-breaking terms in
terms of small set of parameters

Experimental determination of SUSY parameters

Patterns of SUSY breaking



The Minimal Supersymmetric Standard Model (MSSM)

MSSM: superpartners for SM fields

SM matter fermions are in different representation of gauge group than

gauge bosons

need to be placed in different superfields

no SM fermion is a gaugino

Fermions, sfermions:

use definition of chiral superfields via left-handed fermions

(=>• the conjugates of right-handed ones appear)

Q: quark, squark SU(2) doublets

LHχSF U: up-type quark, squark singlets

LHχSF D: down-type quark, squark singlets



LHχSF L: lepton, slepton SU(2) doublets

LHχSF E: lepton, slepton singlets

one generation of SM fermions and their superpartners described by
five LHχSFs

Gauge bosons, gauginos:

Vector superfields:

gluons g and gluinos g

W bosons W±, W° and winos W±

1 W°

B boson B° and bino B°

Higgs bosons, higgsinos:

LHχSF

In MSSM: two Higgs doublets needed =^ two LHχSFs



Comparison with SM case:

muQLHuK

d-quark mass u-quark mass

, u \ „ + / 0 \ / v
QL=\ \ , S = i(T2H\ H ^ \ , H ^

In SUSY: term QLH^ not allowed

Superpotential is holomorphic function of chiral superfields, i.e. depends
only on cpit not on (/?*

No soft SUSY-breaking terms allowed for chiral fermions

Hd and Hu needed to give masses to down- and up-type fermions

Furthermore: two doublets also needed for cancellation of anomalies, quadratic
divergences



Chiral supermultiplets of the MSSM:

squarks and quarks

sleptons and leptons

higgs and higgsinos

Q
u

D

L

E

"I

spin 0

UR

d*R

(p, W

-R

1 fi fi 1% # c/ J « / c/ /I J

spin 1

(uL,dL)

uR

4

eR

(SU(3)c, SU(2), U(1)Y)

(3,2,1)

(3,1,^)

(1,2,-1)

(1,1,1)

(1,2,1)

(1,2,-1)



Vector supermultiplets:

gluinos and gluons

winos and W-bosons

bino and B-boson

spin 1

9

W±,W°
B

spin 1

9

W±,W°
B

(SU(3)c, SU(2), U(1)Y)

(8,1,0)

(1,3,0)

(1,1,0)

Superpotential:

DydQHd + EyeLHd

y i ,a i : Yukawa couplings, 3 x 3 matrices in family space

All terms have t o be invariant under all gauge groups, SU(3) c , SU(2) , U(1)Y

need Y = 0 for all terms

HuHd = (Hu)a(Hd)b€
ab (a, b: weak isospin indices), . . .



VMSSM I S n ° t the most general gauge-invariant superpotential

contains only terms that are necessary to build a realistic model

Gauge interactions introduce only terms with even number of superpartners

The same holds for minimal version of VMSSM

MSSM has further symmetry: "R-parity"

all SM-particles and Higgs bosons: even R-parity, PR = + 1

all superpartners: odd R-parity, PR = - 1



Soft breaking terms:

Lsoft = ~{M\BB + M2WW + M3gij + h.c.

- mH2uHu+Hu - mH2dHd+Hd - (bHuHd + h.c.)

- u UR3LUQHU - dR3LdQHd - eR3LeLHd) + h.c.

Most general parameterization of SUSY-breaking terms that keep relations
between dimensionless couplings unchanged =^ no quadratic divergences

Gaugino mass terms, scalar mass terms, and terms like in superpotential
for all scalars

m?\ 3 x 3 matrices in family space

many new parameters



Particle content of the MSSM:

Superpartners for Standard Model particles:

u, d, c, s, t, b

11 rl r> o -f- h
Hi • lX/« L̂ « O « (y • L/

/ y . i t

/ J ,-LL L,R

9
~dz

•v

±0
4

L

L

Spin

Spin 1

Spin 0

1 / Spin 0

Spin 1

Enlarged Higgs sector:
Two Higgs doublets, physical states: h°,H°, A0,

Breaking of SU(2) x U(1)Y (electroweak symmetry breaking)

fields with different SU(2) x U(1)Y quantum numbers can mix if they
have the same SU(3)c, U(1)em quantum numbers



Squark mixing:

Stop, sbottom mass matrices (Xt = At - /i/tan/3, Xb = Ab - /itan/3)

,2 _| ^ ^ 2 > r^m ^r \

M( =
m2 + m2 +

\

mtXt

m2 + m2 + DT2 I

/

\

2 +m2b +

mbXb m2
bR

mbXb

2

\

m

off-diagonal element prop. to mass of partner quark (tanβ = vu/vd)

=^ mixing important in stop sector (also in sbottom sector for large tanβ)

gauge invariance

relation between m^ ,mj t

tL "°bL

' m b ,



Neutralinos and charginos:

Higgsinos and electroweak gauginos mix

charged:

W , ^C u+ Xi , X2 ,

charginos: mass eigenstates

neutral:

mass matrix given in terms of M 2 , /i, tanβ

mass matrix given in terms of M1, M 2 , /i, tanβ

only one new parameter

MSSM predicts mass relations between neutralinos and charginos



Summary of Lecture 2:

Lagrangians for N = 1 SUSY are constructed from chiral superfields
and vector superfields (multiplets containing pairs of fields with spin
differing by 1

N = 1 SUSY theories are the best candidates for a realistic low-energy
theory (extension of the SM)

N > 1 SUSY theories are 'non-chiral'

Soft SUSY-breaking terms: do not alter dimensionless couplings,
< 1 TeV

no quadratic divergences

Unconstrained MSSM: no particular SUSY breaking mechanism assumed,
parameterization of possible soft SUSY-breaking terms


