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L ecture 2:

Construction of SUSY field theories
N > 1 SUSY
Soft SUSY breaking

The Minimal Supersymmetric Standard Model (MSSM)



More on spinors:

The components of the spinors are Grassmann variables, i.e. anticommuting
c-numbers

Raising and lowering of indices through the totally antysymmetric e-tensor:
v 0O 1 0 —1
-1 O 1 O

= Yo = el YO =Py Py = e; 00 PO = iy

In particular ( 10 )

€Y = €Me g = 0% =
B gl&) 0 1

The product of two Grassmann spinors is defined through
¢ = 0% = 0%5C° = —eq5¢P0% = (Pega™ = (P53 = (O
07 = 0504 = ~0%0, = 00



The v-matrices are defined by
0 CLP -1 0
W= s P =iy =
(oh)e 0 0O 1
have the usual commutation relation, {y*,+*} = 2g"¥; follows from

(6M)aa (@)™ = Tr(c"c") = 24"

The Lorentz covariant expressions involving 4-component Dirac spinors can
be written in two-component notation using

¢=(;Z); W= (x* )

Ve = xA+9¢ = x" Ao+ 94"
UyPd = ¢ — xA = P50% — X% Aa
Trid = oG — Ao = X () 4B — A (o) P
Uy?® = xot'§ 4+ Aot = xH (") 0ad” + A (0" aa
Tl ® = xo'G"A + P57 = x* (0" aa (@) A5 + P4 (G (07) 356



Superspace and superfields

For compact representation of SUSY transformations

= ‘fermionic variables’ 6%, 0% introduced: anticommuting c-numbers
(Grassmann variables)

E.g.: translations, generators P, parameters of transformation z#

N = 1 SUSY, generators Qq, Q4. Parameters of transformation 6¢, 6

= Extension of 4-dim. space—time by coordinates 6¢, oo superspace

Point in superspace: X = (z#,0%,9%)

Superfield: ¢(zH, 8%, %)



Taylor expansion in Grassmann variable: 629697 = 0

= Taylor expansion terminates after second term, i.e. ¢(0) = a+ 6¢y + 60 f
(60 = 6“6,,)

Integration: [df =0, [d8O =1
d?0 = —ze,3d0*do°

= [d206(0) = [d®0(a+0v+00F) =]

With Grassmann variables:

SUSY algebra can be written in terms of commutators only

0Q,0Q] = 200"6P,
[0Q,0Q] = [0Q,0Q] = O
[PF,0Q] = [P*,0Q] = O

= can be treated like Lie-group with anticommuting parameters



SUSY transformations

Group element of finite SUSY transformation:

S(y,€,8) = expi (£Q + EQ — y*Pu)

in analogy to group elements for Lie-groups

&, g‘ are independent of z#: global SUSY transformation

Transformation of superfield: S(y,&,€&)o(z,6,0)

Use Hausdorff's formula (e = ...) and SUSY algebra

= S(y,£,8)9(x,0,0) = p(at + yt — i€ot + 01 E, € + 0,6 + 6)

representations of generators obtained from infinitesimal transformation of
superfield



Definition of covariant derivatives:

Anticommutation relations of Qn, Dg:
{Qa, Dg}t = {Qs, Dt = {Qa, Dy} =0
{Qa, Qﬁ} = {Qax @5} =0
{Da, Dg} = {Dy, Dy} =0
{Qa, Qs} = 2i(c") 060u = 2(") o Pu
{Da; Da} — _Qi(au)aaaﬁb — _Q(Uu)adp,u

= Dq, D, anticommute with SUSY generators

= are invariant under SUSY transformations

[(€Q +€Q), Da] =0, [(Q+EQ),Dgl =0



General superfield in component form

Most general form of field depending on z, 6, 0:

®(z,0,0) = (z) + 0(x) + 0x(z) + 00F (z) + 00H (z) + 000 A, ()
+ (00)0X(x) + (00)0¢(x) + (60)(60) D(x)

Further terms vanish because of 866 = O

Components (can be complex):

o, F', H, D: scalar fields

Ay vector field

v, X, A\, & Weyl-spinorfields

= Too many components in 4-dim. for irreducible representation of SUSY
with spin < 1 (chiral or vector multiplet)

= representation is reducible
(not all component fields mix with each other under SUSY transf.)



= Irreducible superfields (smallest building blocks) from imposing
conditions on general superfield
conditions need to be invariant under SUSY transformations:

D;,® = 0: left-handed chiral superfield (LHxSF)
Dqo® = 0: right-handed chiral superfield (RHxSF)

& = dT: vector superfield

Usefulness of two-component spinors:

SM fermions: left-handed and right-handed components transform
differently

= need superfields with only two fermionic degrees of freedom

= chiral superfields describe left- or right-handed component of SM fermion
-+ scalar partner



LHYxSF in components:

¢(x,0,0) = o(x) + V20 (x) — iboH80up(x) + %(99) (Outp(x)at'0)

— 2 (O00) ) By () — (80) F ()

@, F'. scalar fields, 1. Weyl-spinor field

F: auxiliary field, unphysical (has mass dimension 2)

RHYSF:
3(x,0,0) = (¢(x,6,8))'



Transformation of component fields under infinitesimal SUSY transf.:

3p(x,0,0) =i(£Q + €Q)¢(,6,0)

Comparison with

Sp(x,0,0) = 5o + V2059 — ... — (00)5F

= determination of dp, 0y, OF"

Sp = V2€ boson — fermion
S1a —V2F¢q — iV2(H€) a0 fermion — boson
SF = 0u(—iV2ypot) F — total derivative



Vector superfield in components:
c(z) + i0x(x) — i0x(x) + 0c"0v, ()

%(99)(}\4(;@ +iN(x)) — %(55)(M (z) —iN(x))

V(x,0,0)

i(00)8 (X(x) n %aﬂx(x)aﬂ —i(80)0 ()\(:c) _ %aﬂaﬂg(ag))

+ 4+ +

1 __
- (66)(#0) (D(:c) _ %aﬂaﬂc(m

v, (z): real vector field — describes gauge boson
(V must transform as adjoint representation of gauge group)

Number of components can be reduced by SUSY gauge transformation:

6gV — wn 1g/\ 6gvezg/\7

where A(x,0,0) is a chiral superfield and g is the gauge coupling

can perform a transformation such that x(z) = ¢(z) = M(x) = N(x) = O:
“Wess—Zumino gauge”



Wess—Zumino gauge removes many unphysical degrees of freedom

still leaves “ordinary” gauge freedom, e.g. A,(z) — Au(z) + Oui(x) for
abelian theory

Wess—Zumino gauge not preserved under SUSY transformations

Transformation of component fields under infinitesimal SUSY transf.:

SA=..., Svp=...,..., OD=—EctIuN(x)— uA(x)oHE

= D transforms into a total derivative



Supersymmetric Lagrangians

Aim: construct an action that is invariant under SUSY transformations:
5/d4:c£(:c) =0
Satisfied if £L — L + total derivative

F and D terms (the terms with the largest number of  and 6 factors) of
chiral and vector superfields transform into a total derivative under SUSY
transformations

= Use F-terms and D-terms to construct an invariant action:

5= [d*% ( [d?ocy+ | d29d2§£d>

If ®is a LHYSF = ®" is also a LHxSF (since D;®™ = 0 for D;,® = 0)

= products of chiral superfields are chiral superfields, products of vector
superfields are vector superfields



F-term Lagrangian:

1 il
ijk
Terms of higher order in &, lead to non-renormalizable Lagrangians

= F-term Lagrangian contains mass terms, scalar—fermion interactions
(— superpotential), but no kinetic terms

D-term Lagrangian:

Epy = / 420429V

= D-term Lagrangian contains kinetic terms



Example: the Wess—Zumino Lagrangian

Construction of Lagrangian from chiral superfields &;

®ld;: vector superfield, (d!d;)f = oI,

O] o5 = F'F + (0up™) (0"0) + S (400, — BuporD) + (. .)

0000

Auxiliary field F' can be eliminated via equations of motion

: - 3 1 _

= £ = %(%‘0“%%’ — (Outpi)otd;) — 5] (Pitpj + bihy)
y
+ (Bue) (@) =3

7

— AijkPi¥ir — A@Tjkﬁ@j@k

1 1
a; + 5 PPy + g)\iijOjSOk




Lagrangian for scalar fields ¢; and spinor fields ; with the same mass m;;

contains couplings of type hff and Eﬁf with the same strength

= SUSY implies relations between masses and couplings

L can be rewritten as kinetic part 4+ contribution of superpotential V:

1 1
V(pi) = a;jp; + 5MijPiP] = gAiijOiSijOk

= L = 1(%0“8@@ — (Buvpi)atiby) + (Ouep;) (OHw;)

VY determines all interactions and mass terms

Special case a; = 0: Wess—Zumino model



In order to include vector bosons need to construct Lagrangian containing
also vector superfields

Further requirement: gauge invariance
/ 420420t — / 4204201629V &

Kinetic terms for gauge fields from field strength

= Supersymmetric Lagrangian in the Wess—Zumino gauge for chiral

superfields ¢; (with component fields ¢;, ;) and vector superfields V¢

(with component fields vg, A%):

() - ? -
(Dup); (DFe); + sz‘U“(Duw)z‘ - E(D/ﬂﬂ)m“%
1 ' = ) _
- ZFGVFG.LW =8 iAaaﬂ(Dﬂ)\)a . %(DMA)GU'“)\G
+ V2ig i) Tfjp; — V2ig 0 Tijp; A

1 62V 1 92y
il V(p.:. oF
5 a%agpjwz% 2 B *3 *wz% (@i, 90])

V(p;) = ajp; + %m@-jga,;goj + %Aijkgpigpjgpk: holomorphic function of chiral sf.



The potential V is the sum of the F-terms and D-terms and reads

oV
Op;

s
1
Viei, i) = +20% Y (i e + €M7

(|

All couplings are determined either by gauge couplings or the superpotential

E.g.: D-term in potential V: quartic scalar interaction is given by the gauge
coupling (in contrast to the SM case)

The £%-term (called the Fayet-Iliopoulos term) can be present only for U(1)
gauge fields

T he requirement of gauge invariance imposes constraints on the coefficients
a;, mi; and A;; of the superpotential V

The (gauge) covariant derivatives are (f®¢ are the structure constants of
the gauge group)

(Dup)i = OupitigviTio;, (D) = OuhitigviTinb;, (Dul)® = OuX*—g f*ulA°
J J



Summary on construction of SUSY Lagrangians:

Construct Lagrangians for N = 1 SUSY from chiral superfields and vector
superfields:

multiplets containing pairs of fields with the same mass, spin differs by %

Fermion Yukawa interactions and scalar quartic self-interactions are
determined by the superpotential

Gauge interactions determine couplings of the gauge fields

= Many relations between couplings



N > 1 SUSY

So far: N = 1 SUSY, simplest case, only one fermionic generator and its
hermitean adjoint: Q., QF

= one superpartner for photon: photino

N-extended SUSY: N generators Q4, G2, A=1,...,N

= N superpartners for the photon, ...

Generalization of anticommutator relation:

{Qa, Q5 = eqpX P

XAB — _xBA. “central charges”



Problem:

helicity +4 and helicity —3 fermions are in same supermultiplet
(e.g.: hypermultiplet for N =2 SUSY)

= helicity —I—% and —% fermions need to transform in the same way under
gauge transformations

not possible for chiral fermions of electroweak theory
= N > 1 SUSY theories are ‘non-chiral’

= N = 1 SUSY theories are the best candidates for a realistic low-energy
theory (extension of the SM)

However: N > 1 SUSY have interesting properties
e.g.: N = 4 SUSY field theory (flat space) is finite
Seiberg—Witten solution in N = 2 SUSY, ...



Soft SUSY breaking

Exact SUSY: mf = mf, C

= In a realistic model: SUSY must be broken

Only satisfactory way for model of SUSY breaking:
spontaneous SUSY breaking

Specific SUSY-breaking schemes (see below) in general yield effective
LLagrangian at low energies, which is supersymmetric except for explicit soft
SUSY-breaking terms

Soft SUSY-breaking terms: do not alter dimensionless couplings
(i.e. dimension of coupling constants of soft SUSY-breaking terms > 0)

= no quadratic divergences (in all orders of perturbation theory)

scale of SUSY-breaking terms: Mgysy S 1 TeV



Classification of possible soft breaking terms:
[L. Girardello, M. Grisaru '82]

e scalar mass terms: mg ;]2

1
e trilinear scalar interactions: A;;r¢;¢;¢1 + h.C.
e gaugino mass terms: %mD\

e bilinear terms: B;;¢;¢; + h.C.

e linear terms: Cj¢;

= relations between dimensionless couplings unchanged

No additional mass terms for chiral fermions



Unconstrained MSSM:

no particular SUSY breaking mechanism assumed, parameterization of
possible soft SUSY-breaking terms

= relations between dimensionless couplings unchanged
Nno quadratic divergencies

most general case:
= 105 new parameters: masses, mixing angles, phases

Good phenomenological description for universal breaking terms
(FCNC, ...)

Scenarios for SUSY breaking = prediction for soft SUSY-breaking terms in
terms of small set of parameters

Experimental determination of SUSY parameters
= Patterns of SUSY breaking



The Minimal Supersymmetric Standard Model (MSSM)

MSSM: superpartners for SM fields

SM matter fermions are in different representation of gauge group than
gauge bosons

= need to be placed in different superfields

= no SM fermion is a gaugino

Fermions, sfermions:

use definition of chiral superfields via left-handed fermions
(= the conjugates of right-handed ones appear)

LHYSF @Q: quark, squark SU(2) doublets

LHYxSF U: up-type quark, squark singlets

LHYxSF D: down-type quark, squark singlets



LHYSF L: lepton, slepton SU(2) doublets
LHYxSF E: lepton, slepton singlets

= one generation of SM fermions and their superpartners described by
five LHxSFs

Gauge bosons, gauginos:

Vector superfields:

gluons g and gluinos g

W bosons W=, WO and winos W=, W0

B boson BY and bino B°

Higgs bosons, higgsinos:
LHYSF
In MSSM: two Higgs doublets needed = two LHySFs



Comparison with SM case:

Loy = mygQrHdrp+muQrHup

d-quark mass u-quark mass

U ~ , ; 0 ~ v
Qr = , H=1w0oH', H — , H—
(d)L (v) (O)

In SUSY: term Q7 H' not allowed

Superpotential is holomorphic function of chiral superfields, i.e. depends
only on ¢;, not on ¢;

No soft SUSY-breaking terms allowed for chiral fermions

= H; and H, needed to give masses to down- and up-type fermions

Furthermore: two doublets also needed for cancellation of anomalies, quadratic
divergences



Chiral supermultiplets of the MSSM:

spin O spin 5 (SU(3)¢, SU(2), U(1)y)
squarks and quarks | @Q | (ar,dr) | (ur,dr) (3,27%)
U i ul (3,1,-2)
D | & dt (3,1,1)
sleptons and leptons | L (D,€51) (v,er) (1,2,—%)
E et e}g (1,1,1)
higgs and higgsinos | Hy | (hi, RO) | (R, R9) (1,2,%)
Hy | (W9, hy) | (A9, h7) (1,2,-3)




Vector supermultiplets:

spin 5 spin 1 | (SU(3)¢, SU(2), U(1)y)

gluinos and gluons g g (8,1,0)
winos and W-bosons | W*, WO | w=, w0 (1,3,0)
bino and B-boson B B (1,1,0)

Superpotential:

VYmssm = UyuQHy + DyqQHy + EyeLHy + pHyHy

yi, ;. Yukawa couplings, 3 x 3 matrices in family space

All terms have to be invariant under all gauge groups, SU(3)., SU(2), U(1)y

= need Y = 0O for all terms
HyHy = (Hy)a(Hpe® (a, b: weak isospin indices), ...



Vmssm 1S not the most general gauge-invariant superpotential

contains only terms that are necessary to build a realistic model

Gauge interactions introduce only terms with even number of superpartners

T he same holds for minimal version of Vyssm

= MSSM has further symmetry: “R-parity”
all SM-particles and Higgs bosons: even R-parity, Pp = +1

all superpartners: odd R-parity, Pp = —1



Soft breaking terms:

1 ~ ~ e e
Lsoft — —§<MlBB + MoyWW + M3gg> + h.c.
—m¥y HYH, —m% Hf Hy— (bHyHy+ h.c.)
— (ﬂRau@Hu — JRad@Hd — éRaesz> + h.c.

S+ 28 FA4 2F o~ Dk 7 2m o D
— Q+mQQ — L+mLL — Upmyip — dpmadp — ERMEER

Most general parameterization of SUSY-breaking terms that keep relations
between dimensionless couplings unchanged = no quadratic divergences

Gaugino mass terms, scalar mass terms, and terms like in superpotential
for all scalars

miz: 3 x 3 matrices in family space

= Mmany new parameters



Particle content of the MSSM:

Superpartners for Standard Model particles:

:u,d,c,s,t,b:L’R :Q’M’T:L,R :VG,M,T:L Spin%
a,J,E,g,E,EL’R :é,ﬁ,%:L’R :DG,M,T:L Spin 0
g Wi\,rHij v, 2, HY, HY Spin 1 / Spin 0

g ifz X?,2,3,4 Spin %

Enlarged Higgs sector:
Two Higgs doublets, physical states: h0, HY A0 =

Breaking of SU(2) x U(1)y (electroweak symmetry breaking)

= fields with different SU(2) x U(1)y quantum numbers can mix if they
have the same SU(3)., U(1)em quantum numbers



Squark mixing:

Stop, sbottom mass matrices (Xy = Aty — p/tan @, Xy, = Ap — ptan g):

2 2
ms + mig + DTl mtXt
t
M{Q = ‘L 5 5 = mfl, me, (9:('
mtXt mfR —|— mt —|— DTQ
5 m% —|— m% —|— DBl mbXb
MB = L 5 5 = m61,m62,96
mbXb ng —|— mb —|— DBQ

off-diagonal element prop. to mass of partner quark (tan g = vy /vy)

= mixing important in stop sector (also in sbottom sector for large tan 3)

gauge Invariance — me = mgL

= relation between mfl,mfz,ﬁf,m51,m52,6’5



Neutralinos and charginos:

Higgsinos and electroweak gauginos mix

charged:

~

W, ht — %7, %3, W, h; — X1, %5

= charginos: mass eigenstates

mass matrix given in terms of M,, u, tang

neutral:
~ /7 70 70 ~0 ~0 ~0 =0
2 Za,hua hd — X17X27X37X4

0 /O

mass matrix given in terms of My, Mo, u, tanpg
= only one new parameter

= MSSM predicts mass relations between neutralinos and charginos



Summary of Lecture 2:

e Lagrangians for N = 1 SUSY are constructed from chiral superfields
and vector superfields (multiplets containing pairs of fields with spin
differing by 3)

e N =1 SUSY theories are the best candidates for a realistic low-energy
theory (extension of the SM)

N > 1 SUSY theories are ‘non-chiral’

e Soft SUSY-breaking terms: do not alter dimensionless couplings,
MSUSY S 1 TeV

= NO quadratic divergences

e Unconstrained MSSM: no particular SUSY breaking mechanism assumed,
parameterization of possible soft SUSY-breaking terms



