the
abdus salam
international centre for theoretical physics

SUMMER SCHOOL ON PARTICLE PHYSICS

16 June - 4 July 2003

QDC PHASE TRANSITIONS

Lectures III \& IV

K. RAJAGOPAL
Massachusetts Institute of Technology
Cambridge, MA
U.S.A.

EXPLORING the PHASES of QCD

LARGE μ; SMALL T
whereas at high T entropy win s
\rightarrow quark -gluon plasma with symmetries of the QCD Lagrangian manifest....
At large μ with small T we find quark matter with new patterns of order:

- Color superconductivity
- Color -Flavor Locking
- Crystalline Color Superconductivity !
How can we use astrophysical observations of compact stars to determine the OCD phase diagram?

THE DIFFICULTY WITH DENSITY
Why are we still asking basie questions about QCD at high μ, low T, like "What is symmetry of ground state?" NO LATTICE CALCULATIONS
$\mu \neq 0 \rightarrow$ complex Euclidean action
\rightarrow sign problem that makes difficulty of standard Monte Carlo $\sim \mathrm{e}^{V}$.
Equally nasty sign problems can be solved in simpler systems.
Sign problem may also be evaded: $\left\{\begin{array}{l}\text { - at small } V \text {, small } \mu / T \text { folk kat; } \\ \text { - calculate at } \operatorname{Im} \mu ; \text { continue observables. } \\ \text { works at } \mu / T<\pi / 3 . V \text { can be large. }\end{array}\right.$
 may be used to locate critical point. - modify the the orly. (color superconduativil studied on lattice for NJL $\& Q C D$ i $N_{c}=2$
NO EVASION POSS IBLE FOR OCD at $\mu \gg T$

- use smallness of g at $\mu \rightarrow \infty$
- use models at accessible μ.

WHY COLOR SUPERCONDUCTIVITY?
Large $\mu \rightarrow$ quarks filling Fermi sea up to a large Fermi energy. (EF) asymptotic freedom \rightarrow weak interactions between quarks at Fermi surface.
BUT any attractive interaction, no matter how weak, \rightarrow COOPER PAIRS; $\langle q q\rangle$
one gluon exchange (t imstanton interaction) attractive in color $\overline{3}$.
(no need to resort to phonous; \therefore superconductivity more robust in QCD than in metals. Higher T_{C} / E_{F}.) $\langle q q\rangle$, ie Cooper pairs of quarks, \Rightarrow-electric t color currents supercondinc

- mass for photon t (some) gluons l?
- Meissuer effects. (Magnetic t color magnetic fields excluded.)

INTRODUCTION TO SUPERCONDUCTIVITY
I will sketch the original BCS derivation of Cooper instability f the resulting BCS state.
Consider quarks interacting via a 4-fermion interaction. Ie replace gymeng by $X G$.
Drop all indices (L, R, color, flavor). True and indices will be restored later.] BCS did the calculation using the variational method. Make an ansate for the ground state and vary the parameters specifying the ansate so as to minimize the free energy Ω.

$$
\Omega=H-\mu N
$$

where

$$
\begin{aligned}
& N=\int d^{3} p \psi^{+}(p) \psi(p) \\
& H=\int d^{3} x(\bar{\psi} \gamma \psi \psi-G \underbrace{\bar{\psi} \psi \bar{\psi} \psi})
\end{aligned}
$$

important indices dropped.
Soften, use 4 -fermi interaction with quantum numbers of one gluon exchange, but not momentum structure. Ie s-wave scattering vs, forward scattering dominated.
Or, use 4-fermion interaction with quantum numbers of 't Hooft vertex, induced by instanton. 1

Variational ansate:

$$
\left|\Psi_{B C S}\right\rangle=\prod_{p}\left[\cos \theta_{\vec{p}}+\sin \theta_{\vec{p}} a_{p}^{+} a_{-\vec{p}}^{+}\right]|0\rangle
$$

where $\theta_{\vec{p}}$ is the variational parameter. COne per \vec{p} (and per helicity, color, flovor)」

- With probability $\sin ^{2} \theta_{\vec{p}}$, the states with momenta \vec{p} and $-\vec{p}$ are both filled. With prob. $\cos ^{2} \theta_{\vec{p}}$, both empty. No probability that one filled $\&$ other empty.
- If $\theta_{\vec{p}}=\pi / 2$ for $|\vec{p}|<P_{F}$ and $\theta_{\vec{p}}=0$ for $|\vec{p}|>P_{F}$
Then state is simply a filled Fermi sea, with fermi momentum P_{F}.
- Relative to this, $a_{p}^{+} a_{-p}^{+}$makes Cooper pairs of particles or holes.
- Ansate was motivate al by Cooper's prior analysis of F.S. + one pair.

In this state,

$$
\left\langle\Psi_{B C S}\right| \psi \psi\left|\Psi_{B C S}\right\rangle \equiv \Gamma \sim \int d^{3} p \sin \theta_{p} \cos \theta_{p}
$$

Clearly, $\Gamma=0$ for Fermi scr.
$\Gamma \neq 0$ is one of the hallmarks of superconductivity. Breaks symmetries - eg $U(1)_{B}$. Need to restore all the missing indices to see what symmetries are broken.
Now, evaluate

$$
\begin{aligned}
& \text { Now, evaluate } \\
& \left\langle\bar{\Psi}_{B e s}\right| \Omega\left|\Psi_{\text {es s }}\right\rangle \sim \int d^{3} p(p-\mu) \sin ^{2} \theta_{p}-G T^{\mid p}
\end{aligned}
$$

Now, vary with respect to θ_{p} :

$$
\begin{aligned}
& \text { Now, vary with respect To } \\
& \rightarrow 2 \sin \theta_{p} \cos \theta_{p}(p-\mu)=2 G T\left(\cos ^{2} \theta_{p}-\sin ^{2} \theta^{\prime}\right. \\
& \rightarrow \tan 2 \theta_{p}=\frac{\Delta}{p-\mu} \text { where } \Delta \equiv G T
\end{aligned}
$$

state is now fully specified in terms of a quantity Δ that we must interpret and determine.

Interpreting Δ :
Evaluate energy cost of an elementary excitation with momentum P relative to the energy of the BCS state.
(Ie: "remove the pair" with momentum $p,-p$ and just fill one of the two state.)
Find:
Quasiparticle energy $=\sqrt{(p-\mu)^{2}+\Delta^{2}}$
$\therefore \Delta \equiv$ Gap - hall mark of suporcond.
Takes energy $\geqslant \Delta$ to excite a single excitation above the correlated BCS ground state. [Note: $\Delta=0$ for F.S.]
Also,

Determining $\Delta:$
Equations and $A P$ are consistent only if:

$$
\begin{aligned}
\Delta & =G \int d^{3} p \frac{\Delta}{\sqrt{(p-\mu)^{2}+\Delta^{2}}} \\
\text { so, } \Delta & =0 \text { or } \\
1 & =G \int d^{3} p \frac{1}{\sqrt{(p-\mu)^{2}+\Delta^{2}}}
\end{aligned}
$$

"the gap equation"
If $G<0$ (repulsive) then $\Delta=0$ is only solution.
If $G>0$ (attractive) then gap equation has $\Delta \neq 0$ solution no matter how small G is, because RHS log divergent

$$
\text { at } p=\mu \text { as } \Delta \rightarrow 0 \text { : }
$$

Cooper's Instability!
Solution: $\Delta \sim \mu e^{-1 / \mu^{2} G}$

Can rederive gap equation diagrammatically:

$$
\Delta=G \int d^{4} p \frac{\Delta}{P_{0}^{2}+(p-\mu)^{2}+\Delta^{2}}=G \int d^{3} p \frac{\Delta}{\sqrt{(p-\mu)^{2}+\Delta^{2}}}
$$

Can now sketch how gap equation (aud its solution) change when $6 X \rightarrow$ g) $\langle 9$, which is the correct interaction at asymptotically high densities, where $g(\mu)$ is small.

$$
\begin{aligned}
& \frac{\Delta}{*}=\frac{A}{9} \\
& \theta \text { : angle by which } \\
& \text { quant seton } \\
& \theta \mu: \text { chron mam. }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\rightarrow \Delta \sim g^{\epsilon \equiv p-\mu} \ln \frac{\Delta}{\mu} \ln \frac{\Delta}{\mu} \rightarrow \frac{\Delta}{\mu} \sim e^{- \text {const/g }} \right\rvert\,
\end{aligned}
$$

$G A P \quad A N D T_{C}$
Much work (that I will not review) suggests that @ $\mu_{q} \sim 500 \mathrm{MeV} \sim 10 \times$ nuclear density 」

$$
\begin{aligned}
& \Delta \leqslant 100 \mathrm{MeV} \\
& T_{c} \lesssim 50 \mathrm{MeV}
\end{aligned}
$$

Note: $T_{C} / E_{F} \sim 1 / 10 \rightarrow$ THIS is high T_{C} s.C.! Two classes of methods \sim agree:
i) models normalized to $\mu=0$ physics
 Eroses, Carter, Diakousv, Einas, Hie, Rusinfor,....
ii) weak-coupling QCD calculations, valid for $\mu \rightarrow \infty ; g \rightarrow 0$. (Quantitatively, valid for $g \leqslant 1$ which mans $\mu \geqslant 10^{8} \mathrm{MeV}$ KR. Shestor)

$$
\frac{\Delta}{\mu} \sim 256 \pi^{4} e^{-\frac{\pi^{2}+4}{g}}\left(\frac{N_{i}}{2}\right)^{5 / 2} \frac{1}{g^{5}} \exp \left(-\frac{3 \pi^{2}}{\sqrt{2} g}\right)
$$

Brow, Lin, Rem; Benne, Beduyue, Laval; K.R, Shutter; Kishke, wang;...
$\Gamma \quad \Gamma \sim \exp (-1 / g)$ comes from divergence in small angle shattering via exchange of unscreened magnetic gluons:

$$
-*=\sim^{*} \rightarrow 1=g^{2} \underbrace{\ln \frac{\Delta}{\mu}}_{B C S} \underbrace{\ln \frac{\Delta}{\mu}}_{\text {collinear divergence }}
$$

COLOR - FLAVOR LOCKED QUARK MATTER
Alford, kr, witase, scheeffer, Lwitezel:; ...

- occurs for $\mu \rightarrow \infty$, and at any μ if $M_{s}=M_{M_{1}}$
- all a quarks pair", and ir are zapped
- Cooper pairs antisymmetric in color, spin, and \therefore flavor
N: the factors making CFL most Sayorabe
- superfluid. (《qq>*0)
- chiral symmetry spontaneously broken
\rightarrow pseudo - Nambu-Goldstone mesons
- unbroken gauged U(i) \rightarrow massless photon
- transparent insulator (neutral without dectrom - index of refroction and Lifting iconic!
reflection/refraction coeffs. known Match
- occurs in quark matter in then bernestif:
 possibly augmented by ko-cond anscife Bedoque seluefers koptra polis.
- Ins and 1 both μ-dep end eat and uncertain
- could be single nuckar/CFL transition \rightarrow sharp interface with cheirgad boundary layers Afore kif Redly
- OR less symmetrically paired quark matter may intervene, between nceclear and CFL matter. To this we now turn....

PUTING ITE inDICES OALFIN
The condensate takes the form:

$$
\left\langle\psi_{a}^{\alpha} c \gamma_{5} \psi_{b}^{\beta} \epsilon_{\alpha \beta \gamma} \epsilon^{a b c}\right\rangle \sim \Delta_{\gamma}^{c} \neq c
$$

Greek indices: color

- antisymmetric in color because QCD interaction is oundtractive between pairs of quarks that are antisymmetric in color
$C \gamma_{5}$: Lorentz scalar
- antisymmetric in Direct indices
- favored because rotationally sym., letting whole Fermi surface pair matin indices: flavor
- antisymmetric in flavor by Pauli.

CPL: $\Delta_{\gamma}^{c}=\Delta \delta_{\gamma}^{c} \quad$ All 9 quarks pair equally. Leones a large color-flevor sym. un broken.
$N_{f}=3:$ COLOR -FLAVOR LOCKING
Condensate pairs quarks of all Alford colors \& flavors:

$$
\begin{aligned}
&\left\langle u_{L} d_{L}-d_{L} u_{L}-u_{L} d_{L}+u_{L}+u_{L} s_{L}-d_{s}-s_{L} d_{L}+s_{L} d_{L} s_{L} u_{L}-u_{-}-3 u_{L}+u_{t}\right\rangle \\
& \neq 0
\end{aligned}
$$

Locks Su(3) color to $\operatorname{su}(3)_{L}$.
ie $\operatorname{su}(3)_{\text {color } L}$ is a symmetry.
Similarly, condensate of R-quarks locks $\operatorname{su}(3)_{\text {color }}$ to $\operatorname{Su}(3)_{R}$.
Result:
SU(3) color $+C+R$ unbroken. $\leftrightarrow_{\text {use these }}$ Chiral symmetry broken. "EM" + "1sospin" to $U(1) \approx$ unbroken. \rightarrow classify excitatia All other gauge symmetries broken. $U(1)_{B}$ broken. \therefore superfluid.

Result:

$$
\begin{aligned}
& \text { Su(3) color } \times \underbrace{\operatorname{su}(3)_{L} \times \operatorname{su}(3)_{R}}_{\text {contains } U(1)_{E M}} \times U(1)_{B} \\
& \rightarrow \underbrace{\text { su(3) color }+L+R}_{\text {contains unbroken ganged } U(1)_{\widetilde{Q}}}
\end{aligned}
$$

$$
\text { ie gauge symmetries: } \operatorname{su}(3)_{\text {color }} \times U(1)_{E M} \rightarrow U\left(i_{Q}\right.
$$

\therefore Classify excitations using \tilde{Q} charge (unbroken, but modified, "photon") and "isospin".

$$
\begin{aligned}
& N_{f}=3 \text { : COLOR-FLAUDR LOCKING } \\
& \left\langle q_{L a}^{\alpha} q_{L b}^{\beta}\right\rangle=-\left\langle q_{R a}^{\alpha} q_{r b}^{\beta}\right\rangle \\
& \uparrow=\Delta \epsilon^{\alpha \beta A} \epsilon_{a b A}{ }^{\alpha} \uparrow \begin{array}{l}
\text { flair } \\
\text { not quite correct, } \\
\text { (symmetries corrati, }
\end{array} \\
& \text { Locks Su(3) } \\
& \text { Locks su(3)R } \\
& \text { to } \operatorname{su}(3)_{\text {dor }} \\
& \text { to } \operatorname{su}(3) \cot r
\end{aligned}
$$

CFL IN PICTURES
Goal: to understand what

$$
\operatorname{su}(3)_{A} \times \sec (3)_{B} \times \sec (3)_{C} \rightarrow \operatorname{sen}(3)_{A+B+C}
$$

means by understanding

$$
U(1) \times U(1) \times U(1) \rightarrow U(1)
$$

in pictures....

First, understand $U(1) \rightarrow$ nothing.

$U(1)$ associated with rotation of \rightarrow 's is unbroken.
cool the system.
system orders, or condenses

U(1) spontaneously broken by a condensate.
4's ordered
Goldstone boson: because f 's could equally well have ordered in anotha direction, long wavelength oscillations are massless.

Now ... $U(1) \times U(1) \rightarrow U(1)$

$$
u(1) \times u(1)
$$

unbroken.
$\int \cos$

angle fixed. "locked".
$\therefore U(1)$ not a symmetry.
$u(1)$.". "
$U(1)_{g+r}$ is an unbroken symmetry.
One goldstone boson....
Describe it to me...
long wavelength oscillations of the angle between \mathcal{L}.

Ie I could have chosen any angle. I broke the symmetry by choosing 90° angle \triangle

Now... $U(1) \times u(1) \times u(1) \rightarrow U(1)_{g+r+p}$

Two angles $(\uparrow \rightarrow$ and $V)$ locked.
$\therefore U(1), U(1), U(1)$ not symmetries $U(1)_{g+r+p}$ is an unbroken symmetry.
Describe the two goldstone bosons...

Convenient to describe the two Goldstone bosons as long wavelength oscillations of:
i)

 with $\xlongequal{\rho}$ unaffected
and ii)

 with 1 १ unaffected.

Now, gauge $U(1)$.
(ii) becomes longitudinal component of massive vector meson
(i) remains a goldstone boson.
\tilde{Q} in the CFL phase

$$
\begin{gathered}
\left\langle q_{a}^{\alpha} q_{b}^{\beta}\right\rangle \sim \Delta \Delta_{1} \delta_{a}^{\alpha} \delta_{b}^{\beta}+\Delta_{2} \delta_{b}^{\alpha} \delta_{a}^{\beta} \\
\tilde{Q}=Q_{E M}+\frac{1}{\sqrt{3}} T_{8} \\
\left(\begin{array} { l l }
{ \frac { 2 } { 3 } } & { \text { for } u } \\
{ - \frac { 1 } { 3 } } & { \text { for } d } \\
{ - \frac { 1 } { 3 } } & { \text { for } s }
\end{array} \quad \left\{\begin{array}{lll}
-\frac{2}{3} & \text { for } b \\
\frac{1}{3} & \text { for } & r \\
\frac{1}{3} & \text { for } & g
\end{array}\right.\right.
\end{gathered}
$$

\widetilde{Q} charges of quarks:

u	+1
u	+1
u	0
d	0
d	0
d	-1
s	0
s	0
s	-1

Similarly, $\tilde{0}$ charges of gluons all integer-valued. Also for $\tilde{\mathcal{E}}$ charges of Goldstone bosons.

EXCITATIONS

- 9 massless Nambu-Goldstone bosons
- 8 "pions"; 1 singlet (\because superfluid)
- 8 gluons \rightarrow octet of massive vector bosons. (Meissner / Hings)
- q quarks form "isospin" octet + singlet \rightarrow or, are they baryons?
- all have a gap.

All excitations have INTEGER \tilde{Q} !

- Dense quark matter with same symmetries and similar excitations os superfluid hyper NUCLEAR MATTER.
- QuARK matter and nuclear matter m ay be continuously connected. ($N_{f}=3$)
- BROKEN CHIRAL SYMMETRY; "CONFINEMENT" (described complementarily. arising at arbitrarily WEAK COUPLING.
\Rightarrow a weak coupling understanding of what were thought to be strong coupling phenome
"MINIMAL" PHASE DIAGRAMS
i) If $m_{s}=m_{4}=m_{d}$

To
 m alter
ii) Real world, with $m_{s} \gg m_{u}, d$

By "minimal" I mean:

- We know nucker matter is the phase at nuclear matter density.*
- We know CFL is the stable phase at asymptotic density.**
- Assume just a single phase transition between them. mix
* : Almost certainly correct. We will not discuss the (improbable) alternatives.
**: CERTANLY correct.
**x: Quite possibly incorrect, as we will discuss later. Minimal phase diagram leads to ...

MINIMAL CFL-NUCLEAR INTERFACE
Alford, KR, Roddy, Wilczek

NEUTRON STAR WTH CPL CORE One example below. Varying parameters f varying unclear E.O.S. \rightarrow voryiag position
 The profiles of the maximum mass superconducting stars for different values of

 the bag constant, $\Delta=100 \mathrm{MeV}$ and $m_{s}=200 \mathrm{MeV}$ are shown in Fig. 4. For $B^{1 / 4}=185 \mathrm{MeV}$ results for the sharp interface (denoted as (s)) and the mixed phase (denoted as (m)) scenario are shown. Here the maximum masses correspond to $1.33 M_{\odot}$ and $1.35 M_{\odot}$, respectively. The maximum mass for $B^{1 / 4}=175 \mathrm{MeV}$ and $B^{1 / 4}=170 \mathrm{MeV}$ are $M_{\max }=1.44 M_{\odot}$ and $M_{\max }=1.52 M_{\odot}$, respectively. Fig. 4 shows that the typical density discontinuity in the sharp interface scenario is $\approx 3 \rho_{o}$. It also shows that for smaller values of B, the $N M \rightleftharpoons Q M$ phase transition occurs very close to the surface of the star (at lower density as discussed earlier). The denser exterior regions of these stars (despite a less dense inner core) are primarily responsible for the increase in the maximum mass observed as one decreases B.
Density
 Figure 4: Profile of the maximum mass star for bag constant $B^{1 / 4}=$

 $185,175,170 \mathrm{MeV}$ with $m_{s}=200 \mathrm{MeV}$ and $\Delta=100 \mathrm{MeV}$. The mixed phase (dashed) and the sharp interface curves are shown. The Walecka model was used to describe the nuclear part of the equation of state.Fig. 4 indicates that in the mixed phase scenario there are no discontinuities in the density profile of the star. However, this is not true in general. It is interesting to note that even when mixed phases are allowed, there can still be discontinuities in energy density within them. In a small range of parameters, we find stars that have a crust of nuclear matter surrounding a mixed NM-QM core, but the mixed phase has an outer part which is a mixture of unpaired QM with NM, and an inner part that is a mixture of CFL QM with NM. At the interface between the two there

ILLUMINATING EFL QUARK MATTER
In CFL quark matter
Manuel, $K R$

$$
\operatorname{su}(3)_{L} \times \operatorname{suc}(3)_{R} \times \operatorname{su}(3)_{c d b_{r} \rightarrow \operatorname{suc}(3)_{L+R+c}+0 .}
$$

But: \because one $u(1) \in \operatorname{su}(3)_{R} \times \operatorname{su}(3)_{R}$ is gauged (electromagnetism)
\therefore one unbroken $U(1)_{\tilde{Q}} \in \operatorname{Su}(3)_{C+L+R}$
is gauged. We have seen

$$
\begin{aligned}
& \tilde{\boldsymbol{Q}}=Q+\frac{1}{\sqrt{3}} T_{8} \\
& Q=\frac{2}{3},-\frac{1}{3},-\frac{1}{3} \text { for } u, d, s \\
& \frac{1}{\sqrt{3}} T_{8}=-\frac{2}{3}, \frac{1}{3}, \frac{1}{3} \text { for r,g,b}
\end{aligned}
$$

ω_{0} have seen: condensate is $\tilde{\boldsymbol{\sigma}}$-mentrol. Now, let's find the \tilde{Q}-photon.
Analyze

$$
\left|\left(\partial_{\mu}+e A_{\mu} Q+g G_{\mu}^{8} T_{8}\right)\left\langle q_{a}^{\alpha} q_{b}^{\beta}\right\rangle\right|^{2}
$$

and find combination of A_{μ} and G_{μ} for which this is zero. (\Rightarrow No Meissker effect / Wigs mechanism for that "photon")"

One finds...

$$
\begin{aligned}
& \text { ne finds... } \quad \begin{array}{l}
\text { ordinary } \\
A_{\mu}^{*}=\cos \theta A_{\mu}^{\alpha}+\sin \theta G_{\mu}^{8} \\
A_{\mu}^{x}=-\sin \theta A_{\mu}^{8}+\cos \theta G_{\mu}^{8}
\end{array}, ~
\end{aligned}
$$

where
$A_{\mu}^{\tilde{Q}}$ is massless. This \tilde{Q}-photon satisfies Maxwell's equations with dielectric const $\epsilon \neq \epsilon_{0}$. (medium is polarisable.) To the थ̈-photon, CFL matter is a transparent dielectric medium A_{μ}^{x} is massive. Like z-boson.
θ is analogue of Weinberg angle

$$
\sin \theta=\frac{e / \sqrt{3}}{\sqrt{g^{2}+e^{2} / 3}} \simeq \frac{e}{g \sqrt{3}} \sim \frac{1}{20}
$$

\tilde{Q}-photon is "mostly ordinary photon". Alford KR wilezele; Alford Berges $K R$

A TRANSPARENT INSULATOR
ω hat can the \tilde{Q}-photon scatter off?

- the CFL condensate itself is \tilde{Q} - neutral.
- once you include nonzero quark masses, all excitations with $\tilde{\boldsymbol{G}} \neq 0$ are massive.
- \therefore So $T \ll M_{\text {lightest excitation, }}$, with \mathbb{Q} to
likely a kaon
the CFL phase is transparent to the \tilde{Q}-photon. It is a \tilde{Q}-insulator, with some index of refraction $n_{\text {CPL }} \neq 1$.

ILLUMINATING FL QUARK MATTER Manuel, KR
Suppose (just for fun) you had a quark k sta, in CFL p hose, and shone light on it:

$n_{C F L}=1+\frac{4 \alpha}{9 \pi} \frac{\mu^{2}}{J^{2}} \cos ^{2} \theta \quad$ (Litim, Manuel)
Find: $\quad \frac{\sin i}{\sin r}=n_{C F L}$
Explicit expressions in terns of n, θ for reflection a refraction coefficients for light of cither possible polarization.

Its fun to think of 10 km lenses in space, but more likely applicable version of this is in the static limit:

Suppose core of a neutron star is CFL. How does if respond to the large static \vec{B} it finds itself in?

ANSWER: (Alford, Berges, $K R$) (found via magnetic b.ci's ...) Partial Meissner effect...

Magnetic field solution (sharp boundary)
Stitching together the inside and outside solutions, we find the solution. For $\cos \alpha_{0}=0.5$

In the real world α_{0} is small, so the field is mostly converted into \tilde{Q} flux by the supercurrents and monopoles, and penetrates the interior. Only a weak field is excluded.

INTERMEDIATE DENSITY QUARK MUTTRa

- Ms important
- For orientation, consider noniuteracting quarks, $M_{u}=m_{d}=0 \quad \mu_{s} \neq 0$, impose electrical neutrality and weak eqbm:

- In nonint erceting q nark matter, $\delta P_{F} \simeq \frac{m_{s}{ }^{2}}{4 \mu}$
- Motivates result that CFL pairing "breaks" when $\frac{M_{s}^{2}}{4 \mu}>\Delta$
- Also, when CFL "breaks", no residual〈ud> pairing either. Alford, KR

LESS SYMMETRIC PAIRING
Recall: $\left\langle\psi_{a}^{\alpha} c \gamma_{\delta} \psi_{b}^{\beta} \epsilon_{\alpha \beta \gamma} \epsilon^{a b c}\right\rangle \sim \Delta_{\gamma}^{c}$ where the CFL phase has $\Delta_{y}^{c}=\Delta\left(\begin{array}{c}1 \\ 0\end{array} 1\right)$
In response to effects of m_{s},

$$
\begin{aligned}
& \text { try: } \\
& \begin{array}{c}
\text { try: } \\
-\Delta_{\gamma}^{c}=\Delta\left(\begin{array}{ll}
000 \\
0 & 0 \\
0 & 0
\end{array}\right) \begin{array}{c}
\text { - only pairs } u, d \\
\text { and } r, g \\
\text { - called "2sc"1 because }
\end{array} \\
\text { this is only option }
\end{array} \\
& \begin{array}{l}
\text { called "sc" because } \\
\text { this is only option }
\end{array} \\
& \text { in } H_{3}=2 \text { lCD }
\end{aligned}
$$

- stable phase, but seemstalways (ie at all ms_{s}) to be less favorable than either CFL or $\Delta=0$. Alford, $K R$ *: mode dependent, i. mot certain
- If not that, given the pattern of P_{F}^{\prime} 's why not try...

THE KOUVARIS PHASE*
*: well call it "ga press CFL" in the literature
$\Delta_{\gamma}^{c}=\Delta\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ bund and us pairs, uni) 1001) but no dis.

- same 1 symmetries as CFL, including unbroken $U(1) \tilde{Q}$
- two geapless quarks: dos - both these have $\tilde{Q}=0$, so still a \tilde{Q} - insulator
- we hove to date not succeeded in solving the coupled gap and neutrality equations for such a phase, indicating that it is not stable. However, we are unsure why we cannot find a solution. So, stay tuned. Kouvarts, Alford, KR, work in progeny

CRYSTALLINE COLOR SUPER CONDVE TIUITY

As $\mu \nu$, if CFL "breaks" before you get to hadronic matter, quark matter at intermediate density may have:
Pairing between quarks with different PF
GOAL: both quarks in a pair on respective Fermi surfaces
IDEA: Cooper pairs with momentum! $(\vec{p}+\vec{q},-\vec{p}+\vec{q})$ for any \vec{p}.
Each pair has total momentum $2 \vec{q}$
$\bullet|\xi| \simeq 1.2 \delta P_{F}$ determined energetically

- "pattern" of $\left\{\hat{q}_{i}\right\}$

$$
\begin{aligned}
& " o f\left\{\hat{q}_{i}\right\} \\
& \langle\psi \psi\rangle \sim \Delta \sum_{i} e^{i \vec{q}_{i} \cdot \ddot{\vec{x}}}
\end{aligned}
$$

- spontaneous breaking of rotational and tran slational symmetry.
LOFF: Larkin OUchinnikov Fulde Ferrell (1964) considoral this state for $\left\langle e_{\uparrow} e_{\downarrow}\right\rangle$ pairing with leman spitting. State not seed in condensed matter. Problem is that $\vec{B} \rightarrow$ orbital effects, not just zeeman. $Q \subset D$, with its "flavor Zeeman spitting" turns out to be the natural context for LOFF's idea!

SIMPLIFICATIONS, FOR NOW

- two flavors, with Fermi surfaces split by a δ_{μ} introduced by hand:

$$
\begin{aligned}
& \mu_{u}=\mu+\delta \mu \\
& \mu_{d}=\mu-\delta \mu
\end{aligned}
$$

(instead of 3 flavors with ES. splitting from M_{s}, neutrality.) See work by Kundu + KR for how to use m_{s} instead of $\delta \mu$.

- point. like 4-fermion interaction between queries, You $\rightarrow X$ with quantum \#s of 9 .
See Leibovich, KR, Shuster;
Gianuakis, Lin, Ron for jut
- $\Delta \ll \mu$

Basic LOFF idea

Try Cooper pairs ($\mathbf{p},-\mathbf{p}+2 \mathbf{q}$)

- total momentum $2 \mathbf{q}$ for each and every pair
- each quark at its Fermi surface, even with $p_{F}^{u} \neq p_{F}^{d}$
- \hat{q} chosen spontaneously; $|\mathbf{q}|$ determined variationally (result is $|\mathbf{q}|=q_{0} \approx 1.20 \delta \mu$)
- condensate forms a ring on each Fermi surface, with opening angle $\psi_{u} \approx \psi_{d} \approx 2 \cos ^{-1}\left(\delta \mu / q_{0}\right) \approx 67.1^{\circ}$

$\frac{\text { SINGLE PLANE WAVE }}{\langle\Psi(x) \psi(x)\rangle \sim \Delta e^{i \vec{q} \cdot \vec{x}}}$

$\Omega-S_{\text {unpaired }}$:

$$
\begin{aligned}
& \text { (1) } \delta \mu_{1}: \beta^{\dagger} \text { order } \\
& B C S \rightarrow \text { OF } \\
& \text { C } \delta_{\mu_{2}} \text { : } 2^{\text {nd }} \text { order } \\
& \text { DEF } \rightarrow \text { un paired } \\
& \frac{\delta \mu_{2}-\delta \mu_{1}}{\delta \mu_{1}}=.07
\end{aligned}
$$

MULTIPLE PLANE WAVES
If system unstable to formation of 1 phone wave, this allows quarks lying on one ring on each F.S. to pair. Much of F.S. remoins unpaired....
Why not multiple \vec{q}^{\prime} 's i.e. multiple rings?
Want to compare many different possible $\left\{\vec{q}_{i}\right\}$;

$$
\begin{aligned}
& \text { possible }\left\{q_{i}\right\} ; \\
& \langle\psi(x) \psi(x)\rangle=\sum_{\left\{\vec{q}_{i}\right\}} \Delta e^{i 2 \vec{q}_{i} \cdot \vec{x}}
\end{aligned}
$$

and for each $\{\vec{q}:\}$ calculate Δ and Ω $\left\{q_{i}\right\}$, ie crystal structure, with lowest Ω wins.

GINZBURG-LANDAU
For $\Delta \ll \Delta_{0}$, ie for $\delta_{\mu} \rightarrow \delta \mu_{2}$, the free energy Ω can be evaluated ordor-by-order in Δ, for many crystal structures.
Order $\Delta^{2}:\left|\vec{q}_{i}\right|=1.2 \delta \mu$ for all $q_{i}^{\prime} s$
\rightarrow each q_{i} gives pairing on a ring with opening angle 67°.

- the more $q_{i}{ }^{\prime} s$, the bettor.

Order Δ^{4} and b^{6} : "interaction between rings"

- 'mtersecting rings costs a lot
\Rightarrow at most 9 plane waver
- "regularity" (lots of different ways of making closed
4-, 6-, ... sided figures from $q: s$)
strongly favored.
- indicates that best choice is....

Favor ad according to cinobury FCC Crystal La nears on elysis, that is not yet quantitatively reliable. Bowers $1 / R$

- The cube structure is the favored ground state: eight wave vectors pointing towards the corners of a cube, forming the eight shortest vectors in the reciprocal lattice of a face-centered-cubic crystal. The gap function is

$$
\begin{aligned}
\Delta(\mathrm{x})= & 2 \Delta\left[\cos \frac{2 \pi}{a}(x+y+z)+\cos \frac{2 \pi}{a}(x-y+z)\right. \\
\Delta \sim \Delta_{\mathbf{C} F_{L}} & \left.+\cos \frac{2 \pi}{a}(x+y-z)+\cos \frac{2 \pi}{a}(-x+y+z)\right]
\end{aligned}
$$

A unit cell:

with contours $\Delta(\mathrm{x})=+4 \Delta$ (black), 0 (gray), -4Δ (white). Lattice constant is $a=\sqrt{3} \pi /|\mathbf{q}| \simeq 6.012 / \Delta_{0}$.

Crystal structures

Candidate crystal structures with P plane waves, specified by their symmetry group \mathcal{G} and Föppl configuration. Bars denote dimensionless equivalents: $\bar{\beta}=\beta \delta \mu^{2}, \bar{\gamma}=\gamma \delta \mu^{4}, \bar{\Omega}=\Omega /\left(\delta \mu_{2}^{2} N_{0}\right)$ with $N_{0}=2 \bar{\mu}^{2} / \pi^{2} . \bar{\Omega}_{\text {min }}$ is the (dimensionless) minimum free energy at $\delta \mu=\delta \mu_{2}$. The phase transition (first order for $\bar{\beta}<0$ and $\bar{\gamma}>0$, second order for $\bar{\beta}>0$ and $\bar{\gamma}>0$) occurs at $\delta \mu_{*}$.

Continuous variations $\Omega=\alpha \Delta^{2}+\beta \Delta^{4}+8 \Delta^{6}+\cdots$
FOR DIFFERENT CBY/STALS WTH 8 WHVES

- Varying the "height" of a square antiprism

- Varying the "twist" of a square prism

CONCLUSIONS

- FCC cube is favored structure. Ginzburg-Landeu analysis has taught as what features of a crystal structure are favored, and thus why FCC bert.
- But: $\Omega=\alpha \Delta^{2}+\beta \Delta^{4}+\gamma \Delta^{6}+w i+h ~ \beta, \gamma$ large and negative, and $\alpha \sim\left(\delta \mu-\delta \mu_{i}\right)$ \Rightarrow strong $1^{\text {st }}$ order crystalline \rightarrow of G-L unpaired transition at a analysis $\delta \mu_{*} \gg \delta \mu_{2}$ of liquid- - crystall ine "window" in phase
solid" transition diagram not small
- Δ not small
\Rightarrow Ginaburg-Londian cannot provide quantitative cal curation of Δ, Ω
- Make $F C C$ ansads. calculate Ω, Δ variationally. (In Progress)

Unstable structures?

- Ginzburg-Landau instability guarantees a strong firstorder transition at some $\delta \mu=\delta \mu_{*} \gg \delta \mu_{2}$
- $\Delta_{*}, \Omega_{\text {min }}$ are large, but cannot be predicted by the Ginzburg-Landau method
- Larger instability \Rightarrow more robust ground state (cube has the most unstable Ginzburg-Landau free energy)

OUTLOOK AND IMPLICATIONS

- Variational calculation for FCC crystal, now that we know this is the funeral ane.
- three - flavor analysis

CRYSTALLINE SUPER FLUIDITY

- this phase may be created in gases of ultracold fermionic atoms (lombescot)
- trap 2 hyperfine states of atom;
- arrange strong attractive interaction between 2 "species"
- arrange different number densities for 2 "species"
VORTEX PINNING \& PULSAR GLITCHES:
- rotate crystal; what hap pens?
vortices? pinned at inter sections of crystal planes?
- if so, presence of a layer of crystalline color superconducting quark matter within neutron stor \rightarrow glitch

IMPLICATIONS FOR COMPACT STARS or, flipping that around,... How can we use observations of compact stars to determine the high density region of the phase diagram?

- If core of "neutron" star is quark matter, then it IS a color superconductor.

$$
T_{\text {star }} \sim k e V \lll T_{c}
$$

- Not known whether neutron stors have quark mather cores. Goal: understuad observational consequences, so we con find out.
FIRST: Con we discover whether there is a crystalline color superconductivity window?
- As a function of increasing depth, $\mathrm{ms}^{2} / \mu \Delta$ decreases.
\therefore LUFF WINDOW \rightarrow LIFE SHELL
THEN: List other examples of ways to answer this question.

SEVERHL SLENARIDS

GLITCHES
Pulsars glitch:

$$
\frac{\delta \Omega}{\Omega} \sim 10^{-9} \rightarrow 10^{-6}
$$

Conventional mechanism:
 in neutron superfluid neutron superfluid ROTATIONAL VORTICES Glitches require non-uniformity (ie crystal) to impede (pin) motion of cortices.
\therefore thought impossible in
GLITCH
 QM.

GLITCHES IN QUARK MATTER?

- crystalline condensate may pin vortices, since they will prefer to follow intersections of model planes

- Could some (eg the smaller?) glitches originate in crystalline layer in core?
- Could observed features of glitches rule out exist me of crystalline layer?
- Serious glitch phenomenology awaits calculation of pinning force. This is in progress.

ASTROPHYSICAL CONSEQUENCES IF
NEUTRON STARS HAVE CPL CORES

- For given M, R a little smaller. But, uncertainty in R still Rails dominated by nucteor outer lager.

- If spherical stars have CFL cores but oblate stars do not, \rightarrow unusual spin-up history. wlendeuning, he berg, Blacelke, frimatitorg
- Transparent insulator. $\rightarrow \vec{B}$ in core not in fine tubes; not frozen. $\rightarrow \vec{B}$ evolution governed by outer layer.
- For $T<$ few MeV :
- very small specific heat, neutrino emissivity, neutrino opacity. Foiturner
- superfluidity \rightarrow very large shan wis thermal conductivity
\Rightarrow cooling of star controlled by nuclear outer layer
- During super nova, T~ tens of $\mathrm{MeV}>$ meson moss
\rightarrow mesons emit and scatter neutrinos Readily
- aud, alromen be phase transitions carter tan ty
$\xrightarrow{?}$ signals in time distribution of supernova \mathscr{y}
- Bare quark star would be nice. Not seen...

EQUATTON OF STATE: Quark matter hes effects; color superconductivity offects pressure only at order $\Delta^{2} / \mu^{2} \sim 5-10 \%$.
BUT: sharP density discontinuity mag be seen in gravitational waves emitted during inspiral? (a L160 signal?)
NEUTRON STAR COOLING: rapid ע-emission if some quarks have $\Delta \leqslant T$. Fully $\begin{aligned} & \text { Could } \\ & \text { rid l }\end{aligned}$ gapped quark matter (ie CFL) is inert. pout This can torch us value of smallest gap. x-hal (Page Prakash Lattimer
SUPERNOVA NEUTRINOS: Transition to C.S. during first seconds of cooling of protoneutron star \rightarrow sudden ν-tran sparency \rightarrow sudden burst of ν 's... $\xrightarrow{?}$ bump in ν time distribution © SNO, superk?
(Garter, Redly)

CFL EFFECTIVE THEORY

- an important, and well-developed, aspect of the subject that I have not had time to treat.
- CFL phase has broken chiral symmetry and \therefore light Goldstone bosons. And yet, for large μ the coupling is weak and so we con calculate, eg, parameters in the e.f.t. describing the goldstone bosons. Thus,

$$
m_{\pi, k, \eta} \text { \& } f_{\pi, k, \eta} \text { now }
$$

calculatal from first principles for $g \rightarrow 0, \mu \rightarrow \infty$.
Ca sal busoni, Gutta; Son, Step hawou; Rho, Wirtba, Zuhed; Hong, Len, Min; Monnd, Tytyrt; Zorrouby; Begone, Beadrgno, Sage; Bedoqua, Solinfer; Kaplon, Rally;

OUTSTANDNG QUESTIONS
"LTTLE" 三 people are working on them

- construct vertices in crystalline phase
- Crystalline phase beyond Giniturg-Louhty
- is the kouvarls phase stable? favorable?
- astro physics of signatures I described
- microscopic understanding of K^{0} (10tha of CFL condensate
- lattice calculation of analogue phenomena in $N_{c}=2 \otimes C D$ or $N_{F}=2$ QCD at large $\mu_{\text {isospin. }}$
"B16" (E new ideas needed before work begins)
- new astrop hey steal signatures
- reformulate weak coupling calculation of gap to make it systematic and, perhaps, better convergent.
- Solve the sign problem! then, answer all questions on latitiee. [Need to reorganise lattice path integral to avoid need for huge cancellations at $\mu \neq 0$.$] solving this would rovelutionine.$ CMT tod....

