SUMMER SCHOOL ON PARTICLE PHYSICS

16 June - 4 July 2003

DARK ENERGY

Special Lecture - Part 2
A. LINDE

Stanford University
Stanford, CA
U.S.A.

Dark Energy 73%

Cosmological Constant
Problem
The simplest possibility: the amplest

$$
\Delta t=H^{-1} \quad \Delta V \ll V
$$

$$
\begin{aligned}
\Delta V= & V^{\prime} \Delta \varphi=V^{\prime} \dot{\varphi} \Delta t=\frac{\alpha^{2}}{3 H^{2}}=\frac{\alpha^{\prime}}{V} \\
|\alpha|<V & \approx 10^{-120}
\end{aligned}
$$

Condition: $\quad|\alpha|<V \approx 10^{-120}$
Anthropic bound:

$$
|V| \leq 10^{-118}
$$

Anthropic solution to the cosmological constant problem:

During the early stage of eternal inflation in this model, the universe becomes divided into exponentially many exponentially large domains containing all possible values of the field φ with all possible values of $V(\varphi)$

We can live only in those parts where

$$
|V(\varphi)| \lesssim 10^{2} \rho_{0} \sim 10^{-27} \mathrm{~g} / \mathrm{cm}^{3}
$$

A more detailed study:
Weinberg 87
Efstathiou 95
Martel, Shapiro, Weinberg 98
Garriga, Vilenkin 2000-2002

Simplest dark energy model

$$
V=\alpha \varphi \quad \alpha<10^{-120}
$$

Eternal infation puts φ to different places in different parts of the universe, and then the field stays there $>10^{10}$ years

We can live there only if

$$
|\mathrm{V}| \leqq 10^{-27}-10^{-28} 9 / \mathrm{cm}^{3}
$$

A similar model

Flat universe, $\Lambda C D M$ Λ is in units of $\rho_{0}=10^{-29} \mathrm{~g} / \mathrm{cm}^{3}$

Predictions?
In each of these models separately

$$
w \approx-1
$$

Global collapse in $t \gg 10^{10}$ years
Garriga، Vilenkin 2002
In a combination of these two models $V=\alpha \varphi+\frac{m^{2} V^{2}}{2}+C$

$$
c \gg-1
$$

Global collapse in $10^{10}-10^{11}$ years

$$
\text { A.L. } 2003
$$

Similar result is valid for models based on $N=8$ SUGRA

Galosh, A.L., Prokushkin, Shmakove 2002

A more general case

FIG. 2. Effective potential $V=\Lambda c\left(e^{\phi / 2}-C\right)$ with $C=0,0.1,0.2,0.3$ and 0.4 . The coefficients Λ_{c} are fixed by the condition that for each value of c one should have the same value of the Hubble constant and $\Omega_{D}=0.7$ at the present moment $t=t_{0}$.

FIG. 4. Scale factor $a(t)$ in the model with the potential $V=\Lambda_{C}\left(e^{\phi / 2}-C\right)$. The upper (red) curve corresponds to the model with $c=0$. The curves below it correspond to $C=0.1,0.2,0.3$ and 0.4. The dashed curve corresponds to $C=0.5$. The present moment is $t=0$. Time is given in units of $H^{-1}(t=0) \approx 14$ billion years.

FIG. 5. Equation of state w as a function of redshift z for $C=0,0.1,0.2,0.3,0.4$ and 0.5 . For $C=0.5$ this function sharply rises to $w>0$ near $z=0$, which is ruled out by observational data. The red (thick) line $w=-1$ corresponds to the model with $C=0$.

FIG. 3. Dark energy Ω_{D} as a function of redshift z for $V=\Lambda_{C}\left(e^{\phi / 2}-C\right)$ with $C=0,0.1,0.2,0.3,0.4$ and 0.5 . The present time corresponds to $z=0$. As we see, all curves are practically indistinguishable, except for the dashed curve corresponding to $C=0.5$.

SNAP, Planck and our future Kallosh, Kratochvil, A.L., Lieder $\begin{gathered}\text { shmakova }\end{gathered}$

Even if SNAP + Planck establish that $u=-1, w^{\prime}=0$ (cosmological constant), this will only mean, for our linear model $V=V_{0}+\alpha \varphi$, that the global collapse will not occur during the next $30 \cdot 10^{9} y$ rs, at 95% confidence level.

No statements can be made concerning acceleration for the next 50-100 billion years

Conclusion
(1.) In the simplest model of dark energy providing an anthropic solution to the cosmological constant problem the stage of acceleration ends by a global collapse of the universe.
(2.) The same is true for $N=8$ SUGRA, which is the second model where the cosmological constant problem is solved
(3.) The only known realization of IS space in string theory is unstable.

In none of these models do we have eternal acceleration of the universe.

In some of these models the universe collapses within 10-100 billion years

In most of these models the universe decelerates before collapsing.

If this is the case, we can find it using cosmological observations (SNAP, weak leasing, LSS, etc.)

The main conclusion:
Astronomical observations are not about finding w, O_{D} or H They are about our future and the fate of the Universe

An important feature of this model:

Sooner or later, V(c) becomes negative
But total energy density $\rho=\frac{\dot{\varphi}^{2}}{2}+V$ cannot become negative:

$$
H^{2}=\left(\frac{\dot{a}}{a}\right)^{2}=\rho / 3 \geqslant 0
$$

At the moment when $\rho \Rightarrow 0$ expansion stops, $H=\frac{\dot{a}}{a}=0$, and then the universe collapses
despite the fact that it is feat

