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I. INTRODUCTION AND MOTIVATION

Much recent research on modifications of spacetime.

e.g.,

• extra dimensions

• the subject here: noncommutative spacetime

Motivations:

• General Relativity can be taken to suggest there is a minimum sensible length scale. Po-

sition uncertainty also suggested by noncommutation of coordinate operators, so explore

separately consequences of such noncommutation (Doplicher, Fredenhagen, and Roberts).

• String theory can be solved in a background field. The solution gives coordinate operators

that do not commute. (Ardalan, Arfaei, and Sheikh-Jabbari; Seiberg and Witten; Connes,

Douglas, and Schwarz)

Both of these suggest/lead to the commutation relation for spacetime coordinate operators,



although for the string theory version ("canonical version") the 4 x 4 array on the RHS is a

set of constants and not something that transforms like a Lorentz tensor.

• An early (Snyder, AD 1947!) motivation for noncommutation of coordinates was the hope

that field theory based on coordinates that could not be so sharply localized would have

fewer divergence problems. This motivation no longer stands, but the commutator algebra

suggested by Snyder in that era remains interesting and potentially useful.

• Final motivation: this is basic research in field theory

Elaborate on first two motivations:
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A. General relativity

Measurements pack energy into the region we measure: Heisenberg.

Find: below a certain size, cannot see what we localize. It becomes a black hole.

Radius of black hole,

R =
Gm efl

Packed energy, if size scale is a,

and of course mejj = E/c2.

If a is big, we are fine. At limit, R = a,

E =

2c2

he

G_h_
c2 ac

a =

(1.2)

(1.3)

(1.4)

(1.5)

Might have guessed: the answer is the Planck length.

Point: Effectively, there is a minimum length scale. Uncertainty is position is also a consequence

of non-commuting coordinate operators. Abstract the principle and try to see what follows just

from idea that coordinates are operators that don't commute.

8



1. Note on shrinking size of Planck scale if there are extra dimensions

A = Planck length

cj) = gravitational potential (potential energy/unit mass)

Here let H= 1, c = 1.

In4D,

(f> = — .
r

where Ao is just what we had above with the h and c in place,

(1.6)

Ao = - " cm w (l/10 i y GeV (1.7)

Suppose we have n extra dimensions. The extra dimensions have radius R. At short distance in

4 + n dimensions, the potential falls like (radius)~(n+1), but at long distances, the falloff in the

extra dimensions saturates and the falloff is just in the dimensions we see, and is just the (1/r) that

we normally see,
( \n+2M

r « R
(1.8)

r» R
Rnr

\n
n

+2M
rn+l



Matching the long distance results,
, Xn+2

Ao = -j^r (!-9)
which may be manipulated into

n/(n+2)

(1.10)

This says that the length scale associated with gravity could get much larger than the 10~19 cm we

are used to, if there are extra dimensions and their length scale is not too small. For example, say

there are 2 extra dimensions and that their length scale R is 1 mm = 10"1 cm. Then

getting the scale for length uncertainty into the region where we should be thinking about it now.
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B. String theory

String theory solved in the presence of a background field leads to noncommutative coordinates.

Not as hard to follow the manipulations as I once thought.

Standard Nambu-Goto string action, with extra term. B^v = background field. Will be taken

constant: uniform and static.

S = - ^ / dadr {gah
n,vdaX"dhX

v + eah B,vdaX"dhX
v] (1.12)

For open string, the a integral runs between endpoints at a = 0 and a = ir.

To get the equations of motion, we do the standard variational principle calculation. Let 8S = 0

when X11 —> X11 + 8X11, and integrate by parts,

0 = - / dcrdr

+ J dT {-r],JX»daX» + B,JX»dTX»}Y==l (1.13)

(Useful to write out (eOi = - e 0 1 = 1)
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Thus, including a background field does not change the string equation of motion,

(d2
T-dl)X" = 0 (1.15)

but it does change the boundary condition,

daX^ - B^dTXu --= 0 , a = 0,TT (1.16)

The equation of motion means that we can expand the string position X11 in terms of functions

e~mr cos no and e~mr sin no plus constants and linear terms. To satisfy the boundary conditions,

we arrange the coefficients as,

J] (z< cos M + # t < sin no) (1.17)

[Reality of X means that a^ = (a^n) .] To verify the boundary conditions, write out,

daX^ = B%f | V e - r a T ( - ! < sin no + B ^ cos na) , (1.18)

and

^ ~mT ( < c o s KCT - iBv
pa

p
n sinna) . (1.19)
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In the boundary condition equation, the momentum term and the cosine terms cancel, leaving the

sine terms. But they are o.k., since the b. c. equation only has to work at a — 0 and a — IT.

******* Do quantum mechanics

Find the commutation relations of the expansion coefficients of X11. The basic rule is

[X^a, r), P V , r)] = i^8(a - a1) (1.20)

and we shall also use

[P>,r),P»)] = 0. (1.21)

The definition of the canonical momentum density is

and this gives

Pv = ®% , (1-22)

'Pv = dTX» - ByiXp (1.23)

or

~ BVpBPfian C O S UCF) ( L 2 4 )
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or

2-KCIPV = Mv^ + J2 e " " > l > f cos na (1.25)

with

M^ = {l-B2Yp (1.26)

Easy to show that M.^v is symmetric.

H e n c e f r o m [X^,PV]...,

JWppr + > e ""• jvi~pa'n cos :

= zvrza TJ o[u — <T ) yV.ZI)

Integrate over a and a' using

r r
/ da cos na = da sinner = 0 , n ^ 0 (1-28)

Jo Jo
Get

' i ^ 1 ^ P J • / - i ^
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Since this has to work for any r,

[pV]=0 (1.30)

and

[xS,pv]=2iat(M-1r (1.31)

Then use
P 7T
/ o?cr cos n'cr cos na = — (Snnt + Sn^nt) (1-32)

Jo 2

Get

[^ ( e - W T < # - e'»'Ta!lnl) , e - W T a ^ + e'WTa^ml] = 4a' ( X " 1 ) ^ (1.33)

To make the r dependence work,

, a»_m] - \atn, a»m] = 4na'Snm (M^ (1.34)

Now use [P^, P1'] = 0. Same manipulations lead to

[<,a^m] + [a^n,a^] =0 (1.35)
Thus,

8ni-m (AT1)"" (1.36)
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Can also show

[K,<J - 0 - [*£,<] (1.37)
Now examine [X̂ 1, Xv\.

< + fT + 5^/(7 + J ] *—- {ia»n cos M + Byp
n sin M ) ,

•p" T -\- ti"Bpr a' + > (ia'L cos ma1 + i^oc , sin ma')
rn '

>V] + [/r

— \ —(Ml : ) cos na cos ncr' — i (B M. l\ sin na cos ncr'

F (BM~1Byy smnasmna'\ (1.38)

Useful information: BM~X = M~1B, and (A'(~1-B)Ali/ is antisymmetric (both easy to prove).
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Get

Xti{a,T),Xv{a',T)] = [<, x"Q] + 2ia' (M'1 B)^ < a + a' + J ^ - sinn(a + a') I (1.39)

The function has the values

o" + cr + > - smn(

0 a = a' = 0

2TT CT = cr ' = IT

IT otherwise

(1.40)

(Hint on proving the above: Expand functions f(x) = x and f(x) = 1 in a sine series on the

interval x = (0, IT). Examine the result )

Thus

[X"(<7, r), X^a' , r)] = K , x ]̂ + 2z^a' ((1 - B2)~\ V / i i /

0 cr = a' = 0

2 a = a' = TT (1.41)

1 otherwise

Have no information on the x0 commutator, but no matter what its value, we have noncommuta-

tivity somewhere. Suppose zero, define the CM of the string,

i r
= - daX11

o

(1.42)
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and find

[£", xv] = 2nra' ((1 - B2)-lByv = 16^ (1.43)

Summary: There is noncommutativity of coordinates if we quantize a string in the presence of a

background field.
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II. MULTIPLYING FIELDS: MOYAL PRODUCTS

Coordinates x^ are operators.

The fields / are now mappings ("functions") f(x) of arguments that do not mutually commute.

Hence in general, fields / and g don't commute, not just because of canonical commutation rela-

tions between fields and canonical momentum densities, but because of the x themselves.

We don't know how to calculate with Lagrangians that depend on products of fields when the fields

are not, at least classically, ordinary functions. We have to learn how. The way is to establish a

mapping between fields and ordinary functions.

But ordinary functions, again not thinking of the quantum mechanics, commute if we multiply

using the ordinary product. When we map products of fields to products of ordinary functions, the

product will not turn out to be the ordinary product.

A. Multiplying fields

Deal with fields f(x) by relating them to ordinary functions f(x) of ordinary variables.

f(x) = [(dp)e-^f(p) (2.1)
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with

f(x) = / (dp)e rpxf(p) (2.2)
J

where f(p) and f(x) are an ordinary functions and (dp) = d4p/(2ir)4.

Multiply fields,

f(x)g(x) = (fog)(x) or (fg)(x)

= j(dp)e-tp£f(p)j(dk)e-tk£g(k) (2.3)

The two exponentials don't commute, so we use the Baker-Campbell-Hausdorff-... theorem,

For A = —ips, B = —ikx, and if [x11, xv\ = i6^v where the 6^v are just ordinary numbers, then

the series terminates. One can manipulate,

fg= =

I (dp)(dk)(dx)(dy) e-^+k^f(x)g(y) exp | - ,

20



I 1
-dxQ^dy\ f(x)g(y)

= j(dq) e~^ J(dx) etqx exp [ ^ ^ 1 f(x)g(y) (2.5)

Looking at the Fourier transform in the last line, realize the correspondence

^dl \f(x)g(y) (2.6)
y=x

Alternative writing,

(f*g)(x) = f(x) exp y-^d^dA g(x) (2.7)

Thus, work with ordinary functions with unusual multiplication rule. Multiplication rule mimics

noncommutative multiplication in the operator algebra.

Called "Moyal product" or "Weyl-Moyal product" or "star-product."

Query: What is [x^ * xv]l (Definition: [x^ * xv\ = x^ * xv - xv * x^. Note the absence of the hat,

so that these are just the ordinary x's.)

21



B. Lagrangians, using example of QED

Keep the Lagrangian the same. But: fields are operators dependent upon noncommutative coordi-

nates. For QED,
A

 J ^ A A A A

C = — F U V F -\-ib\i & — e A — m)w (2.8)
4

and can somewhat formally define the action S from

S = Tr t (2.9)

although in practical terms we shall define the trace from the integral of the ordinary space corre-

spondent of the Lagrangian.

The Lagrangian as a ordinary function becomes

1
C — F ~)r F^V -I- ?/; -tr (7 ih — P A — m\ -tr il) (?]()}

4

with

S= f(dx)C (2.11)
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C. Mini-theorems

g * h is associative (2.12)

f

(dx) f(x) -k g(x) = / (dx) g(x) * f(x) (at least for bosons) (2.13)

. f(dx) f(x)*g(x) = f(dx) f(x)g(x) (2.14)

• t{dx)f*g*h= (dx)f*gh= (dx)fg*h (2.15)

D. Gauge transformations

If U is a unitary operator, the Lagrangian should be invariant under field redefinitions that follow

from acting with U in the field ip. Now, however, multiplications are done using star products.

Vi \ 7/1 / / oL, 7/1 (D V / oL, 7/1 I / 1 O I

With ordinary multiplication, compensate for the derivative acting on elc" by having a shift in the
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electromagnetic field under a gauge transformation, so that A

But now U and A^ don't commute, and what works is:

(2.17)

to make

( ^ - ieA'J * V' = U * ( ^ - zeAJ * V (2-18)

The more complicated A^ transformation also means that the usual QED definition of F^, namely

F^ = dilAv — duA^, is not gauge invariant or gauge covariant. Instead, use

^ E ^ - ^ + ieKt^] (2.19)

Then under a gauge transformation

F —» F' — II * F * r/"1" (2 20")

Hence the QED action, Eq. (2.11), is gauge invariant.

E. Limitations of gauge transformations

We have a gauge transformation ip —> ip1 = U * ip

that charge as the elementary unit, it is for Q = 1.

24
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Say there is second matter field with different charge, a field </> with charge Q ^ 1.

Expect

(f> -+ cf)' = e l Q a * <j> = UQ * <j>. (2.21)

The covariant derivative for charge Q is

D^4> = {dp + iQeA^) * </> (2.22)

and a gauge transformation is should change like

D^^ D'J = UQ*D^. (2.23)

The photon already has its gauge transformation behavior fixed, so we just have to try it:

(dn + iQeAJ + t -^ (dp + iQeA'J *(/>'= [/9^</) + (^ f / 9 ) *</> +

+ zg e [ /*A A t *[ / Q - 1 *</ ) -g(a A 1 [ / )*[ / 9 - 1 *</ ) . (2.24)

The red would be perfect if the multiplications commuted, and the purple terms would cancel. But

things don't commute, and we get the correct result only for Q = 1.

Q = — 1 also possible. Let the gauge transformation be

cf> -^ <// = </> * e8Qa = <f>*UQ (2.25)
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and let the covariant derivative be

( ^ ^ (2.26)

Try it and succeed for Q = — 1, fail for other Q.

Something new: for neutral particles one has to make a choice. A neutral particle can be invariant

under gauge transformations and have no electromagnetic interaction, exactly as in the commuta-

tive case. But nontrivial gauge transformations and electromagnetic interactions are possible even

for neutral particles.

Let the gauge transformation for a neutral particle be

<£->•<£' = eia-k(t>-ke-ia = U*<f> *Uj (2.27)

and let the covariant derivative be

D^ = 8^ + ic K t <t>] (2-28)

One can work through the gauge transformation for the covariant derivative and find

D^^D'J' = U*D^*U^ (2.29)
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III. FEYNMAN RULES AND PHENOMENA

A. Feynman rules for QED

£ = -'^FliV*Flil' + ti>*(i fi-e4-m)*4> (3.1)

Perturbation theory.

Lowest order,

Co = - \ [d^A, - d^) * (^A" - dvA») + V> * (i ft - m)^ (3.2)

Quadratic in fields. Only action matters. In action, can remove star for terms that are quadratic in

fields.

Hence same as commutative case.

Hence propagators same as commutative case.

Also fourier expansions of LO fields same as commutative case.

Interactions: "matter"

C = -eV>*7A1AA1*V' (3-3)
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same as

^ $ j [^^dJ A (3.4)
Recall the field expansions,

[ )u(p, X)e+ipx) (3.5)
A

(where [dp] = d3p/((2Tr)32E) and A is a spin or helicity index), with similar expansions for A^

and tp.

A derivative dv on this field becomes (ipv) inside the expansion, for an outgoing particle. For

writing the Feynman rules, let all the momenta be outgoing.

Then with abuse of notation,

Hence we can read off the Feynman rule for the jee vertex (remembering the vertex goes like iC),

vertex = -ie^evp'Ap (3.7)

which is the standard commutative vertex times a phase factor.
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The notation is standard,

p Ap= -p'pO^p,, (3.8)

and we changed the writing by using momentum conservation, q = —p' — p.

Interactions: the triple photon vertex

One of the interaction terms is

Uf = -\™ (duAy - cKA^) * [A*1 * Av\ (3.9)

which, dropping the first * and again abusing the notation, can become

C3l = --ie (iqailAu - iqavA^) An'Av [exp(-iqb A qc) - exp(+iqb A qc)\ (3.10)

which leads to a Feynman rule (there is only a common sine function, since we can use momentum

conservation to show q1 A q2 = q2 A q3 = q3 A qi)

V3l = —2esin(gi A q2) {g^(qiP — <?2P) + gvp{q2^ — <?3M) + gP^{q3v — <?ij) (3.11)

The triple photon vertex violates charge conjugation invariance (i.e., violates Furry's theorem).

Interactions: the quadruple photon vertex

29



The final interaction terms is

C4l = -[Ali* Av\ * [Au. * Av] (3.12)
4

which leads to a 4 photon vertex that is,

V47 = —4ie2 s'm(qi A q2) sin(g3 A q4

sin(g3 A qi) s'm(q2 A q4sm(q3 qi) (q2

+ sin(gi Ag4)sin(<2<2 A q3)

Clearly 0 for # ^ -^ 0.

B. Loop integrals

We will talk about loops more below.

One early hope of NCFT was that divergences would be less severe if we "fuzzed out" the space-

time points. However, it was not so. For many loop calculations in ordinary QED and other

theories, the calculations are unchanged by the noncommutativity and the divergences are the

same. [Give example.] Some loops, however, become less UV divergent with noncommutativity.
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But there is a surprise: the 0^ —> 0 behavior is often unexpected and not continuously connected

to what one would expect for 0^v — 0. An example comes later when we look at NCQED in a

supersymmetric context, but the IR problem is neither helped nor hurt by the supersymmetry.

C. Scattering and decay phenomena

• Noncommutative field theories hot topic among formal field theorists

• There has been effort trying to see connection to experimental world.

• So far, have only discussed canonical version, which has Lorentz violation. We will soon discuss

bounds which appear to make canonical NC unobservable in accelerator experiments. But the

arguments for the bounds use expansions in O(0) or need cutoffs; there are those who argue that

full theory may give looser bound, allowing discussion of accelerator Lorentz violating signatures

of NC (and also CP violation from NC).

References (partial):

Hewett, Petriello, & Rizzo Hinchliffe & Kersting

Liao & Grosse Godfrey & Doncheski

Baek, Ghosh, He, & Hwang Mahajan

Chaichian, Sheikh-Jabbari, & Tureanu Iltan
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Typically, the idea is that the 4 x 4 array 6^v defines two fixed directions, one electric field-like,

9M, and one magnetic field-like e' J^ J j t . As earth turns, these vectors turn in the laboratory frame,

and so one may see effects that have a 24 hour [23/l56m] period.

Give two examples

Example 1: Bhabha scattering, e~e+ —> e~e+

(Hewett, Petriello, & Rizzo)

In the canonical version of NCQED, the only changes to the vertices are the phases. Hence, the

only change will be in the interference of the two diagrams. The t-channel diagram gets a phase

exp (i(-p2) A p4 + ip3 A (-Pl)) (3.14)

and the s-channel diagram has a phase,

exp(ip3 Ap4 + ip2 Api) . (3.15)

Keep only 9Ot = -9M = (cE)1 and get the t-channel phase to be (in the CM)

exp [-iE cE • (p4 - p2)] (3.16)

while the s-channel phase is just the opposite.
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Easy setup to visualize: accelerator at equator, beam heading north, CE perpendicular to earth

rotation axis but fixed in direction, scattered particle heads east—a direction rotating with the

earth and at angle </> to CE- The phase is

exp[-iE\cE\\p4\ cos ̂ (t)] (3.17)

and the cross section has a term with time dependence

cos [... cos <f>(t)] , (3.18)

whose effect is visible in the plot borrowed from Hewett et al.

IV. BOUNDING CANONICAL NC THEORIES

Best bounds: from low-energy already-done experiments that searched for Lorentz non-invariance.

Reminder: 6^v is a fixed matrix in the canonical version of NCFT,

6t0 and €tlk61k are fixed three-vectors that define preferred directions in a given Lorentz frame.

By loops and HO corrections, can define operators like
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FIG. 1: Bhabha scattering

02 = 6

03 = 6

0 4 = 9»v9p°FuvFl

' F Fp

1 i>.pL v

pa

These are all Lorentz violating, if Q^v is fixed.

Where do they come from. Ans.: Loops, for example Fig. 3.

(4.1)
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Canonical NC possibilities for Bhabha scattering at 3 TeV
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(a) (e)
— I

FIG. 3: Two-loop diagrams.

Consider O\.

Approach 1

Can do the integrals without a cutoff! Will show how. For now quote result,

amplitude = -mea —
8 A.

Like coeff. x a • n, where n is unit vector pointing in direction of

Calculated coeff. = \mea
2 = ^R^ ~ 10 eV

Experimental bound < O(10"19) eV

Can't be right!

Approach 2

(4.2)
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Cut off the integrals at some scale A. Motivation: belief in some "new physics" above this scale

that alters and physically cuts off the interactions.

new result = |meA2 {^f a ^ v

From the experimental bound above,

9A2 < 10"19 (4.3)

where 9 is some scale size for 6^v.

For collider experiment in process without a loop, there would be a factor

9E2 (4.4)

where E is some energy scale in the experiment. At most, E is about a TeV; at least A is about a

TeV. So, if above is right, cannot expect to see much in collider experiment.

But a cutoff:

1. Violates gauge invariance

2. Has imprecise physical interpretation

Approach 3

Find a cutoff that is physical and preserves gauge invariance.
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Consider "softly" broken supersymmetric NCQED.

("Softly" means the supersymmetry breaking is only in the mass terms.)

In the supersymmetric limit [13], the dangerous Lorentz-violating operator is forbidden:

show either by explicit calculation, loops involving the superpartners of the known electron and

photon exactly cancel loops involving only already discovered particles

or by showing that there is no supersymmetric way to write down an operator like O\ =

Giving the superpartners a mass M different from the electron and photon mass, the dangerous

operator is again generated; however, supersymmetric cancellations eliminate contributions from

the ultraviolet part of the loop integrals. Thus, M serves as an effective cutoff that preserves the

gauge invariance of the theory,

but too bad: the bound gets stronger.

A. The Dangerous Operator in Supersymmetric NCQED

Operational primer on supersymmetric QED

"Old" particles: electron and photon
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New particles:

Photino—the partner of the photon.

• Spin 1/2 Majorana fermion (meaning self conjugate under charge conjugation)

• Count degrees of freedom: a photon has two degrees of freedom (polarizations) and so does

a self conjugate spin-1/2 particle

• Represent as wavy line with straight line core on Feynman diagram (see actual diagrams).

Selectron—the partner of the electron

• Spin-0

• One scalar for left-handed electrons, another partnering right-handed electrons. Hence "left-

handed scalars" and "right-handed scalars."

• Represent as dashed lines

• Charged, so put arrow on line to indicate direction of charge flow

• Count degrees of freedom: they match

39



There are Feynman rules for the interactions of the the supersymmetric particles. For the NC case,

the rules for the new vertices are summarized in Figure 4.

Calculate the two-loop contribution to the operator in Eq. (4.1). In ordinary NCQED, there is no

one-loop diagram that contributes to O\. Two-loop diagrams that contribute are shown in Figs. 5

and 6.

We will extract the terms proportional to a^ and work on shell (i.e., we evaluate the diagrams

between spinors u(p) and u(p) and use p'u(p) = meu{p).) For each of the 8 diagrams, the a^

terms are proportional to the electron mass me. After extracting the overall electron mass factor,

we set the electron mass and momentum p to zero in the integrals as a simplifying assumption. This

leads to corrections in the final result that are wholly negligible as far as our numerical analysis is

concerned.

Each of the diagrams with only electrons and photons, (a) and (e), give identical results, and the

sum of the two is

Ma + Me = 24zmee
4 j (dk)(dl) ^ ^ y , (4-5)

where (dk) = d4k/(2ir)4 and I • 0 • k = l^O^k^. The result (using techniques shown below) is

Ma + Me =
 l-mea

2—J^£L= . (4.6)
8 v / ( l / 2 ) T # 2
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FIG. 4: Feynman rules for superpartners in noncommutative supersymmetric QED. The rules for the right-

handed scalars can be obtained from the left-handed ones shown by 75 —> —75. tp and A represent electrons

and photinos, respectively. Our sign conventions are based on those of Ref. [20].



(d)

FIG. 5: Two-loop diagrams with two gauge multiplet propagators. Solid lines represent electrons, wavy

lines represent photons, wavy lines with a solid core represent photinos, and dashed lines represent selec-

trons.

Now consider the diagrams with superpartners. The four diagrams with three superpartner propa-

gators all give the same result, at least to the operator a^6^, and similarly for the two diagrams

with four superpartner propagators. We will give some detail of how the diagrams are evaluated.
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(g)

FIG. 6: Two-loop diagrams with three gauge multiplet propagators.

Using diagram (h), as an example, we have

Mh = -\imee
A (4.7)

where M is a common superpartner mass. We can combine denominators using a Feynman pa-
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rameter, and shift one of the integration momenta to obtain
f1 f ji-e-k hniv

Mh = -24imee
4 dx x(l - x) (dk)(dl) "- -A . ( 4 . 8 )

J { 'J A )
k2[l2 + ( 1 ^ k 2 M 2 ] 4J0

Say that only 0l2 = - 0 2 i = 6^0. Then

Mh = 4mee
4a12^Jh , (4.9)

where after rescaling k and Euclideanizing, we have

dx / (dk)(dl) T- . (4.10)
0 J k2[P + k2 + M2]4

Now the dl0dl3 integrals can be done. After combining the remaining denominators using another

Feynman parameter and rescaling the remaining components of /, we get
3 /"I /"I r ei(hk2-hki)S/y/yx(l-x)

dx dy y I (dk)dlidl2 ^ j . (4.11)
Jo J \k2 + /? + /,-

Now do the dk0dk3 integrals, and put the denominators into the exponential using a Schvvinger

parameter. After one more rescaling of the remaining momenta, we have
1 / • ! / • !

•Jh = nrr. a I dx I dyy I dz dktdk2dlidl2
256TT6 Jo Jo Jo J

-yzM2-k2
1-q-q-l2

2+t{hk2-hk1)8/(zy/yx{l-x))

256^4 Jo
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\ , f\, r , 4z2yx(l-x)9 _yzM,
dx dyy dzTT-—TT—e

Thus,

KA 7 = / T i n I A T I n i t i t i n 1 ? , ^ . — r . _•_ ' ,

JO Jo Jo (4z2yx(l - a;) + 6>2)2

The end result for Mj is a similar expression, but with the front integrals reading

dxx I dy(l-y)... . (4.14)
o Jo

Noting that the rest of the integrand is symmetric under inversion about x = 1/2, we can replace

' V in the line above by "(a; - 1/2) + 1/2," and keep only the "1/2." The 6 graphs involving

superpartners sum to

m a2 f1 f1 f
AMf + 2Mh = V C T i 2 / dx / ^ /

^ Jo Jo Jo

In the supersymmetric limit M —> 0, the integrals can be done exactly. For general M, it is

convenient to rescale z,
y Gl2 ' ' ' ' ' ' " ^v^ ~' ~z . (4.16)

The y and x integrals can both be done, and the full result for the two-loop contributions to O\

becomes

Y i= \mPa2—^^V L(6M) , (4.17)
8 " V ( l / 2 ) T ^
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FIG. 7: The function L(9M)

46



where 6M = M V ( - l / 2 ) T r 62 and

Lltu) = 1 - ^ f - 7 i = « - In <g±^+-' . (4.18)

The z integral can be computed analytically, but the answer is not enlightening and we do not

show it. Function L satisfies L(0) = 0 and L(oo) = 1 and is shown in Fig. 7.

For the choice 6Ot = 0 [14], 6^v defines a 3-vector in a fixed direction n (where h is a unit vector)

and the result (4.17) can be written as a effective Lagrangian

£eff = ^Roo L(0M) B • h , (4.19)

where R^ = mea
2/2 = 13.6 eV. Searches for such a term in magnetic systems [15] show that

matrix elements of £eff are below 10~19 eV. Doing without any cutoff, L —> 1, is impossible. One

must get a severe suppression from L(0M), requiring 6M = M2/'A2
VC <^ 1. The slope of L near

the origin is infinite, meaning that L(9M) has a nonanalytic behavior for 6M —> 0. Numerical

evaluations suggest

L{6M) « 3 {6M)°-7S (4.20)

for small argument. From this we estimate 6M ~ 10~26 or AJVC ^ 1013M.
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B. Conclusions

• can use supersymmetry-breaking mass as a gauge-invariant regulator

• The bound that follows from searches for Lorentz violation in magnetic systems (Bluhm et

al.) is 9M2 < 10"26

• If nature uses noncommutative coordinates, it need not be done with a Lorentz-violating

implementation

V. NCQED FOR ANY CHARGE

Problem: the group is commutative,

But: NC multiplication does not respect the commutation properties of the group.

That is, we should have

Ua-kUp-kip = Up-kUa-kip (5.1)

where Ua

Ua = eia^ (5.2)

but we don't.
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Easier to present the problem and solution (Jurco et al.) in infinitesimal form. Have

8atp = ia-kip (5.3)

and the problem that

SpSaijj = ia~k ij3~k ijj ̂  SaSpt/j = ij3~kia~k ijj (5.4)

What we shall do is change the transformation to

8at[> = %Ka * V (5.5)

where Aa = a in the commutative limit, but is otherwise yet to be determined using the require-

ment that

(8a8/3 — 8p8a) ip = 0 , (5.6)

New: implement the gauge transformation with the gauge function A having some dependence on

the gauge field A^, Aa = Aa[A^]. Then,

8p8oijj = 8p (iAa *?/>) = iAa-kSpifr + i (8pAo)~kip = iAa~kiAj3~ki^-\-i (8pAo)~kilj = (a f-> j3) (5.7)

or

-Aa *A[3 + i8fjAa = -Afj * Aa + i8aAfj (5.8)
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Solve by expansion,

Aa = a + dO^A^a + ...

SfjAa = Cl6^d,fidva (5.9)

The product Aa * A^ has a number of terms, but keeping just the ones that matter from the Moyal

product gives

Aa*Ap = a(3 + %-e^d^advf3 (5.10)

and one can get a solution using c\ = —1/2, so that

A« = a - U^A^a + ... = a + AW (5.11)

Have to make the gauge transformation work for the matter field also. Expect,

Saijj = iAa* ijj (5.12)

Need to modify and expand ip also,

V> = V K ] = V ° + V>1 + --- , ( 5 . 1 3 )

where ip° is the usual field in the commutative limit, with 5aip° = iaifj.
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To first order in 6,

A1) * (</>" + 4>l) = ia^ + %-Otlvdliadvil>
0 + i A > ° + za^ 1 (5.14)

Try a solution in the form

tfj1 = Cle^A^° (5.15)

(other terms are possible, but turn out unneeded), and find it works for c\ = —1/2. Hence the

matter field has become

i> = i>° - y*"'A^0 (5.16)

Make sure the gauge field has the correct gauge transformation also.

A^U + A^U^-lid^U)*!^ (5.17)

becomes

SaAp = d^Aa + i[Aa* A^}

= d^a + d ^ + iH^dpdd^ + ... (5.18)

Again, we need an expansion,

K = 4 + 4 + • • • = K + °PU { * A A K + c 2 A p d X ) + ••• (5-19)

51



which we discover does give a solution, with c\ = — 1 and c2 = —1/2. The gauge field has become

A , = A° + 6"v (l-Apd,A°v - A p c l A l ) +... (5.20)

Get the Feynman rules, in the context of an expansion in 6 of the (by now) usual

S= f(dx)l-^FliV*FliV + ^*(ip-m)*tfA (5.21)

Use the modified fields in the QED Lagrangian. "Free" fields are ip° and A°, and the expansions

give new interaction terms and additional Feynman rules.

Comments

• Can show this works for a field </> of any charge Q, by letting 8a(j)° = iQa<f> and inserting

A^ —y QA^ wherever A^ appears.

• Similar procedure works for SU(N) non-Abelian gauge theories. Listed the Feynman rules for

this case on next page.

• Clear disadvantage of expansion: cannot do divergent loops, so cannot fully discuss renormal-

ization.

• Will drop this discussion here. For QED, will discuss loops in the context of just electrons

and photons, where an unexpanded NC theory does work. Regarding this expansion, we will
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see what use can be made of something clearly inspired by it when we try Lorentz covariant

noncommutative field theory.
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Revised Feynman rules (QCD version), O(6) parts only (Carlson, Carone, & Lebed)

q,u,a r,v,b

\gT«]{0Py (tf - m)-

Ig2)rrar q)p

q,\;b

+ long expression >

q,\,b

longer expression
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VI. LORENTZ COVARIANT NCFT

A. Lorentz covariant noncommuting coordinates

Canonical version of noncommutative spacetime

[x\xv] = i0»v , (6.1)

where Q^v is a real, constant matrix of ordinary c-numbers. Found trouble with Lorentz nonin-

variance. Solution would seem simple: find a Lorentz covariant operator to replace 6^v. Question

becomes what operator to choose, and how to realize the algebra in practice.

H. Snyder (1947) had an idea, carried through in context of quantum mechanics. (Motivation in

1947 was hope that this would lead to a divergence free field theory.) He proposed an algebra

[x*i,xv] = i

»V, Mal3} = i (M^fjgva + Mvag^fj - Mmgv(i - W(igm\ , (6.2)

where the operators M'1" were the Lorentz group, including angular momentum, generators. Sec-

ond two commutators standard for Lorentz group, first was new; g^v = diag (+,—,—,—).
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(By the way, M and x/a generate an SO(4,1) group.)

Snyder's explicit realization: use a 5-dimensional space with coordinates

7/0,..., 7/4 and metric diag (+,—,—,—,—) (6.3)

L e t 7/^ = (7/0,7/1,7/2,7/3), rf = (?7o, - ? 7 i , -?72, - ^ 3 ) , a n d

d „ d
= 1a

• (6-4)

It is easy to check that this gives the CR of Eq. (6.2). Transformations that leave both 774 and

Vo ~ Vi ~ V2 ~ vi ~ vl invariant induce ordinary Lorentz transformations on the coordinates

x^. (Also, from Eq. (6.4), one can show that the spatial coordinate operators x% do not have a

continuous spectrum, but have eigenvalues that are integers times the length scale a. The time

coordinate x°, on the other hand, has a continuous spectrum.)

The Snyder algebra, for very unsubtle technical reasons, is hard to work with. The Baker-

Campbell-Hausdorff formula that we use to deal with products of functions involves series that

do not terminate. Instead work with a contracted algebra.

56



The contraction of an algebra is a simpler one obtained by taking the limit of some parameter. Let

M*" = §^/b . (6.5)

and let

6 ^ 0 , a -+ 0 , (6.6)

with
a 1 . (6.7)
o

The result is the Lie algebra,

,xx] = o ,
= o . (6.8)

This is the contracted Snyder Lie algebra; it is identical to the Lie algebra suggested by Doplicher,

Fredenhagen, and Roberts (DFR), based on General Relativity considerations reviewed in the first

lecture.

Importantly, we still have

, (6.9)
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which establishes that 9^ transforms as a Lorentz tensor and that Eq. (6.8) is Lorentz covariant.

(Since a —t 0 is part of the limit, the contracted algebra is a continuum limit of Snyder's quantized

spacetime.)

B. Fields depending on new variable

Have a new fundamental operator 6^'. Elements of the group defined locally by Eq. (6.8) [fields]

are now / = f(x, 0). Relate to ordinary c-number functions f(x, 0) with a Fourier transform,

using more variables.

/ = f(da)(dB) e-'(
a£+B«) f^ #) ^ ( 6 10)

with

f(a,B) = J(dx)(d6)e«ax+BVf(x,6) . (6.11)

Definitions of measures: (da) = (2^)"4c/4a, (dB) = (2ir)-6d6B, (dx) = dAx and (d6) = d69;

the B^ and Q^v are antisymmetric parameters, and ax = a^x^, BO = B^Q^/2.

The measure

d6B = dB12dB23dB31dB01dB02dB03 (6.12)

is Lorentz invariant (if B^ transforms like a second-rank Lorentz tensor).
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The x^ are ordinary commuting coordinates; the 9^v (no hat) are a set of new commuting parame-

ters in ordinary function space that correspond to the 9^v. While the operators x and 9 are related

through commutation relations, the commuting parameters x and 9 are completely independent of

each other.

The mapping from the operator algebra to the space of ordinary functions allows one to define a

star-product through the requirement Eq. (2.3) [fg = f * g\. The derivation begins as usual,

fg= f (da)(dB)(d-f)(dA) e~l{a£+B§) e~l^+A§) f(a, B) g(-f, A) , (6.13)

and continues using the Baker-Campbell-Hausdorff... formula,

The expansion terminates after the first commutator and, after some manipulation, one obtains the

same *-product as in the canonical case except for the presence of the extra argument 9:

(f*g)(x,0) = f(x,0) exp[l- ^ O^ dv]g(x,0) . (6.15)

This star product is Lorentz covariant; the Lorentz transformation properties of 6 are identical to

those of 9, as one can show via the mapping defined in Eqs. (6.10) and (6.11).
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C. Gauge Theory

To start, if the field </> transforms as some representation of a gauge group G, it is not possible

to choose (j> to be a function of x only. A 6 dependence is introduced via the noncommutative

generalization of the gauge transformation. Consider NCQED. The transformations are

i[>(x,6)^ il>'(x,9) = U*tl>(x,0) , (6.16)

A^x.O)^ A'll(x,9) = U*Al,(x,9)*U-1+ -U*dllU~1 , (6.17)

where

U = {el% . (6.18)

The Lagrangian

£= [-^•F'iI/ + ̂ *(i^-m)*J (6-19)

is gauge invariant provided

Dp = ̂  - ieA^ , (6.20)

and

F^ = d^Av - 8VA^ - ie[A^ * Av\. (6.21)
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Superficially, Eqs. (6.19-2.20) are the same as in the case of canonical noncommutative QED [29],

aside the trace average over 9. However, that the fields here are functions of both x and 9, and so

are not the same as the ordinary quantum fields ip(x) and A^(x).

To proceed, expand the fields as a power series in the variable 9. It will look like the work in Jurco

et al. and Calmet et al. although the context is different.

Begin with the gauge parameter A and the gauge field A11

Aa(x, 9) = a(x) + 9^A(V(x; a) + 9^9vaA^ix; a) + • • • , (6.22)

Identify the first term in each expansion as the ordinary gauge parameter and ordinary gauge field.

In ordinary Abelian gauge theory, expect two gauge transformations parameterized by a(x) and

(3(x) to commute

(8a8j3 - 8p8a)ip(x) = 0 , (6.24)

where ip transforms infinitesimally as

r / c \ ' ( \ / ( \ / z r ^ ^ \
A 7/1 I rp 1 ft f~y [ rp 1 ft J i [ rp 1 / f-» / ^ 1
"CM T \ / i ( i I 10 I (^' I i t I . ^VJ.Z*^^
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Just so, in the noncommutative theory, expect the field ifj(x,9) to still satisfy

(8a8f}-8f}8a)4>(x,0) = 0 , (6.26)

where

8a^(x, 6) = % Aa(x, 6) * ij)(x, 6) . (6.27)

Like manipulations we have already seen

i8aAf) - i5pAa + [Aa * A ]̂ = 0 , (6.28)

which can be solved by (going to second order this time):

;a) = ^dtla{x)Av{x) , (6.29)

e2

A^JV(J(x; a) = dfMa(x)Av(x)d(JAiy(x) . (6.30)

We next need to make the gauge field transform as it should:

5aAa = daAa + i[Aa * Aa] , (6.31)

which works if

x)= --A^dvAp + F^) , (6.32)
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2
&

where

We will look at photon self interactions first, and so shall pause here before looking at the fermion

expansion.

D. Generalizing the operator trace, i.e.,...

We need generalize the operator trace, since we have extra variables. A trace maps from an

operator algebra to numbers and is linear, positive (Tr fp > 0), and cyclic (Trfg = Trgf). We

propose

Tr/ = / d4x d69 W{6) f(x, 6) . (6.35)

The weighting function W{6) will allow us to work with power series expansions of functions of

0. We assume that the weighting function is positive and for any large \6I1V\ falls to zero quickly
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enough so that all integrals are well defined. Also, let

I d69 W{6) 9^ = 0 . (6.36)

Field theory actions are like Eq. (2.9) [S = Tr £] ,

S = I d4x d69 W{9) C(<f>, d<f>)* . (6.37)

Also useful is W{9) = W(9^9^),

f d69 W{9) 9^9VP = —{92){gmgvp - gwg*v) , (6.38)

J J^

for any Lorentz-invariant weighting function, and where

(92)= I' d69W(9)9llv9^ . (6.39)

Of course, we normalize by

/ d69 W{9) = 1 . (6.40)

Note that £(</>, d(f>)+ depends in general on both x and 9, but we can think of

C(x) = I d69 W(9) C{4>, d<f>)* . (6.41)

as playing the role of the ordinary Lagrangian.

64



E. Lagrangians and Feynman rules

The Lagrangian, again, is

C{x)= [ d69W(9) {--F^icF^ + tp * (i fl - m) * tp\ (6.42)

The noncommutative field strength tensor can be written out in terms of the ordinary gauge field

A^ix). For the record,

J ^ p l p ^ ^ AKApdvd^v]. (6.43)

Photon self-interactions may be isolated by substituting this result into the Lagrangian above and

integrating over 6.

Photon self-interaction terms that are odd in 6 vanish. The lowest-order nonstandard vertex is

given by:
TV C\

(02)[K^VFF°P" (KF°n2] (6-44)
This will give for example, a new contribution to photon-photon elastic scattering.

By the way, Eq. (6.44) reduces to

ira [ - ( E 2 - B 2 ) 2 + 2(E-B)2] (6.45)
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in comparison to the famous Euler-Heisenberg low-energy effective Lagrangian following at the

one-loop level in QED [40]

Z a ->2\2 , >,CE-L = ^—, [(E2 - B2)2 + 7(E • B)2} . (6.46)
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F. Phenomenology

FIG. 8: Four-photon vertex.

• Lots of new vertices.

• Seek deviations in observable scattering cross sections from expectations within standard model.

• Focus on 77 —> 77.

• Potential window on physics beyond the standard model.

Quote the Feynman rule for the for-photon vertex Fig. 8,
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" 2 I f\l\ I A P>2 jU-1 W4 WS i /^2 / i3 /^4 jU-1 I £i2 /^4 /i-1 £i3

- i e ( 0 W -MP2P3P4 +P1P2P3P4 + P1P2P3P4

LioA Llo, LIA LL] Lio 1 ttQ, £ii U4 U2 1 /^S /^4 /^2 /^1

- 4 p f V2P3P4 +Pi P2 P3 PT +PI P2 Ps P4
A IIA U3 Lto ttl 1 llA P>1 U>2 /^3 1 /^4 /^3 /^l /^2

-^Pi P2 Ps P4 +P\ P2P3P? +Pi P2 Ps P4

US /i4 /i3 /i4 /i3 /i4 /i3 /̂ 4

-PA PI P2 • P3 ~ PA P2 P\-Pz~ Pi P3 P2 • P4 ~ P2 P3 Pi

12)(34) ^ (13)(42)

12)(34) -> (14)(23)

(12)(34) -

(12)(34) -

+ P1-P4 1-

+ (42)(13) ]

+ (23)(14)])

'2 • P3 + Pi • P3 P2

12)(34) ^ (13)(42) ] + [ (12)(34) ^ (14)(23) (6.47)

Calculate da/dil for 77 —> 77 in the photon CM.

The NC amplitude is 90° out of phase to the leading log contributions to the standard model

background (coming), so

(J ~ CTNC + CTSM • (6.48)
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Find (no polarization)

da
NC

(92 \ \ 2

t/cos0* 128 V 12

y/s = CM energy

0* = CM scattering angle

Total cross section (0° < 0* < 180°),

(6.49)

1337T 12\ \ 2

(6.50)
80 V 12

For the standard model, we quote amplitudes from Gounaris et al. for light-by-light scattering for

s, \t\, \u\ >> m2^. For reference, here are the relevant results. The differential cross section is

given by

da \ 1
dcosQ* ) SM 128TTS

[(Im (Im (Im

the dominant helicity amplitudes are mostly imaginary and

Im F++++ = — 16na2 - In

Im

u

9 s — t , | « ,
x2 16W -In

u
m2

w

t
m2

w

mi

2
U
— m
st m w

(6.51)

(6.52)

(6.53)
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FIG. 9: Total cross sections <TNC and <TSM for 30° < 0* < 150°. Noncommutative results are labeled by

the value of ANC , defined in the text.

and

(6.54)
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FIG. 10: Differential cross sections for ^/s = 0.75 TeV and ANC = 1.0 TeV, normalized to cr(30o < 0* <

150°). The dashed line indicates the standard model background and the solid line indicates the result when

both the standard model and Lorentz-invariant NCQED interactions are present.
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Figs. 9 and 10 show the comparison between our noncommutative result and the expectation in

the standard model. Since the scale of new physics ANC is characterized by a root-mean-square

average of the components of 6^, we define

( ) " 4 . <6-55>

We hope it is clear from the present example that our scenario may lead to potentially distinctive

collider signals, and defer a complete investigation of these phenomenological issues to future

work.
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G. Conclusions

• Lorentz covariant:

\xll,xv\ = iQllv . (6.56)

• There is an explicit realization: contracted Snyder algebra, or DFR algebra.

• Tight bounds on noncommutativity parameter not present in Lorentz conserving case.

• Fields become functions of additional variable, that we deal with by expansion and integrate out.

• Looked at the Lorentz invariant version of NCQED. including two-fermion-two-photon and

four-photon interactions However, no three-photon vertex is present.

• Had predictions from total and differential cross sections that were distinct from the standard

model.
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FIG. 11: Bhabha
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