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1 Introduction

These are very schematic notes, meant to provide the students with a record of the equations
and main notions covered in my lectures. They should not be considered formal lecture notes.

The topic of non-perturbative methods in quantum field theory is very vast and I could
not possibly cover it in its entirety, even in cursory manner, in four lectures, leaving aside
that a lot of it would go beyond my own domain of expertise.

In these lectures I will focus on
e Lattice gauge theory, mainly lattice QCD.

e (time permitting) Semiclassical techniques for tunneling in high-energy collisions.

Insofar as lattice gauge theory is concerned, in my first lecture I plan to review the basics
of the formalism, while in my second lecture I will talk about lattice fermions, with empha-
sis on the overlap discretization of lattice fermions, which preserves chiral symmetry. These
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notes cover the topics that will be treated in the first two lectures. In my third lecture T will
provide an illustration of current lattice techniques and results by describing a calculation
of light quark masses and of the quark condensate with overlap fermions, performed in col-
laboration with L. Giusti and Ch. Hoelbling. References [1, 2] provide background material
for this lecture. (In order to give proper credit, I would like to mention that this investiga-
tion is now continuing, with extended scope, in collaboration with F. Berruto, N. Garron,
Ch. Hoelbling, L. Lellouch and N. Shoresh.) If time permits, in the final lecture T will il-
lustrate the use of semiclassical techniques for high-energy processes involving tunneling.
Reference [3], which gives a rather detailed account of an investigation done in collaboration
with F. Bezrukov, D. Levkov, V. Rubakov and P. Tinyakov, may be used as background
material for this lecture.

2 Lattice Gauge Theory.

General references: books by M. Creutz [4, 5], I. Montvay and G. Miinster [6], H. J. Rothe [7];
lecture notes by R. Gupta [8]; the proceedings of the yearly International Symposia on Lattice
Gauge Theory, published during the last several years in the Proceeding Supplements series
of Nuclear Physics.

2.1 Lattice regularization.

Gauge invariant regularization, not relying on a perturbative expansion (Wilson, 1974 [9]).

Gauge invariant: avoids the occurrence of undesirable extra operators and the need to
adjust the corresponding coupling constants.

Discretize the field degrees of freedom in configuration space, after continuation (¢ — )
to Euclidean space-time.

Introduce a hypercubical lattice, with uniform lattice spacing a
T, = n,a n, integer (1)
Notation: [t = unit vector in direction pu.

(Note: for some applications people use different lattice spacings as, a;, generally with
a; < ag in the space and time directions. Lattices with different geometry or non-uniform
lattices have been studied as well, but in general have not proven useful.)

Consider specifically lattice QCD:
Matter fields (= quark fields) are defined over the sites of the lattice:

Ves, () c=color index, s=spin index, f=flavor index (2)
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Gauge fields provide color transport factors between neighboring lattice sites. They are
finite elements of the SU(3) color group:

Uu(®) = Upeer (%) (3)

defined over the oriented link of the lattice, from x to x + fia.
Nearest neighbor coupling
U (@)Uu(@) (2 + fra) (4)
(with implicit color, spin and flavor indices).

Correspondence with continuum theory:

Uy(z) = W9 Au(x)a (5)

V(@)U (x) (2 + fia) = I/j(fb)(l + ng,t(x) + .. ) W(x) + adyp(z) + .. )
= P(@)Y(z) + ap(2) (0, +194,)0(2) (6)

where we recover the gauge covariant derivative D, = 0, + 1g4,,.

Gauge transformations are defined over the sites of the lattice

G(z)
P(r) = Gr)y(r) (7)
Uua) = G@)Uu()G(w + fa) ®

[ (x)U,(z)¢(x+ f1a) is obviously invariant; derive the transformation properties of A, (z) in
the limit a — 0.]

The gauge field action: the plaquette variables
U (z) = Uy(z)U,(x + ,&a)Ul(x + va)U (z) 9)
a— 0:
eng#(a?)aengy(a7+ﬂa)aefngu(m+ﬁa)efngy(a?) — (1 + ZgAMCL 4. ) >
(1+194,a +190,A,0* +..)(1 —1gA,a —1gd, Ad® + .. )(1 —gAa+...) =
=1+ 19a®(9,A, — A, +1g[A,, A +..) =9 T (10)

measure the “curvature” of the gauge field. (Check that the neglected terms of O(a?) cancel.)

g2a4
tr UNVZS_TtrFNVFNV+"' (11)
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Continuum gauge action

/dz Ztr FF, ~ at Z tr FFp (12)
T <y
Lattice gauge action
Se = p I;V 11— gRetr U ()] (13)
Notation: 6
— =5 14
7 (14)

inspired by analogy with statistical mechanics, but 5 is not 8y = 1/kT.

Fermionic action, (naive, not correct, see later lecture):

Sk = ZI/) 2)(x + fra) = Uz — )iz — )] + 3 o(z) M ()
= 1/J(D+M)w (15)

(Note, r.h.s. in eq. above should be multiplied by a* to keep continuum normalization for .
In practice, l.g. theorists often work with ¢ = 1, i.e. express dimensionful quantities in units
of a.)

2.2 Observables.

z = [ TLdUe) TT (o) di(a)) eSS0

T

_ /H dU, (z) eS¢ Det(D + M) (16)
dU= invariant measure over group manifold. Example, for SU(2) with

U=cosa+mn-osina (17)

dU = sin® asin 0 do df do (18)

©) = 27 [ L) TTe(a) ) O, ) eSSt

T

— 7! / [ dU(x) ((O))rr e~ 5O Det(D + M) (19)
Typ



where ((O))y stands for the average over fermion fields with fixed gauge field background.
Example, with O = ¢(z)vs¢(2)9 (y)v5¢ (y)

Gr(z,y) =(0) = Z’l/HdUH(w) tr (=P (2, )1 P(y, ) (20)

where
P(z,y) = P(z,y,U) = (D(U) + M)~ (2, y) (21)
is the quark propagator in the background gauge field configuration given by U.

Expanding the meson propagator into a sum over physical states one can recover the
lowest mass from its rate of decay

efmnIO

5 G, 0) = S(01H(0)9514(0) ) S5 —— (nl(0)1524(0)0) (22)

2m,,

An important “pure gauge” observable: rectangular Wilson loop W (r,t)= trace over
group indices of the product of gauge variables U,(z) over a rectangular path of sides of
length r and ¢. For t — oo

(W (r,t)) oc eVt (23)

with V (r) = potential of two static quark sources at separation r. If V(r) ~ or (0 = string
tension) then, for r, ¢ — oo, (W(r,t)) oc e774, with A = rt = area enclosed by the loop (area
law).

2.3 Continuum limit.

The continuum limit relies on the existence of a “critical point” g. such that for ¢ — g.,
correlation lengths in lattice units go to infinity: f(g) =1/a — oco. Then we can fix ¢ = a(g)
demanding

0£(9) = lynys = fixed (24)

for some definite correlation length (or equivalently for some mass m = [~! or some other
physical constant). If the fixed point has universal scaling properties, all other physical
quantities will tend to finite limits for ¢ — g..,a — 0.

For QCD, asymptotic freedom tells us that the critical point we want is g, = 0 (8. = 00).
Moreover it also tells us that
1 A
= e P (Byg?) A1 + O(g?)] (25)
Aqep

a

with 3y, 81 the first two coefficient in the expansion of the S function.
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Note: often one needs to calculate matrix elements of operators which are not physical
quantities per se, but will produce physical quantities, such as a decay rate etc., when
combined with other expressions. These matrix elements may then need multiplicative and
possibly also additive renormalizations.

2.4 Computational techniques.

The r.h.s. in Eqns. 16, 19 can be calculated by a perturbative expansion in powers of g.
This is similar to continuum perturbation theory, made much more complicated by the loss
of Euclidean space-time rotational and translational symmetry. It is used only to relate
renormalization constants evaluated on the lattice and in some continuum scheme.

The great advantage of the lattice discretization is that it allows one to do non pertur-
bative calculations, like strong coupling expansions, mean field calculations and, especially,
numerical simulations. It also makes it possible to define a gauge theory with discrete gauge
group, although this is not as important as it was years ago, when computers were much
less powerful.

As an example of a strong coupling expansion, let us evaluate (W (r,¢)) in the pure gauge
theory (Sp = 0) to leading order in . The integral over the gauge group elements U,(x)
elements will vanish unless we bring down from the exp(—Sg) one gauge group element U, J(z)
for each U, (z) in W. This in turn requires that we bring down from exp(—Sg) one plaquette
variable for every plaquette inside the rectangle spanned by W. As a result, the expectation
value will contain a factor (const x ﬁ)”/“2, where 7t¢/a” is the number of plaquettes inside the
rectangle, and the expectation value will obey an area law with a string tension o o — log(/3)
or o x 2log(g). Of course, this proof of confinement at strong coupling is of little value for the
continuum limit, which must be recovered at ¢ — 0. Numerical calculations, however, have
proven capable of bridging the gap to the continuing limit, providing valuable information
in the intermediate coupling domain ¢ ~ 1, which turns out to correspond to a cut-off ¢=*
roughly of order of 2GeV.

Numerical calculations typically proceed through a stochastic algorithm (deterministic,
molecular dynamics simulations can also be done), whose outcome is the generation of gauge
field configurations, C; = {U,(z)};, distributed according to the measure

P(C) _ Z—16—5(4+10gDet(D+M) (26)

The phase space integral over all values of U,(x) in Eq. 19 is then approximated with an
average over the configurations C;. A discussion of the algorithms used to generate configu-
rations goes beyond the scope of these lectures. The inclusion of the fermionic determinant
in the measure is particularly challenging from a computational point of view. This has
prompted the approximation, called “quenched” of “valence” approximation, of neglecting
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the determinant altogether, using just exp(—Sg) as measure for the gauge field. This is
justified with the fact that the determinant, form a diagrammatic point of view, contributes
terms with internal quark loops, i.e. the effects of “sea quarks” and that to a first approx-
imation the binding of quarks in nucleons is due to the dynamics of the gauge field. The
term valence approximation conveys well the notion that one only keeps in the expression for
the observables the propagators for the constituent quarks, neglecting the sea quarks. The
term quenched was borrowed from condensed matter terminology, and somehow remained
in prevalent use. Calculations that do include the effects of the fermionic determinant are
referred to as dynamical QCD or unquenched simulations. Computationally, the cost of
calculating the quark propagators is a couple of orders of magnitude larger than the cost of
generating the corresponding quenched configurations (although the use of a chirally invari-
ant formulation of lattice fermions entails much higher computational costs), and the cost
of generating unquenched configurations is another couple of orders of magnitude higher
than the cost of calculating the propagators themselves. Current supercomputer resources
allows one to perform simulations on lattices as large as 32° x 64 (one often uses lattices
with larger extent in one direction for a better calculation of the rate of decay of correlation
functions) or larger, but of course a variety of algorithmic and computational considerations
(e.g. trade-offs between size and statistics) go into the specific choice of a lattice size.

3 Lattice Fermions.

3.0.1 Fermion doublers.

The fermionic action of Eq. 15 has unwanted low frequency excitations. Consider the free
theory (U,(x) = I). In momentum space the operator D takes the form

r .
D=1y pal sin(apy) (27)
I

where the momentum components vary over a range of width 27 /a, which, for convenience,
we will take to be:

T 37
—— < < — 28
20 =P =9 (28)
We see that for p, ~ 0 D reduces to the proper continuum form
D= Z YuPu (29)
7

However, the shift of any momentum component by 7 /a will produce a continuum limit con-
tribution to D of similar form. Equivalently, if we define a new field ¢(z) = (1, sfﬁ/ (),
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where the factors s, can be 1 or -1, the lattice Dirac operator D in the new basis will take
the form

1 .
D=1y q nu sin(ap,) (30)
P

with a p,, ~ 0 limit
D =z Z TuSuPu (31)
7

Since the low frequency components of ¢ and clearly do not overlap, we conclude that our
fermionic action describes one independent continuum fermionic excitation for each choice
of 5,. Thus, in addition to the original fermion, the action will describe 15 extra fermionic
modes (doublers). Also, since the continuum limit action for the doublers has v, replaced
by s,7., we see that the chirality properties of the doubles will be identical or opposite to
those of the original fermion according to whether 7 s, is even or odd. In particular, if we
use a projection operator (1 — 75)/2 in the original action to define, in our hopes, a chiral
theory, the action will actually describe 8 left-handed fermions and 8 fermions of opposite
chirality.

3.0.2 Wilson fermions.

One can remove the unwanted doublers by giving them masses of order 1/a. This can be
done [9] by adding to the action of Eq. 15 a term

1 - . . .
Si = 5 S PRI — U@yl + fia) = Ul — (e — ja)
@p
= Dy (32)
In the free theory, in momentum space D’ takes the form

D' = =3[t - cos(ap,) (33)

@y

and we see that the doublers takes an extra mass 3, (1 — s,)/a.

We will denote by Dy, (Wilson lattice Dirac operator) the combination

While the Wilson discretization of lattice fermions has no doublers, it violates chiral
symmetry in an intrinsic manner. In the continuum, one can start with a massive theory
and go to the chiral limit by taking M — 0. With Wilson fermions, sending A/ — 0 in
Dw + M = D+ D'+ M does not produce a chirally symmetric theory, since D’ breaks
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chiral symmetry. The difficulty in obtaining a chiral formulation of lattice fermions is a
manifestation of a theorem due to Nielsen and Ninomiya [10], which states that a strictly local
(i.e. only containing couplings between fermionic fields at a separation that does not exceed
some fixed number of lattice sites) lattice discretization of chiral fermions is impossible.

There are ways to alleviate the consequences of the above theorem. For example, in the
Kogut-Susskind or staggered discretization of lattice fermions [11] one reduces the number
of doublers to 4 (the original fermion plus 3) and one can maintain a non-diagonal chi-
ral symmetry. The real breakthrough has come, however, with the closely related domain
wall [12, 13] or overlap [14, 15, 16] discretizations of lattice fermions.

3.0.3 Overlap fermions.

The continuum Dirac operator D. = D =13, v, D, is antihermitian and thus its eigenvalues
lie on the imaginary axis. Because of the property Di = v5D.vs its eigenvalues different from
0 occur in complex conjugate pairs, while the eigenvectors with zero eigenvalue are or can
be chosen to be eigenstates of chirality. When the background gauge field has non-vanishing
topological number @, the operator D, has an index n = n; —n_ = @, where n,,n_ are
the numbers of zero eigenstates with positive, negative chirality. The Wilson Dirac operator
Dy = D + D' is neither Hermitian nor antihermitian, since D is antihermitian and D’ is
Hermitian, and its eigenvalues are in general complex. Dy, also satisfy the property

D;V = Y5 Dwys (35)

and so its complex eigenvalues occur in complex conjugate pairs. Dy can occasionally have
real eigenvalues, but the corresponding eigenvector are not bound to have definite chiral-
ity. It is easy to see that, if 1(z) is an eigenvector of Dy with eigenvalue A, ¢'(z) =
(—1)EFs+25/9)y (1) is an eigenvector with eigenvalue 8/a — A. Thus the spectrum of eigen-
values of Dy, is symmetric with respect to reflections about the real axis and about a vertical
axis of intercept 4/a. The eigenvalues are contained in the strip 0 < ReA < 8/a and fill,
rather irregularly, a region with roughly the shape of an oval, with four pronounced voids,
again of roughly oval shape, between the values 0 and 2/a, 2/a and 4/a, 4/a and 6/a, 6/a
and 8/a. Near the points 0,2/a,4/a,6/a,8/a the spectrum reaches toward the real axis.
These are the regions where one recovers the 16 doublers of the theory.

It will be useful to consider the Wilson Dirac operator with a negative mass

p

Dy (p) = Dw — a (36)
and the corresponding “Hermitian Wilson operator”
P
H(p) = vDw(p) = vsDw — T (37)
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(Tt is easy to check that H is Hermitian: HT = Dil-/V’Yg, = 7575D1T,ny5 =vDw = H.)

The spectrum of Dy (p) is, of course, just the spectrum of Dy, shifted to the right by p/a.
(The spectrum of H lies of course on the real axis, but its dependence on p is non-trivial. We
will return to it later.) A value of p equal to one or in the vicinity of one will produce a shift
that places the origin of the complex A plane in the middle of the first void in the spectrum.
The overlap Dirac operator, intuitively speaking, is obtained by projecting first the spectrum
of of Dy (p) from this point onto a circle, and then by shifting this circle to the right, to
make it tangent to the imaginary axis. The eigenvalues of the overlap Dirac operator will
thus lie on a circle of radius p/a tangent at the origin to the imaginary axis. In the limit
a — 0 the circle will tend toward the imaginary axis. Of course the spectrum of an operator
cannot just be projected eigenvalue by eigenvalue. Rather we perform the projection by
calculating first the unitary component V' in the polar representation of Dy (p):

Dy (p) = V[Dw(p) Dw (p)]"/? (38)

that is
V = D (p)[Dw (p)! D (p)] 7/ (39)

and with this we form the overlap Dirac operator (or Neuberger Dirac operator) [14, 15]:

_r
a

D (1+V) (40)

(This is for massless fermions, we will add a mass term later.)

V' can also be expressed in terms of the Hermitian Dirac operator:

V = D (p)[Dw (p) D (p)] V% = v H(p)[(vs H (p)) s H(p)] V/* = 45 H(p)[H (p)*] 1/? (41)

In this last expression we encounter the interesting operator

e[H(p)] = H(p)[H(p)*] '/? (42)

It is the sign function of the operator H(p), namely the projection operator over the subspace
spanned by its positive eigenvectors minus the projection operator over the subspace of
negative eigenvectors. Thus, in terms of H, the overlap Dirac operator is given by

D =214 el Hp)]) (43)

The above derivation does not respect the historical path of development, which followed
a different route. Kaplan showed that one could avoid the problem of doubling by formulating
a theory of fermions extended to a fifth dimension where a suitable domain wall is introduced
to trap four-dimensional solutions of definite chirality [12]. Shamir provided an alternative
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formulation where the two chiral components of Dirac fermions where instead localized at
two boundaries in the fifth dimension. Narayanan and Neuberger [14, 15] reinterpreted the
fifth dimension in terms of a tower of states, and, in the case of a vector theory, integrating
out these extra degrees of freedom produces the expressions of 40, 43.

D satisfies a remarkable identity, the Ginsparg-Wilson relation [17]:
a

Proof: substituting from 40, and after trivial cancellation of the p/a factors, 44 becomes
B1+V)+ 1+ V) =(0+V)i(1+V) (45)
Expanding this becomes
295 + vV + Vs =3+ 3V + Vs + VsV (46)
But from the identity 35 and the fact that V' is unitary, it follows
VsV = VasVaysys = VVigg = (47)

and we see that the r.h.s in Eq. 45 is indeed equal to the Lh.s.

In terms of the propagator D! the Ginsparg-Wilson relation reads
_ N a
Dy +sD = p (48)

and this turns out to be the minimal generalization to the lattice of the chiral identity
satisfied by the continuum propagator:

D'y + 45Dt =0 (49)
The identity 44 implies the symmetry of the action under the transformation [18]
8¢ = Ys1b, 0 = s (50)

where a
Y5 = v5(1 — ;D) (51)

which can be interpreted as a lattice chiral symmetry. (Note: from 44 it follows that 42 = 1.)
The corresponding chirally projected fields are

I/Ji:%(1i%)¢:%(1i%¥%%1})% e =

11

1/;(1 F 75) (52)
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These projections should be taken into account when forming properly transforming bilin-
ears. In particular, the scalar bilinear is

Py + gy = P(1 - %D)w (53)

We can use this to add a mass term to the overlap operator, which thus becomes

DM:D+M(1—9D):(1—ﬂ)D+M (54)
P 2p
The overlap operator also matches the chiral properties of the continuum operator in regard
to zero modes. In order to describe these briefly, it is useful to start by considering the spec-
trum of V7. This consists of eigenvectors |A) with strictly complex (i.e. not real) eigenvalues
A, and of possible eigenvectors with eigenvalue -1 and/or +1. The latter two can be taken to
be eigenstates of chirality. The eigenvectors of V' with eigenvalue -1 are of course zero modes
of D (i.e. eigenvectors with zero eigenvalue) and we will denote them by |0),, £ referring
to chirality. We will denote the eigenvectors of V' with eigenvalue +1 by |oo)4, because the
corresponding eigenvalue of D, equal to 2p/a, recedes to infinity in the continuum limit. Let
us consider the trace of 5. Here we talk about the full trace of 5, which is a matrix defined
over the lattice, of large but finite dimension (assuming that we are working with a lattice of
large but finite volume). Obviously Tr 75 = 0. Let us evaluate this trace in the basis formed
by the eigenvectors of V. Since v5|\) = |A*) (this follows from v3V 5 = VT and the fact that
V' is unitary) Tr 75 receives 0 contribution from the complex eigenvalues of V. Thus

Tr s = n{ —n® + a0 =0 (55)

0, . . .
where ni *) stands for the number of corresponding eigenvectors. Let us now consider

Tr v5(1 + V). We have
Trys(1+V) = 2(”530) — ) = Tr vV = Tr [H(p)] = AH(p) (56)

where AH (p) is the difference between the dimensionality of the subspace spanned by the
positive eigenvectors of H(p) and the one spanned by the negative eigenvectors. Combining
55 and 56 we find that

1
n® — = ~5AH(p) (57)
On the other hand one can prove that, if the background gauge field configuration is suffi-
ciently smooth, i.e. if tr [1 — $Retr Uy, (z)] does not exceed a certain bound, one can define a

topological number of the gauge field configuration Q(U) as in the continuum [19] and that
AH(p) = Q(U) [20]. Thus we see that for the overlap operator there is a direct relation

between number of zero modes and topology, ngf) —n® = (2, very much as in the continuum.

12



For the above it should be apparent that the overlap discretization, or equivalently the
domain wall discretization, provides a fully satisfactory formulation of lattice fermions, which
preserves maximally the properties of the continuum theory. It circumvents the bound of the
Nielsen-Ninomiya theorem by having a lattice Dirac operator which is not strictly local, or
ultralocal, using a more technical term. The inverse square root appearing in 40 has indeed
matrix elements between any two lattice sites, however remote. Still the operator is local in
the sense that these matrix elements drop-off exponentially with separation and in such a
way as to go to a local operator in the continuum limit. Unfortunately calculating the inverse
square root of the matrix Dy (p) Dy (p) or, equivalently, the sign function of H(p) is very
demanding from a numerical point of view. Thus the practical use of the overlap formulation
requires major algorithmic and computational efforts. Yet these new formulations of lattice
fermions have been used in actual calculations, with very gratifying results.
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