

international atomic energy agency the

abdus salam

international centre for theoretical physics

SMR.1508 - 8

SUMMER SCHOOL ON PARTICLE PHYSICS

16 June - 4 July 2003

LONG TERM PERSPECTIVES OF NEUTRINO PHYSICS

Special Lecture

M. LINDNER Technical University Munich Munich GERMANY

M. Lindner

Technical University Munich

Physics Beyond the Standard Model

Theoretical Reasons:

- Strictly speaking: SM does not exist without cutoff
- Higgs-doublet = most simple extension for correct elektro-weak symmetry breaking
- Explanation for fermion generations missing
- Unexplained parameters: (9+? masses- und 4+? mixing parameters)
- Charge quantization
- Gauge hierarchy problem
- Gravity not yet included,

Experimental Reasons = Facts:

- Dark matter and dark energy exists in the cosmos!
- $\bullet \text{ Baryon asymmetry of the universe} \quad \Leftrightarrow \quad \mathsf{much too small in SM}$
- Neutrino masses discovered in the midst of a discovery phase

 \Rightarrow **new physics** beyond SM implications for models beyond SM!

Pauli: Neutrinos will never be detected ...

• neutral are "ghost particles"

Project

- screening of solar : 1000 ly lead !
- Cowen & Reines 1954-56 → detection of reactor

• solar studied since 1967: \rightarrow Nobel price 2002 for R. Davis

- Pair of left- and right-handed fields $L, R \Rightarrow \qquad \mathcal{L}_m = -m_D(\overline{L}R + \overline{R}L)$
- Charge conjugation for χ -ral fields: $L_i = \text{left} \Leftrightarrow R_i = \text{right}$

$$R' = L^c \; ; \quad L' = R^c \quad \Leftrightarrow \quad L = (R')^c \; ; \quad R = (L')^c$$

L-fields: $\mathbf{L} = (L_1, L_2, L_3, L'_1 = R_1^c, L'_2 = R_2^c, L'_3 = R_3^c)$ R-fields: $\mathbf{R} = (R'_1 = L_1^c, R'_2 = L_2^c, R'_3 = L_3^c, R_1, R_2, R_3)$ $\rangle \Leftarrow \text{every } \chi \text{-ral field } 2x !$

Lorentz-invariant fermion mass terms (3 generations \Rightarrow 6x6 Matrix):

$$\begin{aligned} -\mathcal{L}_m &= \overline{\mathbf{L}}\mathbf{M}\mathbf{R} + \mathbf{h.c.} \\ &= \left(\begin{array}{cc} \overline{L}_i, & \overline{R_i} \end{array}^c \right) \left(\begin{array}{cc} M_L & m_D \\ m_D^T & M_R \end{array} \right)_{ij} \left(\begin{array}{c} L_j^c \\ R_j \end{array} \right) + \mathrm{h.c.} \end{aligned}$$

SM: $M_L = M_R = 0$ (charge conservation) m_D allowed besides for neutrinos (no ν_R) **BSM:** Neutrinos may have $m_D \neq 0$, $M_L \neq 0$, $M_R \neq 0$ M_L , $M_R \Leftrightarrow$ L violation

Neutrino Masses and Mixings

Some new physics to allow for neutrino mass terms \Rightarrow

• Interaction states: Active Flavour States $\nu_{e_f} = 3$ electro-weak partners of e, μ, τ (LEP: Z-line shape) Sterile States $\nu_{N_s} = 0$ N electro-weak singlets General mass matrix $(\nu_e, \nu_\mu, \nu_\tau, \nu_{N_1}, \nu_{N_2}, ...)$ $\begin{pmatrix} M_L & m_D \\ m_D^T & M_R \end{pmatrix}$ $\begin{pmatrix} M_L \simeq 0 \text{ with standard Higgs content} \\ m_D \simeq \text{ mass scale of charged leptons} \\ M_R \simeq \text{ embedding scale (LR, GUT, ...)}$ • Physical states: \Leftrightarrow propagation as mass eigenstate ν_i with mass m_i

Diagonalization:⇒ See–Saw Mechanism

Heavy sterile ν 's: $m_{heavy} \simeq M_R$ (\simeq right-handed) Light active ν 's: $m_{light} \simeq M_L - m_D^T M_R^{-1} m_D$ (\simeq left-handed)

Mass hierarchy: \Rightarrow Consider sub-space of light neutrinos $U_{\rm mix}^{\rm light}$ \simeq unitary

Leptonic mixing matrix in basis where charged leptons are diagonal:

$$\mathbf{U}_{\mathrm{MNS}} := \mathbf{U}_{\mathrm{mix}}^{\mathrm{light}} = \mathbf{U}_{\mathrm{Dirac}} \cdot \mathbf{diag} \left(e^{i \alpha_1}, e^{i \alpha_2}, \ldots, e^{i \alpha_{n-1}}, 1 \right)$$

 $U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$

The Status Quo

neutrinos are routinely observed 4 ways to measure / limit neutrino masses

- 1) Neutrino oscillations
- 2) Lepton number violating processes
- 3) Kinematical mass measurements
- 4) Astrophysics & cosmology

1) Neutrino Oscillation

$$|\nu_{\mu}(t)\rangle = -\sin\theta \,\exp[-\frac{iE_{1}t}{\hbar}] \,|\nu_{1}\rangle + \cos\theta \,\exp[-\frac{iE_{2}t}{\hbar}] \,|\nu_{2}\rangle$$

$$E_i = \sqrt{p_i^2 + m_i^2} \xrightarrow{p_i = p \gg m_i} \simeq p + \frac{m_i^2}{2p} \simeq p + \frac{m_i^2}{2E}$$
$$L = c \cdot t \qquad \Delta m^2 = m_2^2 - m_1^2 \Rightarrow \quad E_2 - E_1 = \frac{\Delta m^2}{2E}$$

Transition probability:

$$P(\nu_{\mu} \to \nu_{e}) = \left| \langle \nu_{\mu}(t) | \nu_{e}(0) \rangle \right|^{2} = \sin^{2} 2\theta \cdot \sin^{2} \left(\frac{\Delta m^{2} L}{4E} \right)$$

• 18 different appearance or disappearance channels

$$\begin{array}{c} \nu_e \\ \nu_\mu \\ \nu_\tau \end{array} \right\} \xrightarrow{oscillation} \left\{ \begin{array}{c} \nu_e \Rightarrow e^- \\ \nu_\mu \Rightarrow \mu^- \\ \nu_\tau \Rightarrow \tau^- \end{array} \right.$$

$\overline{\nu}_e$	$\left(\overline{\nu}_e \Rightarrow e^+ \right)$
$\overline{\nu}_{\mu} \left. \right\} \stackrel{oscillation}{\longrightarrow}$	$\langle \overline{\nu}_{\mu} \Rightarrow \mu^{+}$
$\overline{\nu}_{\tau}$	$\left(\overline{\nu}_{\tau} \Rightarrow \tau^{+} \right)$

2 flavour approximation:				
$\overline{P_{ab}} = \sin^2(2\theta)$	$sin^2(\Delta m^2 L/4E)$			
$P_{aa} = 1 - P_{ab}$				

Neutrino Oscillation Signals

LSND claims evidence for oscillations

SOLAR PHASE 1: Rates compared to Solar Models: ≤ 2000

- Consistent deficit of total CC neutrino rates
- Combining $Cl/H_2O/Ga/D_2O \Rightarrow$ some spectral information
- Depends on solar modelling, but should be robust
- Can be explained by oscillation \Rightarrow $% {\rm different}$ regimes \Rightarrow

SOLAR PHASE 2: NC, CC and ES Rates from SNO 2002

- Clear proof of flavour conversion
- Independent of SSM (\Rightarrow SSM test)
- Both no conversion and conversion to sterile excluded by more than 5σ

 $\Phi_{NC} = \Phi_e + \Phi_{\mu\tau}$

- \simeq no L/E dependence
- \bullet LMA best oscillation fit, LOW \simeq OK, SMA and VAC out
- RSFP worked best!

SOLAR/REACTOR PHASE 3: \Rightarrow KamLAND 2002

- Dominated by 70GW (= 7% of world total) at 175 ± 30 km
- Tests solar oscillation with reactor antineutrinos
- Different L, E and a controlled source
- Rules out RSFP (no magnetic fields)

- Mostly a rate effect \Rightarrow flavour transition
- Already mild L/E sensitivity
- Geological $\nu's$: \simeq 40TW at lower energy $\Rightarrow E \ge 2.6$ MeV

Combining solar and reactor data:

SOLAR/REACTOR PHASE 4: \Rightarrow KamLAND 2003+2004

- L/E dependence of oscillations \Rightarrow establish oscillations without doubt \Rightarrow solar oscillation is QM on largest scales
- Δm^2 dependence of oscillations \Rightarrow improved Δm^2
- Inclusion of low energy bins \Leftrightarrow geological neutrinos

2) Lepton Number Violation \Rightarrow $0\nu 2\beta$ Decay

- Compensations possible
- Model dependent: LR, SUSY R-partity violation, ... nuclear matrix elements ...
- Only $|m_{ee}|$ measured \Leftrightarrow one Majorana CP-phase comb. \Rightarrow 2nd phase?
- Better experiments are very important \Leftrightarrow L-violating effects CUORE: 0.1eV, MOON: 0.03eV, EXO,GENIUS(1t,10t): 0.02eV, 0.002eV $\Leftrightarrow \sqrt{\Delta m_{13}^2} \simeq 0.06 \text{ eV}$ Very fary future: if $|<\mathbf{m}_{ee}>| < 10^{-3} \text{ eV} \rightarrow \text{normal hierarchy}$

M. Lindner – 20 –

4) Cosmological Effects of Neutrino Mass

Neutrinos are degrees of freedom in hot early universe
 ⇒ counting neutrino species with masses below ≃ MeV

Effects:

- 330 neutrinos/cm³ carry significant energy and momentum
 ⇒ gravitational and streaming effects in structure formation
- ...further astronomical / cosmological effects

Recent CMBR results of WMAP

...combined with 2df galaxy survey, Lyman α , ...

- Small scale structure $\Rightarrow m_{\nu} \leq 0.7 \text{ eV}$ (?1.2 eV)
- 3 degenerate neutrinos $\Rightarrow m_{\nu} \leq 0.23 \text{ eV}$
- Indication against additional sterile ν in LSND range ... will soon be tested directly by MiniBooNE
- Cosmological data do not prefer 0ν2β mass range claimed by Heidelberg–Moscow experimentunless the nuclear matrix element is very large

The near future

Progress / results on the horizon:

- MiniBooNE ← → LSND, 4 neutrinos
- KamLAND $\leftarrow \rightarrow$ spectral info. on solar $\Delta m^2 \leftarrow \rightarrow$ oscillation
- SNO \leftarrow > NC/CC, day/night \leftarrow > improve LMA fits
- Borexino, KamLAND $\leftarrow \rightarrow$ Be flux $\leftarrow \rightarrow$ consistency, sun
- K2K, CNGS, MINOS $\leftarrow \rightarrow$ establish/test atm. Δm^2 with beam
- KATRIN ← → lower absolute neutrino mass
- $Ov2\beta \leftarrow \rightarrow$ lower Majorana mass limit / value

Precise description required \rightarrow

- Production as flavour eigenstate from W-exchange
- Detection via W-exchange \equiv projection on flavour state
- Propagation as mass eigenstate \Rightarrow $\,$ use mixing matrix at vertex $\,$
- Is a simple QM treatment justified?

QFT description of a neutrino produced in a decay at rest:

- localized source and detector
- $L = |\vec{x}_D \vec{x}_S|$
- initial particle at rest
- target particle at rest

... DIF similar

Transition probability from Feynman diagram:

$$\left\langle P_{\substack{(-)\\\nu_{\alpha}}\rightarrow \substack{(-)\\\nu_{\beta}}}\right\rangle_{\mathcal{P}} \propto \int dP_{S} \int_{\mathcal{P}} \frac{d^{3}p_{D1}}{2E_{D1}} \cdots \frac{d^{3}p_{Dn_{D}}}{2E_{Dn_{D}}} \left| \mathcal{A}_{\substack{(-)\\\nu_{\alpha}}\rightarrow \substack{(-)\\\nu_{\beta}}} \right|^{2}$$

 \Rightarrow leads to neutrino oscillation + avoids confusion ...

M. Lindner - 26 -

Kinematics: Equal Energy or equal Momenta?

- Consider e.g. pion decay at rest: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$
- Neutrino energy and momentum determined by energy-momentum conservation

$$p_k^2 = \frac{m_\pi^2}{4} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right)^2 - \frac{m_k^2}{2} \left(1 + \frac{m_\mu^2}{m_\pi^2} \right) + \frac{m_k^4}{4 m_\pi^2}$$
$$E_k^2 = \frac{m_\pi^2}{4} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right)^2 + \frac{m_k^2}{2} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right) + \frac{m_k^4}{4 m_\pi^2}$$

• For $E \gg m$: $p_k \simeq E - \xi \frac{m_k^2}{2E}$, $E_k \simeq E + (1-\xi) \frac{m_k^2}{2E}$ with $E = \frac{m_\pi}{2} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right) \simeq 30 \text{ MeV}$, $\xi = \frac{1}{2} \left(1 + \frac{m_\mu^2}{m_\pi^2} \right) \simeq 0.8$ \Rightarrow neither equal energy nor equal momentum!

$$e^{ipx}$$
 $\Rightarrow \quad p_{\mu} \cdot x^{\mu} = p_k L - E_k T = -\frac{m_k^2 L}{2E}$ for $L = T$

⇒ ξ drops out of the oscillation formulae \Leftrightarrow naive treatment correct • Shown for π -decay, but valid in general (DIF, N-body, ..., different ξ)

Localized Source and Detector:

- Feynman rules for particles of given momentum (\simeq on-shell)
 - \Rightarrow this corresponds to an infinitely extended (non-localized) plane wave
- Localized source (wave packet) and detector in space-time ($\Delta x_S, \Delta t_S$), ($\Delta x_D, \Delta t_D$):
 - \Rightarrow Source: Fourier superposition of momenta with $\sigma_S^2 \simeq min(\Delta x_S^2, \Delta t_S^2)$
 - \Rightarrow Detector: projection on a superposition of momenta with $\sigma_D^2 \simeq min(\Delta x_D^2, \Delta t_D^2)$
- Different masses and momenta \Rightarrow dispersion \Rightarrow loss of coherence

- Oscillations from QFT $\Rightarrow P_{\nu_{\alpha} \to \nu_{\beta}}(L,T) = \left|\sum_{k} U_{\alpha k}^{*} e^{ip_{k}L iE_{k}T} U_{\beta k}\right|^{2}$
- Very interesting QM effects (σ , decay)

M. Lindner – 28 –

$N\geq 2$ with CP and Matter Effects

Precision: N = 2 description insufficient \Rightarrow modifications

- $2 \rightarrow 3$ neutrino framework \Rightarrow more parameters & CP effects
- MSW: parameter mapping in matter

Quantum mechanical treatment for N ultra-relativistic neutrinos:

$$P_{\nu_{e_l} \to \nu_{e_m}}(L/E) = \left| \sum_j U_{mj} U_{lj}^* \exp\left(\frac{-i \ m_j^2 L}{2E}\right) \right|^2$$

- masses m_i associated to mass eigenfields ν_i
- flavour eigenstates ν_{e_l} , ν_{e_m} , ...
- neutrino energy E
- \bullet source and detector distance L
- \bullet unitary mixing matrix U

General 3x3 neutrino mixing matrix:

has (up to) 3 angles + 1 Dirac-phase +2 Majorana-phases: θ_{12} , θ_{23} , θ_{13} , δ , Φ_1 , Φ_2

$$U_{MNS} = U \cdot \operatorname{diag}(\exp[\mathrm{i}\Phi_1], \exp[\mathrm{i}\Phi_2], 1)$$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

- Only U enters in neutrino oscillations: $J_{ij}^{e_le_m} := U_{li}U_{lj}^*U_{mi}^*U_{mj}$
- All oscillation frequencies show up: $\Delta_{ij} := \frac{\Delta m_{ij}^2 L}{4E} = \frac{(m_i^2 m_j^2)L}{4E}$

$$P(\nu_{e_l} \to \nu_{e_m}) = \underbrace{\delta_{lm} - 4 \sum_{i>j} \operatorname{Re} J_{ij}^{e_l e_m} \sin^2 \Delta_{ij}}_{P_{CP}} \underbrace{-2 \sum_{i>j} \operatorname{Im} J_{ij}^{e_l e_m} \sin 2\Delta_{ij}}_{P_{CP}}$$

⇒ Leptonic CP violation, genuine 3 flavour and matter effects

M. Lindner – 30 –

Matter Effects and MSW Resonance

Mikheyev-Smirnov-Wolfenstein: coherent forward scattering

Analytic Description

- full numerical simulation
- $\Delta = \Delta m_{31}^2 L/4E$
- qualitative understanding \Rightarrow expand in $\alpha = \Delta m_{21}^2 / \Delta m_{31}^2$ and $\sin^2 2\theta_{13}$ matter effects $\hat{A} = A / \Delta m_{31}^2 = 2VE / \Delta m_{31}^2$; $V = \sqrt{2}G_F n_e$

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \cos^2 \theta_{13} \sin^2 2\theta_{23} \sin^2 \Delta + 2 \alpha \cos^2 \theta_{13} \cos^2 \theta_{12} \sin^2 2\theta_{23} \Delta \cos \Delta$

$$\begin{split} P(\nu_e \to \nu_\mu) &\approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \ \frac{\sin^2((1-\hat{A})\Delta)}{(1-\hat{A})^2} \\ &\pm \ \sin \delta_{\rm CP} \ \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\ &+ \ \cos \delta_{\rm CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\ &+ \ \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2} \end{split}$$

→ degeneracies, correlations, ...

More in the future

... or what needs to be done, but is not yet under construction

Absolute neutrino mass:

- 0v2β
- improved endpoint measurements

Oscillations:

- New reactor experiments
- Superbeams
- Neutrino factories

Implications of Kamland measurements

• New reactor experiment at ideal location \rightarrow better θ_{12} sensitivity • HLMA \rightarrow even some θ_{13} sensitivity Petcov, Choubey

Another new reactor idea

near detector (170m)

m) $\xrightarrow{\overline{\nu}_e}$

far detector (1700m)

• The survival probability:

 $\overline{\nu}_{e_{1}}$

- expand in small quantities

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E_{\nu}} + \left(\frac{\Delta m_{21}^2 L}{4E_{\nu}}\right)^2 \cos^4 \theta_{13} \sin^2 2\theta_{12}$$

– last term negligible for $rac{\Delta m_{31}^2 L}{4E_{
u}} \sim \pi/2$ and $\sin^2 2 heta_{13} \gtrsim 10^{-3}$

- atmospheric frequency is dominant
- most important:
- No degeneracies!
- Practically no correlations!
- No matter effects!

Long baseline plans for superbeams & neutrino factory

Precision!

Source ⊗	Oscillation \otimes	Detector
 neutrino energy Ε flux and spectrum flavour composition contamination symmetric ν/ν operation 	 oscillation channels realistic baselines MSW matter profile 	 effective mass, material threshold, resolution particle ID (flavour, charge, event reconstruction,) backgrounds x-sections (at low E)

Existing Projects and Plans (partly)

Existing	K2K (running)	establish atm. osc. in lab.
Construction	MINOS (2005) CNGS (2005?) \simeq 10% for Δm^2_{31} , $ heta_{23}$, improve $ heta_{13}$?
Approval	JHF-SK (2007)	\simeq few % for Δm^2_{31} , $ heta_{23}$, improve $ heta_{13}$!
LOIs	NuMI off-axis (200x) JHF-HK	(201x) \simeq %, improve θ_{13} , CP?, $sgn(\Delta m^2)$?
Long term	neutrino factory (201y)	CP violation
and then	muon collider (20xx)	

- Continuos line of improvements for
 - beams
 - detectors
 - physics

→ Very precise oscillation parameters (% precision)
→ Sensitivity to leptonic CP violation

Why should we measure neutrino parametrers so precisely?

∜

Impact on our understanding of physics beyond the

Standard Model

M. Lindner – 40 –

Fermion Mass Models

• Structure of m_{LL} from GUT physics and/or discrete symmetries

m_{LL}	scheme	0 u2eta-decay
$\boxed{\frac{m}{2} \begin{pmatrix} 0 & 0 & 0\\ 0 & 1 & 1\\ 0 & 1 & 1 \end{pmatrix}} + \text{corr.}$	hierarchical, normal	small
$\frac{m}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 1\\ 1 & 0 & 0\\ 1 & 0 & 0 \end{pmatrix} + \text{ corr.}$	hierarchical, inverted	small
$m \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} + $ corr.	hierarchical, inverted	large
$m\begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2}\\ \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} + \text{ corr.}$	degenerate	small
$m \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \operatorname{corr.}$	degenerate	large

- Integrating out all heavy degrees of freedom \Rightarrow only light degrees of freedom
- Graphically for the example of M_R :

d=5 Mass Operator:

- Light degrees of freedom \Rightarrow (ν_L, Φ)
- κ is dimension-full
- Example: $\kappa \simeq \frac{1}{M_R}$
- For $\langle \Phi \rangle = v \Rightarrow$ neutrino masses $\sim \kappa v^2$

M. Lindner – 41 –

Quantum Corrections to Neutrino Masses and Mixings

Experiment: Masses, mixings at low energies (in the future very precise!) **Theory:** \Rightarrow Models for Y_D and M_R at high energies

₩

Quantum corrections \Rightarrow RGE-evolution of κ to the GUT-scale

1-loop corrections:

Example for RGE Effects

RG-evolution of bi-maximal mixings at the GUT-scale (MSSM example)

Antusch, Kersten, ML, Ratz, Phys.Lett. B544 (2002) 1

Rather general property:

- θ_{12} runs stronger than $\theta_{23}, \theta_{13} \simeq konst.$
- Compare with data \Leftrightarrow deviation from bi-maximality can be explained by RGE

M. Lindner – 45 –

Learn about / from

- Sun (learn about fusion cylce...)
- Earth (geo neutrinos, density profile with beams & SN...)
- Atmosphere ...

Neutrinos in Astrophysics and Cosmology

Staus Quo and Evolution of the Universe depends on Neutrinos

1

- Big Bang Nucleosynthesis (BBN)
- Supernovae
- Baryon asymmetry
- ...

BBN predicts light element abundances very nicely

more neutrinos etc. Tend to make this worse...

Neutrinos and Supernovae

- Collapse of a typical star \Rightarrow $\simeq 10^{57} \nu' s$, $\simeq 99\%$ of released energy in $\nu' s$
- Essential for explosion simulations do not (yet) explode

Next galactic SN in 20..100 years
 Many events ⇒ details of the explosion mechanism

Dighe and Smirnov, Phys.Rev. D62 (2000) 033007

- Time scales: neutrino masses from other experimenst
 - \Rightarrow learn more about SN explosion mechanism
 - \Rightarrow improved understanding of SN, neutron star, black hole,...
 - \Rightarrow consistency test and redundancy

SN→ 2 possibilities:

→ Extremely impressive signal of BH & v physics

Gravitational waves & SN:

 \rightarrow Adds to understanding of SN \rightarrow global fits

Baryon Asymmetry & Neutrino Physics

- Baryogenesis \Rightarrow Sakharov conditions:
- 1. C & CP violation \leftrightarrow complex couplings in \mathcal{L} 2. Departure from thermal equilibrium $\leftrightarrow \Gamma < H$

N + 1

- 3. **B violation** \leftrightarrow B+L violating Sphalerons
- Sphaleron Processes:

N

- Sphaleron processes are in equilibrium for $T\gtrsim T_{
 m EW}$
- Sphaleron processes stop for $T < T_{\rm EW}$
- Provide B
- Change (B+L), but not (B-L)

- Only lefthanded particles are affected \Leftrightarrow lepton number assignment & equilibration

 $N_{\rm CS}$

Wash-Out and Equilibration

- Equilibration very fast for sizable Yukawa couplings \Rightarrow ignore
- Small Yukawa couplings \Rightarrow treat SU(2) singlets seperately

M. Lindner – 52 –

GUT Baryogenesis & Wash-Out

Kuzmin, Rubakov & Shaposhnikov

- SM fulfills Sakharov conditions
- CP violation tiny
- Requires first order phase transition

- Electroweak Baryogenesis does not work within the Standard Model
- 1st order phase transition \Rightarrow $\,$ one tiny λ \Rightarrow $\,$ tendency to predict light Higgses
 - $\Rightarrow~$ almost excluded in extensions like 2HDM, MSSM, ...

M. Lindner - 54 -

Leptogenesis

Fukugita & Yanagida, Luty, Buchmüller et al

- Righthanded Majorana neutrinos decays (d) produce ΔL ($\leftrightarrow E$)
- Sphalerons (s) convert ΔL partially into ΔB

- \Rightarrow Sphalerons convert a L asymmetry into a B asymmetry
- \Rightarrow upper bound on $m_{
 u} < \mathcal{O}(0.1 \text{ eV})$ Buchmuller, Plumacher, Int.J.Mod.Phys.A15 (2000)5047

Neutrinogenesis

Dick, Lindner, Ratz, Wright, Phys. Rev. Lett. 84 (2000) 4039

- $\bullet \ {\sf Small \ Yukawa \ couplings} \Rightarrow \quad {\sf LR}{\text{-}conversion \ too \ slow}$
- Equilibration occures after sphalerons switch off

 \Rightarrow Baryon asymmetry with Dirac neutrinos

M. Lindner – 56 –

