

the

abdus salam

international centre for theoretical physics

SMR: 1513/2

10TH CONFERENCE ON HOPPING AND RELATED PHENOMENA

(1-4 September 2003)

"Relaxation of Nonequilibrium Charge Carriers at Low Temperatures"

presented by:

O. Bleibaum

Otto-von-Guericke Universität Magdeburg Germany

These are preliminary lecture notes, intended only for distribution to participants.

Relaxation of nonequilibrium charge carriers at low temperatures

O. Bleibaum, H. Böttger, E. Haba Otto-von-Guericke Universität Magdeburg, Germany

V. V. Bryksin

A. F. Ioffe Physico-Technical Institute
St. Petersburg, Russia

Content

- The model and the kinetic constraint
- Relaxation at high temperatures
- Relaxation at low temperatures
- Conditions for the observability of the transition
- Relationship to some known results
- Conclusions

The model

noninteracting electrons far from the Fermi energy

$$\frac{d\rho_m}{dt} = \sum_n [\rho_n W_{nm} - \rho_m W_{mn}]$$

$$W_{nm} = \nu \theta(\omega - |\epsilon_{nm}|) \exp(-2\alpha |R_{nm}| + \frac{\beta}{2} (\epsilon_{nm} - |\epsilon_{nm}|)))$$

 ρ_m - probability to find site m occupied, α^{-1} -localization length, $\beta=1/kT$ -inverse temperature, ν -attempt-to-escape frequency, R_{nm} -hopping length, ϵ_{nm} -difference between the site energies of the initial and the final site

The kinetic constraint

Idea:

- only long wave-length phonons are effective
- electron-phonon coupling constant restricts energy transfer to small values

$$W_{nm} \propto \sum_{\mathbf{q}} |\gamma(\mathbf{q})|^2 (1 - \cos(\mathbf{q}, \mathbf{R}_{nm})) \delta(\hbar \omega_q - |\epsilon_{nm}|)$$
 $\gamma(q) \propto F(q/2\alpha) * V(q)$ overlap integral Fourier transf. potential $\rightarrow 0$ for $q > 2\alpha$ $\rightarrow 0$ for $q > q_c$

 ω_q -phonon frequency, $\gamma(q)$ -electron phonon coupling constant, q_c characteristic momentum of V(q)

Interesting quantities

- 1. Energy distribution function $F(\epsilon_0, \epsilon | t)$
- 2. Energy relaxation rate

$$v(t) = \frac{d}{dt}\epsilon(t) = \frac{d}{dt}\langle \sum_{n} \epsilon_{n} \rho_{n}(t) \rangle$$

3. Mean squared deviation

$$\sigma^2(t) = \langle \sum_n \epsilon_n^2 \rho_n(t) \rangle - \epsilon^2(t)$$

⟨···⟩-configuration average

Calculation strategy

1. Solve problem with Green function

$$\rho_m(s) = \sum_n \rho_n(t=0) P_{nm}(s)$$

2. Use continuous coordinates

$$P(\rho, \rho'|s) = \sum_{nm} \delta(\rho - \rho_m) P_{mn}(s) \delta(\rho_n - \rho')$$

3. Calculate diffusion propagator

$$F(|\mathbf{R}' - \mathbf{R}|; \epsilon, \epsilon'|s) = \frac{1}{N(\epsilon)} \langle P(\rho, \rho'|s) \rangle$$

4. Obtain energy distribution function

$$F(\epsilon, \epsilon'|s) = \int d\mathbf{R} F(R; \epsilon', \epsilon|s)$$

5. Comparison of results with Monte-Carlo simulations

$$N(\epsilon)$$
-density of states, $\rho_m=(\mathbf{R}_m,\epsilon_m)$, $\rho=(\mathbf{R},\epsilon)$, s-Laplace frequency

Relaxation at $kT \gg \omega$

- Calculation of $F(\epsilon', \epsilon|s)$ in effective medium approximation^a
- Quasielastic expansion of the equation for F assumption: ω is the smallest energy scale in the problem

$$sF(\epsilon',\epsilon|s) = \delta(\epsilon'-\epsilon) + kT\frac{d}{d\epsilon}[N(\epsilon,s)v(\epsilon,s)(\underbrace{\frac{d}{d\epsilon}\frac{F(\epsilon',\epsilon|s)}{N(\epsilon)}}_{\text{energy diffusion}} + \underbrace{\frac{F(\epsilon',\epsilon|s)}{kTN(\epsilon)}}_{\text{"current"}})]$$

$$v(\epsilon, 0) = \frac{\omega^2 \nu}{3kT} \exp(-\rho_c(\epsilon))$$

$$\rho_c(\epsilon) = \# \frac{2\alpha}{(2\omega N(\epsilon))^{1/d}}$$

$$\frac{v(\epsilon, s)}{v(\epsilon, 0)} \ln \frac{v(\epsilon, s)}{v(\epsilon, 0)} = \frac{s}{\omega_0(\epsilon)}$$

$$\omega_0(\epsilon) = \frac{d\nu}{\rho_c(\epsilon)} \exp(-\rho_c(\epsilon))$$

 $v(\epsilon,s)$ -spectral energy relaxation rate, d-spatial dimension, $\#=(d/S_d)^{1/d}$, S_d -solid angle in d dimensions

^amethod:O.Bleibaum, H. Böttger, V. V. Bryksin, Phys. Rev. B62, 13440 (2000)

Results for $N(\epsilon) = N$

1. characteristic time scale:

$$t_{perc} \propto \frac{1}{\nu} \rho_c \exp(\rho_c)$$

2. energy relaxation rate

$$v(t) \propto v_0 \frac{t_{perc}}{t \ln^2(t_{perc}/t)}$$
 $t \ll t_{perc}$

$$v(t) = v_0 \left(1 + \sqrt{\frac{e}{2\pi}} \frac{\exp(-t/t_{perc})}{(t/t_{perc})^{3/2}}\right) \quad t \gg t_{perc}$$
$$v_0 = \frac{\omega^2 \nu}{3kT} \exp(-\rho_c)$$

3. Diffusive contribution to the propagator irrelevant at low temperatures $(kT \ll \sqrt{6d\omega\rho_c})$

$$sF(\epsilon', \epsilon|s) = \delta(\epsilon' - \epsilon) + kT \frac{d}{d\epsilon} (F(\epsilon', \epsilon|s)v(\epsilon, s))$$

4. Mean squared deviation

$$\sigma^2(t) = 2kT v_0 t \qquad t \gg t_{perc}$$

5. Distribution function at large times

$$F(\epsilon', \epsilon|t) = \frac{1}{\sqrt{2\pi\sigma^2(t)}} \exp\left(-\frac{(\epsilon' - \epsilon - v_0 t)^2}{2\sigma^2(t)}\right)$$

Relaxation at T=0 for $N(\epsilon)=N$

Results of effective medium approximation (EMA):

$$sF(\epsilon', \epsilon|s) = \delta(\epsilon' - \epsilon) + \omega \frac{d}{d\epsilon} (F(\epsilon', \epsilon|s)v(\epsilon, s))$$

$$v(\epsilon, 0) = \frac{\omega \nu}{2} \exp(-\rho_c(\epsilon))$$

$$\rho_c(\epsilon) = \# \frac{2\alpha}{(\omega N(\epsilon))^{1/d}}$$

$$\omega_0(\epsilon) = \frac{d\nu}{\rho_c(\epsilon)} \exp(-\rho_c(\epsilon))$$

Observation: EMA predicts percolation like transport at zero temperature!

Observation:

- Percolation paths are the fastest possible relaxation paths → they determine the lower tail of the distribution function.
- 2. A lot of other relaxation paths are possible. Accordingly, we expect that the center of the particle packet is not determined by percolation like paths.

Monte-Carlo Simulations of v for d=3:

EMA versus MC-Simulation

- 1. Both the numerical preexponetial factor and the magnitude of the exponent of the EMA are too small to compare with the numerical simulations.
- 2. The concentration dependence of v as predicted by the EMA differs from the numerical result.

(— numerical result,

- - - guide for the eye)

1

Concentration dependence of v(s = 0) for d=3

- Analogy: Energy relaxation at T=0 is like conduction in a strong electric field!
- Conductivity in a strong electric field:

$$\sigma \propto \exp(-c\rho_c^{d/(d-1)})$$

("Miller-Abrahams transport") (I. P. Zvyagin (1979), H. Böttger and V. V. Bryksin (1980), N. Van Lien and B. I. Shklovskii (1981))

1

Why are relaxation paths different from low-field percolation paths?

- 1. The particle can not return.
- 2. There is no particel source.

Analytical description of the relaxation

CTRW+Quasielasticity

$$sF(\epsilon', \epsilon|s) = \delta(\epsilon' - \epsilon) + kT \frac{d}{d\epsilon} (F(\epsilon', \epsilon|s)v(\epsilon, s))$$

$$v(\epsilon, 0) = C_1 \omega \nu \rho_c^{-d/(2(d-1))} \exp(-(d-1)(\rho_c(\epsilon)/d)^{d/(d-1)})$$

 $v(\epsilon, s \neq 0)$: complicated integral of $s, d, \rho_c(\epsilon)$

 C_1 -number

(E. Haba, O. Bleibaum, H. Böttger and V.V. Bryksin, Phys. Rev. B 68, 142203 (2003))

Some further results for $N(\epsilon) = N$

1. Characteristic time scale:

$$t_{MA} = \frac{1}{\nu} \exp((d-1)(\rho_c(\epsilon)/d)^{d/(d-1)})$$

2. Energy relaxation rate:

$$v(t) = v(0)(1 + \frac{2v(0)}{d\omega\nu} \frac{\rho_c^d}{\ln^{d-1}(\nu t)} \nu t \exp(-\frac{\ln^d(\nu t)}{\rho_c^d})) \qquad t \gg t_{MA}$$

$$v(t) \propto \frac{\omega}{t} \frac{\ln^{d-1}(\nu t)}{\rho_c^d} \exp(-\frac{\ln^d(\nu t)}{\rho_c^d})$$
 $t \ll t_{MA}$

3. Structure of the energy diffusion function for $t \gg t_{MA}$: Gaussian

(E. Haba, O. Bleibaum, H. Böttger, V. V. Bryksin, Phys. Rev. B 68, 14203 (2003))

Energy relaxation for $\rho_c = 7.25$ und d = 3.

Temperature dependence of the energy relaxation rate (d=3)

$$(-\rho_c = 7.25, ---\rho_c = 5.75)$$

Observation conditions

How rare are Miller-Abrahams pores?

Poisson distribution:

$$p(R) = \exp(-\kappa_d) = \exp(-(\frac{2\alpha R}{\rho_c})^d)$$

Hopping length in MA-regime for s=0: $R_{MA}=\frac{(d-1)}{2\alpha}(\frac{\rho_c}{d})^{d/(d-1)}$

$$R_{MA} = \frac{(d-1)}{2\alpha} \left(\frac{\rho_c}{d}\right)^{d/(d-1)}$$

$$\kappa_3 = 3.65 \rho_c^{3/2}$$
 $\kappa_2 = \frac{1}{16} \rho_c^2$

Miller-Abrahams processes are in particular important in d=2!

Some estimates in d=2

(M. Pollak and Z. Ovadyahu, J. Phys. 1 France, 7, 1595 (1997))

Question: When is $t_{...} = 1s$?

$$\nu = 10^{12} \mathrm{Hz}$$

$$t_{perc} = 1s \quad \rightarrow \quad \rho_c = 25$$

$$t_{MA} = 1s \quad \rightarrow \quad \rho_c = 7.4$$

excess charge carriers

How many hops are necessary to find a MA-hole?

$$e^{-\kappa_2} = e^{-(7.4)^2/16} = \frac{1}{20.08}$$

Results for an exponential density of states

- A strongly energy dependent density of states affects the relaxation process. →
 Characteristic time scale is not set by the MA-time.
- $N(\epsilon) = N_0 \exp(\frac{d\epsilon}{\Delta})$

Question: Are there differences between the results for the quasi-elastic and the inelastic theory?

$$O(\nu t)_{\text{inelastic}} \rightarrow O(\# \frac{\omega}{\Delta} \nu t)_{\text{quasi-elastic}}$$

$$\epsilon(t) = \Delta \ln \ln(\nu t) \quad \rightarrow \quad \epsilon(t) = \Delta \frac{d-1}{d} \ln \ln(\# \frac{\omega}{\Delta} \nu t)$$

Conclusion: Systems with weakly energy dependent density of states should show cleanest MA-behavior.

O-observable, #-number of order 1

Conclusions

- The simple model describes a transition between two different relaxation regimes.
- The relaxation in this model is percolation like at high temperatures, like in a low-field conduction problem. In this case the characteristic time scale is given by the percolation time.
- The relaxation is Miller-Abrahams like at very low temperatures. In this regime the characteristic relaxation time is given by the Miller-Abraham time, which is much larger than the percolation time.
- 2-dimensional systems with weakly energy dependent density of states seem to provide the most favorable conditions for the observation of the Miller-Abrahams relaxation.

Literature

The material presented in this talk is based on the papers

- O. Bleibaum, H. Böttger, V. V. Bryksin and A. N. Samukhin, *Dispersive energy transport and relaxation in the hopping regime*, Phys. Rev. B **62**, 13440 (2000).
- O. Bleibaum, H. Böttger, V. V. Bryksin and A. N. Samukhin, *Einstein* relationship and relaxation current in a tail at vanishing temperature, Phys. Rev. B **65**, 94203 (2002)
- O. Bleibaum, H. Böttger and V. V. Bryksin, *Energy relaxation of non-equilibrium charge carriers at finite temperatures in the hopping regime*, unpublished.
- E. Haba, O. Bleibaum, H. Böttger, and V. V. Bryksin, *Energy relaxation in a tail at zero temperature in the hopping regime*, Phys. Rev. B **68**, 14203 (2003).
- O. Bleibaum, H. Böttger and V. V. Bryksin, *Impact of the density of states on the dynamical hopping conductivity*, Phys. Rev. B **66**, 104203 (2002).