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The model

e noninteracting electrons far from the Fermi energy

dpm
W = 00 [ enm]) exp(~200 Bu| + & (e — nm]))

pm- probability to find site m occupied, a~!-localization length, 8 = 1/kT-inverse temperature,
v-attempt-to-escape frequency, R, -hopping length, €,,,-difference between the site energies of

the initial and the final site

2w




The kinetic constraint

|dea:
e only long wave-length phonons are effective

e clectron-phonon coupling constant restricts energy transfer to small values

Wom o 3 [1(@) (1 = c05(d, Rurn))8(Fiwrg — lenml)

v(q) x F(q/2a) * V(q)

o =

overlap integral Fourier transf. potential
— 0 for ¢ > 2« — 0 for g > q.

wq-phonon frequency, v(q)-electron phonon coupling constant, g. characteristic momentum of V (q)

/




Interesting quantities

1. Energy distribution function F'(eg, €|t)
2. Energy relaxation rate

o(t) = elt) = (3 enpa(t)

n

3.Mean squared deviation

o*(t) = (D _ enpn(t)) — €(t)

n

(- --)-configuration average




Calculation strategy

1. Solve problem with Green function
= ZPn(t = 0) Prm(s)

2. Use continuous coordinates

P(p,p'ls) ZM pm) Pran(8)8(pn — ')

3. Calculate diffusion propagator

F(R'— Rle,e|s) = ﬁw(p, J1s))

4. QObtain energy distribution function
Fle,€]s) = /dRF(R; ¢ els)

5. Comparison of results with Monte-Carlo simulations

N (€)-density of states, pm = (Rm,em), p = (R, €), s-Laplace frequency




Relaxation at kK'T" > w

e Calculation of F'(¢’,€|s) in effective medium approximation?

e Quasielastic expansion of the equation for F
assumption: w is the smallest energy scale in the problem

d F(€¢ls) F(€,¢€|s)

/ / d
sF(e,e|s) = 0(€' — €) + kT[N (e, s)u(e; 5)( & N(e) + kT—N(e))]
—_—— N ,
energy diffusion  “current”
2 2
v(e,0) = - exp(—pe(€)) pel€) = N
v(e,s) , wv(e,s) S dv

In = wo(e) =

v(e,0)  0(e,0)  wole) exp(—pc(€))

:00(6)

v(e, s)-spectral energy relaxation rate, d-spatial dimension, #= (d/S4)*/¢, S4-solid angle in d

dimensions

4method:O.Bleibaum, H. Bottger, V. V. Bryksin, Phys. Rev. B62, 13440 (2000)




Results for N(e) = N

1. characteristic time scale:

1
tperc X ;pc exp(pc)

2. energy relaxation rate

t << tpeT'c

t
v(t) x v pere
(*) Y12 (Lpere /)
| e exp(—t/tperc)
'U(t) —= 'UO(].+ 27_(_ (t/tperc)3/2
w2y
vo = —— exp(—p¢)

3ET

t >> tpeT'c




3. Diffusive contribution to the propagator irrelevant at low temperatures

(kT < /6dwp,)
d

sF(e,els) = 0(e —e€) + kT%(F(e’, e|s)v(e, s))

4. Mean squared deviation
o2 (t) = 2kT vot 3> there

5. Distribution function at large times

) B 1 (€' — e — vyt)?
F(€,¢€lt) = Tt () exp(— 202(1)

)




Relaxation at T'= 0 for N(¢) = N

Results of effective medium approximation (EMA):

d

sF(e,¢e|ls) =0( —€) + wi(F(e', e|s)v(e, s))
0(e,0) = 5 exp(=pe(€))
20
pc(G) — #(wN(e))l/d
dv

wo (€) = exp(—pe(€))

pc(E)

Observation: EMA predicts percolation like transport at zero temperature!




Observation:

1. Percolation paths are the fastest pos-
sible relaxation paths — they deter-
mine the lower tail of the distribution
function.

2. A lot of other relaxation paths are
possible. Accordingly, we expect that
the center of the particle packet is
not determined by percolation like
paths.




Monte-Carlo Simulations of v for d=3:

EMA versus MC-Simulation

1. Both the numerical preex-

ponetial factor and the mag-
nitude of the exponent of
the EMA are too small to
compare with the numerical

simulations.

2. The concentration depen-

dence of v as predicted by
the EMA differs from the

numerical result.
(— numerical result,
- - - guide for the eye)
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Energy relaxation at
T = 0 is like conduction in a
strong electric field!

Conductivity in a strong elec-
tric field:

o o exp(—cp¥/ (7Y

(“Miller-Abrahams trans-
port”) (I. P. Zvyagin (1979), H.
Bottger and V. V. Bryksin (1980),
N. Van Lien and B. |. Shklovskii
(1981))

—20

Concentration dependence of v(s = 0) for d=3
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Why are relaxation paths different from low-field percolation paths?

1. The particle can not return.

2. There is no particel source.




Analytical description of the relaxation
e CTRW+Quasielasticity

sF(e,e|ls) =d(e —e€) + kT%(F(e', e|s)v(e, s))

v(e,0) = Crwrp; ¥4 exp(—(d — 1)(pe(e) /d) 47 D)

v(e, s # 0) : complicated integral of s,d, p.(€)

C1-number

(E. Haba, O. Bleibaum, H. Bottger and V.V. Bryksin, Phys. Rev. B 68, 142203 (2003))




Some further results for N(¢) = N

1. Characteristic time scale:
1 _
tara = 5 exp((d — 1)(po()/d)¥ V)

2. Energy relaxation rate:

20(0)  p? In(vt)
t) =v(0)(1 . t — t>1
o) =001+ G o)t
w In“(vt) In“(vt)
3. Structure of the energy diffusion function for ¢t > tas4: Gaussian

(E. Haba, O. Bleibaum, H. Bottger, V. V. Bryksin, Phys. Rev. B 68, 14203 (2003))




Energy relaxation for p. = 7.25 und d = 3.
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Temperature dependence of the energy relaxation rate (d=3)

v(T)/v(0)
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Observation conditions

How rare are Miller-Abrahams pores?

Poisson distribution: p(R) = exp(—kq) = exp(—(zg‘cR)d)
Hopping length in MA-regime for s = 0: Ryra = %(%)d/(d_l)
k3 = 3.65p3/2 =
S 16"

Miller-Abrahams processes are in particular important in d=2!




Some estimates in d=2
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(M. Pollak and Z. Ovadyahu, J. Phys. 1 France, 7, 1595 (1997))




Question: When is ¢t = 157

v = 10'%Hz

tpere =18 —  pc=25 excess charge carriers

tva=1s — p.=74

How many hops are necessary to find a
MA-hole?

—r2 _ ,—(7.4)%/16 _ 1
20.08

€




Results for an exponential density of states

e A strongly energy dependent density of states affects the relaxation process.—
Characteristic time scale is not set by the MA-time.

e N(e) = Noexp(%)

Question: Are there differences between the results for the quasi-elastic and the
inelastic theory?

W

O(Wl)inelastic O<#Kyt)quasi—elastic
d—1 w
e(t) =Alnln(vt) — €(t)=A In ln(#xyt)

Conclusion: Systems with weakly energy dependent density of states should show
cleanest MA-behavior.

O-observable, #-number of order 1




Conclusions

e The simple model describes a transition between two different relaxation regimes.

e The relaxation in this model is percolation like at high temperatures, like in a
low-field conduction problem. In this case the characteristic time scale is given
by the percolation time.

e The relaxation is Miller-Abrahams like at very low temperatures. In this regime
the characteristic relaxation time is given by the Miller-Abraham time, which is
much larger than the percolation time.

e 2-dimensional systems with weakly energy dependent density of states seem to
provide the most favorable conditions for the observation of the Miller-Abrahams
relaxation.
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