

the

abdus salam

international centre for theoretical physics

SMR: 1513/10

10TH CONFERENCE ON HOPPING AND RELATED PHENOMENA

(1 - 4 September 2003)

"Spin Transport in Two-Dimensional Hopping Systems"

presented by:

T. DAMKER

Otto-von-Guericke Universität Magdeburg Germany

The state of the s

Spin Transport in Two-Dimensional Hopping Systems

Thomas Damker and Harald Böttger Magdeburg, Germany

Valerii Bryksin St. Petersburg, Russia

ICTP Trieste, 2 September 2003

- Motivation
- Model and Procedure
- Spin-Polarization
- Summary and Outlook

Motivation

Spintronics

- utilize spin degree of freedom "technologically" (spin transistor)
- influence spin with electrical means
- interplay between spin and charge transport

anomalous Hall effect spin polarized electrons → anisotropic charge transport

Spin-Hall effect

- spin accumulation
- non-equilibrium spin distribution (spin polarization)
 due to electric field (no magnetic field or material)
- Aim: to consider spin transport in hopping conduction

The Model

- electrons confined to 2D plane
 (e.g. heterostructure, organic semiconductor)
- electronic states localized
 (e.g. disorder, polaron formation)
- large perpendicular electric field \vec{E}^{\perp} ($\propto \vec{K}$) (e.g. due to heterostructure confinement field, can be modified by a gate voltage)
 - ightarrow Rashba spin-orbit interaction (SOI)
- ullet in-plane field $ec{E}^{||}$ ightarrow induces current in plane
- center of interest: evolution of spin degree of freedom

Procedure

• include Rashba-SOI into hopping formalism \rightarrow SU(2) "phase factor" (cf. Holstein transformation)

$$J_{m'm}^{SO} = e^{-i\vec{\sigma}\cdot(\vec{K}\times\vec{R}_{m'm})}J_{m'm}$$

- Konstantinov-Perel diagram technique (first step: second-order diagrams in one-particle approximation)
- rate equations for generalized occupation probability $(2 \times 2\text{-matrix})$

$$\hat{\rho}_m|_{\sigma'\sigma} = \langle a_{m\sigma'}^{\dagger} a_{m\sigma} \rangle$$

- rate equations for
 - $\rho_m = \operatorname{Tr}(\hat{\rho}_m)$ occupation probability
 - $ec{
 ho}_m = {
 m Tr}(ec{\sigma}\hat{
 ho}_m)$ spin orientation
- ordered 2d system
 - ightarrow solution in wave vector space
- back-transformation to time and space co-ordinates

Spin-Orbit Interaction (SOI)

Dirac equation \rightarrow series up to terms of order $1/c^2$

$$\begin{split} H &= \frac{1}{2m} \left(\mathbf{p} - \frac{e}{c} \mathbf{A} \right)^2 + e \phi - \frac{e \hbar}{2mc} \boldsymbol{\sigma} \cdot \mathrm{rot} \mathbf{A} \\ &- \frac{\mathbf{p}^4}{8m^3c^2} \quad \text{relativistic contribution to kinetic energy} \\ &+ \frac{e \hbar}{4m^2c^2} \boldsymbol{\sigma} \cdot ((\boldsymbol{\nabla} \phi) \times \mathbf{p}) \quad \text{spin-orbit interaction} \\ &+ \frac{e \hbar^2}{8m^2c^2} \Delta \phi \quad \text{Darwin term} \end{split}$$

Darwin term: "zitterbewegung" of the electron over a spatial distance of the order of the Compton length $\langle V(x) \rangle \approx V(x) + \langle \delta x^2 \rangle \Delta V(x)/2$ \rightarrow can be absorbed into one-particle potential

spin operator
$$\mathbf{S} = \hbar \boldsymbol{\sigma}/2$$

magnetic field $\mathbf{B} = \mathrm{rot} \mathbf{A}$
electric field $\mathbf{E} = -\boldsymbol{\nabla} \phi - \dot{\mathbf{A}}/c$

no magnetic field: $\mathbf{A} = 0$

homogeneous electric field: $\phi = -{f E}\cdot{f r}$

nonrelativistic motion: $v \ll c$

Rashba-SOI

lacktriangle

$$H = \frac{1}{2m}\vec{p}^2 + V(\vec{r}) - \frac{e\hbar}{4m^2c^2}\vec{\sigma} \cdot (\vec{E} \times \vec{p})$$

• abbreviation:

$$\vec{K} = \frac{e}{4mc^2}\vec{E}$$
 $\left(+\frac{m}{\hbar^2}\alpha\vec{n}\right)$

- dimension of inverse length
- corresponds to length over which electron has to be moved to invert spin orientation
- Hopping Hamiltonian

$$\begin{split} H = & \sum_{m\sigma} \epsilon_m a^\dagger_{m\sigma} a_{m\sigma} + \sum_{mm'\sigma\sigma'} J^{m\sigma}_{m'\sigma'} a^\dagger_{m\sigma} a_{m'\sigma'} \\ & + \text{phonon terms} \end{split}$$

ullet transition matrix element with SOI (condition $|ec{K} imesec{R}|\ll 1$)

$$J_{m'm}^{SO} = e^{-i\vec{\sigma}\cdot(\vec{K}\times\vec{R}_{m'm})}J_{m'm}$$

Rate Equations

- density matrix $\langle a^{\dagger}_{m'\sigma'} a_{m\sigma} \rangle$
 - diagonal in space indices
 - not diagonal in spin indices
- 2×2 -matrix $\hat{\rho}_m|_{\sigma'\sigma} = \langle a^\dagger_{m\sigma'} a_{m\sigma} \rangle$ instead of occupation probability $\langle a^\dagger_m a_m \rangle$ on site m
- rate equations

$$s\hat{
ho}_m(s) = \hat{
ho}_m|_0$$
 (initial conditions)
$$+\sum_{m_1} \left\{ e^{-i\vec{\sigma}\cdot(\vec{K} imes\vec{R}_{m_1m})}\hat{
ho}_{m_1}(s)e^{i\vec{\sigma}\cdot(\vec{K} imes\vec{R}_{m_1m})}W_{m_1m} -\hat{
ho}_m(s)W_{mm_1} \right\}$$

• occupation probability $\rho_m = \operatorname{Tr}(\hat{\rho}_m)$

$$s\rho_m = \rho_m|_0 + \sum_{m_1} \{\rho_{m_1} W_{m_1 m} - \rho_m W_{m m_1}\}$$

• spatial vector of the spin orientation $\vec{\rho}_m = \operatorname{Tr}(\vec{\sigma}\hat{\rho}_m)$

$$s\vec{\rho}_m = \vec{\rho}_m|_0 + \sum_{m_1} \{D_{m_1m}\vec{\rho}_{m_1}W_{m_1m} - \vec{\rho}_mW_{mm_1}\}$$

Ordered 2D System

• transition probability in wave-vector space

$$W(\vec{q}) = W(0) - \vec{q}^2 D - i\mu \vec{q} \cdot \vec{E}$$

• dimensionless units

$$ec{x} = K ec{r}, \qquad au = D K^2 t, \qquad ec{\epsilon} = rac{\mu}{D K} ec{E}^{\parallel}$$

Total Spin Polarization

- ullet easy to calculate: $\vec{q}=0$ expressions
- independent of spatial variation of initial conditions (only $\vec{\rho}_0(\vec{q}=0)$ relevant)
- $\epsilon = 0$: relaxation

$$\rho^{\perp}(\tau) = e^{-8\tau} \rho_0^{\perp}, \qquad \vec{\rho}^{\parallel}(\tau) = e^{-4\tau} \vec{\rho}_0^{\parallel}$$

• $\epsilon \neq 0$, $\vec{\rho}_0 = \vec{e}_z$: relaxation and oscillation

$$\rho^{\perp}(\tau) = e^{-6\tau} \left[\cos(2\tau\sqrt{\epsilon^2 - 1}) - \frac{\sin(2\tau\sqrt{\epsilon^2 - 1})}{\sqrt{\epsilon^2 - 1}} \right]$$
$$\vec{\rho}^{\parallel}(\tau) = e^{-6\tau} \frac{\sin(2\tau\sqrt{\epsilon^2 - 1})}{\sqrt{\epsilon^2 - 1}} \vec{\epsilon}$$

• critical electric field $\epsilon_c=1$: when $\epsilon<1$, trigonometric functions become hyperbolic functions \rightarrow exponential relaxation

$$E_c^{\parallel} = \frac{D}{4mc^2\mu}E^{\perp} = \frac{k_BT}{4mc^2}E^{\perp}$$

Graphic Explanation of Relaxation

Inhomogeneous Initial Conditions

- initial condition: $\vec{\rho}_0(\vec{x}) = \delta(\vec{x})\vec{e}_z$
- asymptotic term for $\tau \to \infty$ and $x \ll 2\sqrt{\tau}$:

$$\rho^{\perp}(\tau, \vec{x}) = e^{-\frac{\vec{\epsilon} \cdot \vec{x}}{2} - \frac{\epsilon^2 \tau}{4} - \frac{7}{4}\tau - \frac{x^2}{4\tau}} \frac{3}{8\sqrt{\pi\tau}} J_0\left(\frac{\sqrt{15}}{2}x\right)$$

ullet sign of ho^\perp at any fixed place is **not** time-dependent

Low Symmetry

- $W(\vec{q})$ can be **anisotopic** in \vec{q}
- can lead to anisotropic charge transport
 (but still not spin dependent
 → no anomalous Hall effect)

 $s\rho_m = \rho_m|_0 + \sum_{m_1} \{\rho_{m_1} W_{m_1 m} - \rho_m W_{m m_1}\}$

ullet the quantitiy D couples anisotropies of W to changes in spin orientation

•

$$s\vec{\rho}_m = \vec{\rho}_m|_0 + \sum_{m_1} \{D_{m_1m}\vec{\rho}_{m_1}W_{m_1m} - \vec{\rho}_mW_{mm_1}\}$$

- spacial spin separation is possible
 - \rightarrow spin Hall effect

Experimental Conditions

- ullet Rashba SOI strength $lphapprox 10^{-8}\dots 10^{-9}$ eV cm corresponds to $E^\perppprox 2.7\ 10^{13}\ {
 m V/m} imes \left(rac{m}{m_e}
 ight)^2$ can be changed by applying a gate voltage (50%)
- inverse length scale for spin variations $K \approx \frac{m}{m_e} 1/76 \, \, \mathrm{nm}$
- conditions for applicability:
 - $-R_{m_1m}\ll 1/K\approx 760 \text{ Å}$
 - Rashba field yields largest contribution to spin dynamics
- ullet critical field $E_c^{\parallel} pprox \left(rac{m}{m_e}
 ight)^2 10^3 \; {
 m V/m}$

Summary

- spin transport for hopping electrons with Rashba-SOI
- charge transport is spin-independent in second-order theory
- **relaxation** of spin component perpendicular to plane is faster than in-plane spin relaxation
- critical field for transition between oscillatory and exponential behaviour of total spin polarisation
- spatial distribution of sign of spin projection is time-independent
- spin separation for low symmetry already in second-order theory

Outlook

- third-order diagrams: spin dependent charge transport
- spatial disorder
- soften one-electron approximation (Pauli blocking, linear response)