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Motivation

Spintronics

— utilize spin degree of freedom “technologically”
(spin transistor)

— influence spin with electrical means

— interplay between spin and charge transport

anomalous Hall effect

spin polarized electrons — anisotropic charge
transport

Spin-Hall effect

— spin accumulation
— non-equilibrium spin distribution (spin polarization)
due to electric field (no magnetic field or material)

Aim: to consider spin transport in hopping conduction
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The Model

1

E

electrons confined to 2D plane
(e.g. heterostructure, organic semiconductor)

electronic states localized
(e.g. disorder, polaron formation)

large perpendicular electric field EL (x K)

(e.g. due to heterostructure confinement field, can be
modified by a gate voltage)

— Rashba spin-orbit interaction (SOI)

in-plane field El
— induces current in plane

center of interest: evolution of spin degree of freedom
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Procedure

include Rashba-SOl into hopping formalism
— SU(2) “phase factor” (cf. Holstein transformation)

JTSn(’)m — e—zo'-(KXRm/m)Jm,m

Konstantinov-Perel diagram technique
(first step: second-order diagrams in one-particle
approximation)

rate equations for generalized occupation probability
(2 x 2-matrix)

lam|a’a — <a';rno./ama>

rate equations for

— pm = Tr(pm) — occupation probability
— pm = Tr(Gpm) — spin orientation

ordered 2d system
— solution in wave vector space

back-transformation to time and space co-ordinates
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Spin-Orbit Interaction (SOI)

Dirac equation — series up to terms of order 1/c?

1 2 h
H = —(p—EA) —|—eqb——6 o - TotA
2m C 2mc
p?
— = relativistic contribution to kinetic energy
8mec
eh . o :
a2’ (V@) x p) spin-orbit interaction
eh? :
8m202A¢ Darwin term

Darwin term: “zitterbewegung” of the electron over a
spatial distance of the order of the Compton length
(V(z)) = V(x) + (622)AV (z)/2

— can be absorbed into one-particle potential

spin operator S = ho /2
magnetic field B = rotA
electric field E=—-V¢ — A/c

no magnetic field: A =0
homogeneous electric field: ¢ = —E - r
nonrelativistic motion: v < ¢
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Rashba-SOl

e abbreviation:

- e = m
K = 4mc2E (—I—?an)

— dimension of inverse length
— corresponds to length over which electron has to be
moved to invert spin orientation

e Hopping Hamiltonian

§ : E : mo
H = emamaa’mo' + Jm U’G’ma m/o’

mm'oo’

+ phonon terms

e transition matrix element with SOI
(condition |K x R| < 1)

J>Q

) = 6—20'-(KXRm/m)Jm,m
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Rate Equations

e density matrix <ain,01ama>

— diagonal in space indices
— not diagonal in spin indices

® 2 X 2-matrixX ppm|qte = (a:[,w,a,ma>
instead of occupation probability {a! a,,) on site m

e rate equations

$Ppm(S) = pPmlo (initial conditions)
_|_Z { e—ia.(Kmelm)pAml(8)613.(K><Rm1m)Wm1m
mq
() Wi, }

e occupation probability p,, = Tr(pm)

SPm = pm|0 + Z {pmlwmlm - memml}

mi

— A

e spatial vector of the spin orientation p,, = Tr(&pm)

Sﬁm — ﬁm|0 + Z {Dmlmﬁmlwmlm — ﬁmeml}

mi
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Ordered 2D System

e transition probability in wave-vector space
W(q) =W(0) - ¢°D —iug- E

D — diffusion constant
(1 — mobility

e dimensionless units

Z=KrF, r=DK%  &=-_Fl
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Total Spin Polarization

easy to calculate: ¢ = 0 expressions

independent of spatial variation of initial conditions
(only po(¢'= 0) relevant)

e = 0: relaxation

e =0, po= €,: relaxation and oscillation

p(T) =e 57 COS(2’7’\/€27—1) _ sin@rver — 1)

_e-SIin(27ve? — 1)

H(r) = e

A =e 7

€

€2 —1

critical electric field €, = 1:

when € < 1, trigonometric functions become
hyperbolic functions — exponential relaxation

El =

D
dmc?

EL

kBT
 4mc?

ver—1

EJ_
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Z- conponent

Inhomogeneous Initial Conditions

initial condition: po(%) = 0(%)ée,

asymptotic term for 7 — 0o and z <K 24/7:
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Low Symmetry

W(q) can be anisotopic in ¢

can lead to anisotropic charge transport
(but still not spin dependent
— no anomalous Hall effect)

SPm = pm|0 + Z {pmlwmlm — memml}

mi

the quantitiy D couples anisotropies of W to changes
In spin orientation

Sﬁm — ﬁm|0 + Z {Dmlmﬁmlwmlm — ﬁmeml}

mi

spacial spin separation is possible
— spin Hall effect
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Experimental Conditions

Rashba SOl strength o ~ 1078...107° eV cm
2
corresponds to E+ ~ 2.7 1013 V/m x (mﬂ

e

can be changed by applying a gate voltage (50%)

inverse length scale for spin variations
K~ 1/76 nm

conditions for applicability:

— Rpym < 1/K = 760 A
— Rashba field yields largest contribution to spin
dynamics

2
critical field B! ~ (mﬂ) 10° V/m

e
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Summary

spin transport for hopping electrons with Rashba-SOI

charge transport is spin-independent in second-order
theory

relaxation of spin component perpendicular to plane
is faster than in-plane spin relaxation

critical field for transition between oscillatory and
exponential behaviour of total spin polarisation

spatial distribution of sign of spin projection is
time-independent

spin separation for low symmetry already in
second-order theory

Outlook

third-order diagrams: spin dependent charge transport
spatial disorder

soften one-electron approximation (Pauli blocking,
linear response)
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