

the **abdus salam** international centre for theoretical physics

SMR: 1513/6

10TH CONFERENCE ON HOPPING AND RELATED PHENOMENA

(1 - 4 September 2003)

"Charge Carrier Properties below and above the Metal-Insulator Transition in Conjugated Polymers - Recent Results"

presented by:

H.B. BROM University of Leiden The Netherlands

These are preliminary lecture notes, intended only for distribution to participants.

Charge carrier properties below and above the MIT in conjugated polymers.

Hans B. Brom (Leiden)

In collaboration with:

Hubert Martens (Leiden – Philips), Ingrid Romijn (Leiden), Iulian Hulea (Leiden), Herman Jan Hupkes (Leiden), Frank Pasveer (Eindhoven), Thijs Michels (Eindhoven), A.K. Mukerhjee (Bangalore), Reghu Menon(Bangalore)

References:

Martens et al., Phys. Rev. B. 67, 121203(R) (2003) Romijn et al., Phys. Rev. Lett. 90, 176602 (2003)

HRP10, Trieste, September 4 2003

1

Conducting polymers

polyacetylene doped with iodine

- 1977 : Discovery of highly conducting polymers
- 2000 : Nobel prize in Chemistry A.Heeger, A.MacDiarmid and H. Shirakawa

What causes the conductivity?

Example 1 Chemically doping: introducing charges Charged carriers can move via π -bonds through the polymer

Reality conjugated polymers

Conjugation broken by kinks, defects

Hopping between conjugated parts – disorder dominant

Disorder – localized states

Sufficient disorder produces localized states (Anderson)

Transport in Disordered Conductors 1

Fermi-level in localized region gives rise to hopping conduction (Fermi glass) – hopping between localized states or activated

Transport in Disordered Conductors 2

Questions

How well can the insulating state be described within the framework of variable range hopping (VRH)?

How strong are the changes when we cross the MIT – which and how many carriers do contribute to metallic transport?

Can we deduce the density of states vs E; is it Gaussian?

Two experiments: DC – transport in FeCl₃ doped PPV (below MIT) Dielectric measurements in PF₆ doped polypyrrole (above MIT)

Data FeCl₃ doped PPV vs. T and c

concentration in numbers of carriers per monomer 10

Data FeCl₃ doped PPV vs. c at fixed T

At fixed T, 8 orders of magnitude increase in σ with one order increase in c (more than expected from any previous model).

Summary experimental observations

What happens if the doping level is increased:

- Experimentally
- 1. enormous increase in σ at fixed T (8 orders of magnitude with one order in concentration)
- 2. Change in slope of σ vs T. At low T $\sigma \propto \exp(T/T_0)^{1/4}$
- 3. Flattening of the curves at high c and T

How can we model these results?

Take into account the variation of the DOS (g) and the size of the delocalized volume (radius A)

Ref.: Martens, Hulea, Romijn, Brom, Pasveer and Michels, Phys. Rev. B 67, 121203(R) (2003)¹²

Density of states

new carriers will fill up higher energy states given by g(E) (if doping does not create new states).

Extension of states

Because by doping states with higher energy are filled, the extension of the localized state might grow

Results of the model

Take into account the variation of A and g with c by combined analytic and numerical approach

A is a measure for the size of the localized volume. g represents the increasing density of states. (dopant supposed to fill only existing states)

Starting relations:

$$\sigma(T,c) = \sigma_0(c) \exp(-\alpha R - \beta(E - E_F))$$
 and $VN \sim 1$

Include the c-dependence on A (new) and g explicitly.

One of the results is that 3D Mott's law is recovered for low c (full eq. is much stronger):

$$\sigma = \sigma_0(\mathbf{c}) \exp(\alpha \mathbf{A}(\mathbf{c})) \exp(-T_0(\mathbf{c})/T)^{1/4}$$

Results for g(c)

g can be determined in two ways: (1) low T : $k_B T_0 \sim 1/g$ (2) fitting based on the numerical approach

Results for E_F-E vs g

g(E) gaussian?

Comparison with prelimary data from el. chem. gated transistor confirm gaussian profile (Hulea, Brom, Meulenkamp, Vanmaekelbergh et al. , not published)

A vs c

A is a measure for the size of the localized volume. Dotted line accounts for the logarithmic dependence expected from $\sigma \sim c^8$. Dashed line accounts for the saturation at low and high doping. A grows with factor 4

A(c) vs g(c)

Approximate: $\sigma = \sigma_0(c) \exp(\alpha A(c)) \exp(-T_0(c)/T)^{1/4}$ Fixed T: $\sigma \propto \sigma_0(c) \exp(\alpha A(c))$ with $A(c) \sim \log c$

20

Transport below MIT

- the T and c dependence of $\sigma = \sigma_0(c) \exp(\alpha A(c)) \exp(-T_0(c)/T)^{1/4}$ is a good starting point for the analysis.
- the contributions of both g(c) and A(c) are essential to explain the c and T dependence of σ .
- reconstructed dos complies with Gaussian shape

More references N.F. Mott, Phil. Mag 19, 835 (1969). H. Bässler, Phys. Stat. Sol. (b) 175, 15 (1993). S.D. Baranovskii *et al.*, PRB 62, 7934 (2000). M.C.J.M. Vissenberg and M. Matters, PRB 57, 12964 (1998)

Transport in polymers above MIT

Test case: PF₆ doped polypyrrole

polypyrrole doped with hexafluorophosphate

Why PPy?

PPy is very stable – survives in air for a long time

PPy can be made from deep in the insulating (PPy_D) to well into the metallic state (PPy_M)

For PPy_M: ≈ 1 dopant/PPy unit Metallic? Go to low T

Metallic charge transport: high frequency dielectric spectroscopy

Reflection PPy

 $\rho(\omega)$ and $\theta(\omega)$: $\sigma_1(\omega)$ and $\varepsilon_1(\omega)$ Only real part $\rho(\omega)$ measurable Calculate imaginary part $\theta(\omega)$ from $\rho(\omega)$ by application of Kramers-Kronig

$$\theta(\omega) = -\frac{2\omega}{\pi} \int_{0}^{\infty} \ln \frac{\left[\rho(\omega')/\rho(\omega)\right]}{\left[(\omega')^{2} - \omega^{2}\right]} d\omega'$$

Bruker FTIR (5 meV – 0.5 eV) Perklin Elmer UV/VIS (0.5 – 3.5 eV)

Extrapolate data $\rho(\omega)$

Old data controversal

Depending on extrapolation at low energies several groups found completely different conductivity σ_1 and dielectric constant ε_1 $(\varepsilon_1 = i\sigma_2/\varepsilon_0\omega)$

Additional data below 1 THz

Complex transmission – ϵ_1 and σ_1 can be determined simultaneously down to 4 K

KK analysis

Kohlman et. al., — Lee et. al., GHz data, — our K.K. fit

The low frequency data give nice boundary conditions for the Kramers-Kronig analysis

Model applied to data

99 %: Localized charges:

1%: charges are delocalized: transport possible

Conclusions (conjugated polymers)

- By doping the number of levels increases as does the delocalization radius (factor of 4)
- Map of density of states supports Gaussian model
- At the MIT 99% of the introduced charges are localized and do not contribute to the dc-conductivity
- •The movement of delocalized charges (1%) is governed by thermally activated hopping and QM tunneling between chain segments

More references

- H. Böttger and V.V. Bryksin, Hopping conduction in Solids (Akademie Verlag, Berlin, 1993)
- G. Grüner et al., e.g. this conference
- Y. Imry, Introduction to Mesoscopic physics (Oxford University Press, Oxford, 1997)
- A.B. Kaiser, Adv. Mater. B 52, 4779 (2001); Rep. Prog. Phys. 64, 1 (2001)
- S.V. Novikov, D.H. Dunlap, V.M. Kenkre, P.E. Parris and A.V. Vannikov, Phys. Rev. Lett. 81, 4472 (1998)
- V.N. Prigodin and A.J. Epstein, Synth. Met. 125, 43 (2002)