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Conducting polymers
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What causes the conductivity?

conjugated polymers

�-bondsc c c c

�-bonds

�-bonds
polyacetylene

polyaniline

polypyrrole

polythiophene

poly(phenylene-vinylene

delocalized electrons

Chemically doping: introducing charges
Charged carriers can move via �-bonds through the polymer
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Reality conjugated polymers

Conjugation broken  by kinks, defects 

+

Hopping between conjugated parts – disorder dominant
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Disorder – localized states

Sufficient disorder produces localized states (Anderson)
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Energetic and spatial disorder
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Transport in Disordered Conductors 1

E
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Non-localized States

localized

Mobility Edge

Fermi-level in localized region gives rise to hopping conduction 
(Fermi glass) – hopping between localized states or activated
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Transport in Disordered Conductors 2

Refinement: Gaussian DOS and the presence 
of a transport level

H. Bässler, Phys. Stat. Sol. (b) 175, 15 (1993)
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Questions

How well can the insulating state be described within the 
framework of variable range hopping (VRH)?

How strong are the changes when we cross the MIT – which and 
how many carriers do contribute to metallic transport?

Can we deduce the density of states vs E; is it Gaussian?

Two experiments:
DC – transport in FeCl3 doped PPV (below MIT)
Dielectric measurements in PF6 doped polypyrrole (above MIT)
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Data FeCl3 doped PPV vs. T and c
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Data FeCl3 doped PPV vs. c at fixed T

At fixed T, 8 orders of magnitude increase in σ with one order 
increase in c (more than expected from any previous model).
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Summary experimental observations

What happens if the doping level is increased:

Experimentally 
1. enormous increase in σ at fixed T (8 orders of magnitude with 

one order in concentration)
2. Change in slope of σ vs T. At low T σ �exp (T/T0)1/4

3. Flattening of the curves at high c and T

How can we model these results?
Take into account the variation of the DOS (g) and the size of the
delocalized volume (radius A)

Ref.: Martens, Hulea, Romijn, Brom, Pasveer and Michels, 
Phys. Rev. B 67, 121203(R) (2003) 
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Density of states
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new carriers will fill up higher energy states given by g(E) 
(if doping does not create new states).
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Extension of states
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Because by doping states with higher energy are filled, the extension 
of the localized state might grow
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Results of the model

Take into account the variation of A and g with c by combined 
analytic and numerical approach

A is a measure for the size of the localized volume.
g represents the increasing density of states.
(dopant supposed to fill only existing states)

Starting relations:
�(T,c) = �0(c) exp(- α R-�(E-EF)) and VN ~ 1

Include the c-dependence on A (new) and g explicitly. 

One of the results is that 3D Mott’s law is recovered for low c 
(full eq. is much stronger):

�= �0(c) exp(α A(c)) exp(-T0(c)/T)1/4
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Results for g(c)
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g can be determined in two ways:
(1) low T : kBT0 ~ 1/ g
(2) fitting based on the numerical 
approach
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Results for EF-E vs g
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Scaled to the activation energy 
obtained at high T for c=0.01.
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g(E) gaussian?
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Comparison with prelimary data from el. chem. gated transistor 
confirm gaussian profile 
(Hulea, Brom, Meulenkamp, Vanmaekelbergh et al. , not published)
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A vs c
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A is a measure for the size of the 
localized volume.
Dotted line accounts for the 
logarithmic dependence expected 
from � ~ c8. 
Dashed line accounts for the 
saturation at low and high 
doping. A grows with factor 4
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A(c) vs g(c)

 exp
 fits
 g fixed
 A fixed
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Approximate: �= �0(c) exp(α A(c)) exp(-T0(c)/T)1/4

Fixed T: � � �0(c) exp(α A(c)) with A(c) ~ log c
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• the T and c dependence of 
�= �0(c) exp(α A(c)) exp(-T0(c)/T)1/4

is a good starting point for the analysis.

• the contributions of both g(c) and A(c) are essential to 
explain the c and T dependence of σ.

• reconstructed dos complies with Gaussian shape

More references
N.F. Mott, Phil. Mag 19, 835 (1969).
H. Bässler, Phys. Stat. Sol. (b) 175, 15 (1993).
S.D. Baranovskii et al., PRB 62, 7934 (2000).
M.C.J.M. Vissenberg and M. Matters, PRB 57, 12964 (1998)

Transport below MIT
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Transport in polymers above MIT

+ PF6

Example of PF6 doped polypyrrole
• PF6

- introduces charges (c) on 
chain-segments

• Part of charges might remain
localized

• Transport possible by thermally
activated hopping or QM tunneling

c
c
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c Tunneling
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Test case: PF6 doped polypyrrole

doped with hexafluorophosphate

Why PPy? Metallic? Go to low T!

PPy is very stable – survives in 

PPy can be made from deep in 
the insulating (PPy_D) to well 
into the metallic state (PPy_M)

For PPy_M: � 1 dopant/PPy
unit
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Metallic charge transport:
high frequency dielectric spectroscopy

Case of metal
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Reflection PPy

Bruker FTIR (5 meV – 0.5 eV)
Perklin Elmer UV/VIS (0.5 – 3.5 eV)

�(�) and �(�): �1(�) and 	1(�)
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Calculate imaginary part �(�)
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Old data controversal
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Depending on extrapolation at low energies several groups found 
completely different conductivity �1 and dielectric constant 	1
(	1 = i�2/	0�)
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Additional data below 1 THz
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KK analysis

10-3 10-2 10-1 100

0
20
40
60
80

100
120
140

�
1

 

[1
03 S

/m
]

Energy [eV]

The low frequency data give nice boundary 
conditions for the Kramers-Kronig analysis

Kohlman et. al.,        Lee et. al.,         GHz data,        our K.K. fit 
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Model applied to data
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Conclusions (conjugated polymers)

• By doping the number of levels increases as does the
delocalization  radius (factor of 4)

• Map of density of states supports Gaussian model
• At the MIT 99% of the introduced charges are localized

and do not contribute to the dc-conductivity 
•The movement of delocalized charges (1%) is governed

by thermally activated hopping and QM tunneling  between
chain segments
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