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Study on the Mechanism of
<|fy>uperionic Conduction in the
^Zero-Dimensional Hydorogen-
Bonded Crystals M3H(XO4)2 with

M=Rb, Cs and X=S, Se

Hiroshi Kamimura
Tokyo University of Science

Introduction
Recently the superionic hydrogen-
bonded crystals of ferroelastic
M3H(XO4)2 type have been extensively
studied.

i In this talk I would like to discuss the
mechanism of superionic conduction in
the paraelastic phase (T>Tc) and also
near and below the phase transition.

Outline of the talk
ly talk consists of two parts:

> In the first part I will propose a new
mechanism of superionic conduction in the
paraelastic phase (T>Tc) due to coherent
tunneling of protons, based on recent
experimental results.

i In the second part I will discuss a
mechanism of proton conduction near and
below the phase transition, by taking
account of fluctuation effects.

*|f^ Collaborators

• Experiments
• Yasumitsu Matsuo
• Seiichiro Ikehata
• Masaru Komukae
• Toshio Osaka
• Theory
• Takuo Ito
• Masaru Watanabe
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(TUS)
(TUS)
(TUS)

(Fujitsu)
(Noshiro Tech. High School)

Crystal Structure of Rb3H(SeO4)2

(b)

m
T ^ L Explanation of the Crystal Structure

• ^Thefigure (a) shows a projection of the crystal
structure of the ferroelastic phase (T < Tc) on the a-c
plane.

• We note that the top and bottom oxygen of the
neighboring tetrahedrons He at the same height along
the c-axis and that a hydrogen bond is formed in
between these top and bottom oxygen.

• These hydrogen bonds are isolated shown here for the
ferroelaslJc phase. Such isolation can be seen clearly in
the figure (b), showing a projection of the crystal
structure on the a-b plane.



xplanation of the Crystal Structure (continue)

In the paraelastic phase (T>Tc), each tetrahedron
is tilted so as for Rb, Se and O to stand in line
perpendicular to the a-b plane (i.e. c*-axis).

• As a result a crystal structure in the paraelastic
phase has the three-fold axes along the c*-axis
and the length of the hydrogen bonds becomes
equal. We call this phase a super-ionic phase.

• A unit cell of tetragonal shape in the monoclinic
system (T<Tc) changes to a rhombohedral shape
surrounded by the red line.

• The space group of the super-ionic phase is R3m.

Temperature dependence of electrical
conductivity in the M3H(Se04)2 type crystals

(M=K, Rb, Cs)

350

Features of Observed Conductivity
in the super-ionic phase (T > Tc)

shows the temperature dependence of
electrical conductivity observed for RbjH{SeO,,)2.

In the super-ionic phase (T > Tc),
(1) l o g O r ) is proportional to XIT,

that is the Arrhenius-type conduction.
(2) The conductivity is as high as 10 2 to 10 4 S/cm.
(3) Conductivity along the a- axis is 102 times larger than
that

along the o-axis.
(4) Thus M3H(XO4)2 crystals display a quasi-two

dimensional conduction in the super-ionic phase.
(5) The activation energy is about 0.2 eV along the *-axis

and about (L4 eV alann Hw*

first pare:
Origin of Proton Conduction in the

per-ionic phase (T>Tc)
In figure (a) top oxygen
in a shaded tetrahedron
at a right side is tilted
to a bottom one like a
solid arrow so as to
form a hydrogen bond. }.

J
\

• x o 4

averaged
hydrogen-rx»xl

Mechanism of Proton conduction
in the super-ionic phase (T>Tc):
ormation of two ionic states

Suppose a hydrogen-
bond ij between two
tetrahedrons marked
by /and j is broken

thermally, by the tilt of
tetrahedron/toward k.
Then proton H+ at ij
hops to an interstitial
position between/
and Arto form a new
hydrogen bond.

Mechanism of Proton conductivity
in the super-ionic phase (continue):
l of two ionic states

Simultaneously an
electron separated
from a proton is
accommodated at
tetrahedron /.



Formation of two kinds of ionic
t states, H2XO4(

+e> and XO4<"e>

Thus two kinds of
ionic states,
H iMV") Cred circle)
and
XO4< ">(green circle)
are created thermally.
These ionic states
contribute to
superionic conduction.

Theoretical Model:
; Characterization of H2XO4<

+e> state
r

X7- * *k7 *. t?. * O . H2XO4(«) ionic state is
^-&*•&*/*&*/*£> cVacterized b y te

> position and orientation
as a, p, y and S.

5 '"* 5

V
• occupied site

° f p r o t ° n

Theoretical Model:
Motion of H2XO4(

+e> ionic state
When either of two
protons in the state a is
transferred, state a

i 6 -. -. . changes to p, or y.
• A - V ^ / ^ V u A ' V ^ A A / t . Proton transfer to a site

J* J_ _£_ indicated by x is not
allowed.

Demonstration of itinerancy of
H2XO4<

+e> ionic state

A7-

& i Theoretical Model:
"| j fc Charaterizatin of XO4(-

e> ionic state

X04<-*> ionic state is
characterized by its
position and orientation
as a, p, and y.

o vacant site
of proton

• occupied site
of proton

Demonstration of itinerancy of
XO4(

e> ionic state

5 5 i* a

V" 5'

o a T

a 6



Summary for the itinerant motions
two ionic states

• The motion of two ionic states occurs by
the interplay between the proton
tunneling and fitting of top and bottom
oxygen. As a result the two kind of ionic
states moves resonantly, changing their
states, say from atop , and then to y, etc

• Consequently a band-like state is
formed for each of iy«y> and xo.w ionic
states.

Experimental evidence for coherent
motion of proton:

Jtj *H-NMR absorption line in Rb3H(SeO4)2

2.767 2.768 2.769 2.770 2.771
Magnetic field (kOauss)

Explanation of NMR Data
'This figure shows the 'H-NMR absorption line in

the Rb3H(SeO4)2 crystal for various temperatures.
It is evident that the NMR absorption line in the
super-ionic phase becomes sharper than that at
room temperature. The NMR line width in the
super-ionic phase becomes about 0.3 G, while the
line width at room temperature is 1.1G.
We can say that the sharpening of the NMR line for
T>Tc is the motional narrowing effect due to the
itinerant motion of proton in the super-ionic phase.

TfTorde
Model Hamiltonian

i order to describe the coherent motion of H2X04<
+e

states, we propose the model Hamiltonian:

r: Transfer interaction of a proton between
adjacent sites
Creation operator of a proton at the site if

The factor in ( ) means
that only either of two protons

in HJ(O.(+«> at / site can transfer.

Expression for ionic current
The ionic current due to a coherent motion of i
Proton id given by the following equation:

Current .
~) E FR.a\ Oi,-(E a,W, - 1)
•fc I — 3l 11 t'J \ —' U U -*• I

n J '<' Jk i
where Rit= Rj - f^.

When a proton hops from ij site toy* site by
transfer interaction F, a charge q of H2XO4

<+*> or
XO4<̂ > moves from site it to site j , R^.

Method for Calculation of the
Density of states /<£)

We calculate Uie density of states for two kinds of
itinerant ionic states H2XO4<+*> and XO4M based on the
model Hamiltonian. For this purpose we introduce the
Green's function defined by

ie H a

P{E)
(next page =>)



Density of states p(£) for the
itinerant ionic states

hnC'jE)

atrix elements of the Hamiltonian

The present model Hamiltonian has an
interesting feature. That is, the
Hamiltonian has the matrix elements only
for the states related to the neighboring
sites, as seen bokmr.

{/3\H\a) =
r-.for\a) & |/3) being neighboring sites

0 otherwise

Expansion of Green's Function
Expand in terms of H/z <*=£+«)

Z2 7 0 Zz

Diagramatic representation of the above zGm(E)

Interaction Map

• As seen in the previous slide,

. (zG{+J{E) -1) is equal to the sum of all
ciosea paths which start from a state a and
end at the starting state a via intermediate
states {S,Y,5, etc, since only the matrix
elements of H between nearest neighbor
states*

• Thus we have to finds such closed paths.
• This is called an interaction map.

Interaction maps for H2xo4<
+e>

and XO4<-e>

V /•

(a) (b)

Interaction maps basically belong to the Bethe lattice
(Cayleytree).

^jjjtecursion Method by Haydock et al
• As the method of summing up the closed paths

described by the Bethe lattice, the recursion
method developed by Haydock, Heine and Kelly is
suitable.

. R. Haydock, V. Heine and MJ. Kelly, J. Phys. C 5 (1972)
2845; id. C 8 (1975) 2591.

• Thus we have employed i t
> According to this method, the diagonal element of

Green's function for the Bethe lattice is expressed
in the form of continued fraction, as shown in the
next slide.



Green's function in the form of the
ntinued fractional representation

with ((z) =

In an ordinary case, an and bn approach quiddy to constant values
a,, and bM when a step n exceeds a certain value n0. Thus we can
terminate the continued fraction by putting am= an and b ^ bM .

Thus '(*) = - 2€,

ict solutions of tfz) for Bethe lattice

f,,, -

U i

Si v
\/2 r

/< -, - ': "" '

i

r-'/i.-

- 81

,,(/-;, - ...---I

Calculated Density
^J H2XO4(

+e) and XC

V-
0.1

/ !

of states for

\ 0.2

0.1
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Remarks on Density of states for

iy is the center of DOS for H j X O ^ shifted?

IX
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X
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\

(W*
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Answer: The existence of loops in interaction map.

Kubo formula for ionic mobility

E(E) = - - EZXIl

In order to calculate the mobility, we have first to
calculate the off-diagonal elements of the Green's
function Gap. For this purpose we expand it in

Expansion of off-diagonal Green's
unction in terms of H/z

The result is shown below:

10a

+ Zu+l 71 72

where Z = E+\e .



emarks on the calculation of mobility

In calculating the Green's function, we sum
up all the paths which start from a state a and
end at a state p* via intermediate states.
Among the paths, the paths which have no
any common intermediate states are called
"irreducible routes". When the length of the
shortest paths between a and p is m steps,
Gap is denoted as GJE).

Four irreducible routes for m = 2
Case of

Here 2 represents the difference
between the steps of each irreducible->
route and that of the shortest one
(t = 0).

21

B
1=1

Diagrams of
(4' does not contain a state adjacent to y2,

while £" does not contain y2 and y, on the way.)

a, ft m~1

1=0
where

f=

General Expression of zG%'(E)

£ =•

Iculated Results for mobility

Mobility (Assuming both |r| and | r ' | « ft T,)

q\r\R\
hkT

x 1.070 : H2XOi+e)

hkT
x 1.066 : XO\i"e)

Here q and q' are the effective charges of H2XO4
(+e)

and XO/** respectively.

••JmL Einstein Relation for mobility
OurTesults for mobility has the form of the Einstein
relation in its temperature dependence. From this we can
derive the diffusion constant for H2XO4

(+e> as follows;

D = x 1.07
where T is a scattering time. Since two kinds of ionk
states are formed thermally, the density of ionic states
are given by the Boltzmann distribution;

n - no e~Ba/kT

The T-dependence of conductivity • . v/ ««. - = -CTOC



Estimated values of mobility
and conductivity

a C ^ , £ , = 0.26eV, «=5.8xl(r«cm, and
7c=450 K. Assuming that q=\q'\=H!,no =10M cm"3,
and | r\ -1 r I =l(rs eV, we estimate the mobility;

Mtotai = M + M' = 2.6 x 10"* [cm2/Vsec]

10419 [cm-

a =
The above estimated values are in good agreement
with observed values.

Arrhenius' equation

We have showed that

Conductivity follows Arrhenius' equation.

a = qn(n + /z') —> (a == A e~EJkT/T)

The origin for it is due to the T-dependence
of the concentration of two kinds of excited
ionic states.

Summary of the First Part:
A new mechanism of proton

conduction in the superionic phase

• The key features of the mechanism are the
following two:

• (1) Two kinds of ionic states H j X O ^ and
XO4

W are formed thermally by breaking a
hydrogen bond. This thermal activation
process is the origin of the observed
Arrhenius' equation in the temperature
dependence of conductivity.

Summary(Continue)
The HjXO/*) and XO/*> states move

coherently as a result of successive proton
tunneling among hydrogen bonds. In this sense
the proton conduction in the superionic phase has
a quantum mechanical nature.
In this context we calculated conductivity by the
Kubo formula. Nevertheless, the obtained
mobility has the form of Einstein relation.
Agreement between theory and experiment is
fairly onnft _ ^ _̂

8
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New Mechanism of Ionic Conductivity
in Hydrogen-Bonded Crystals M3H(XO4)2 [M=Rb, Cs, X=S, Se]

Takuo ITO* and Hiroshi KAMIMURA

Institute of Physics, Graduate School of Science, Science University of Tokyo,
1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601

(Received June 11, 1997)

A model for the mechanism of ionic conductivity in the high temperature paraelastic phase
of M3H(XO4)2 [M—Rb, Cs, X=S, Se] type crystals is proposed. The key features of the con-
duction mechanism are the following; (1) two kinds of defect states, H2XO4 and XO4 ,
are formed thermally by breaking of a hydrogen-bond, (2) the H2XO4

+e) defect state and the
XO4~

e' defect state move coherently from an XO4 tetrahedron to a distant XO4 as the result
of successive proton tunneling among hydrogen-bonds. The density of states and the mobility
are calculated for the coherent motions of these defect states by the recursion method and the
Kubo formula, respectively. The density of states shows the characteristic feature of the Bethe
lattice, i.e., the twin peak structure due to self-similarity, while the conductivity is obtained as
an order of a magnitude of 10~3Q~1cm~1 at the ferroelastic transition temperature, consistent
with experiments.

KEYWORDS: ionic conductivity, paraelastic phase, hydrogen-bond, proton tunneling, Bethe lattice

§1. Introduction
Hydrogen-bonded materials, whose nature is closely

related to the behavior of protons in hydrogen-bonds, ex-
hibit a number of interesting phenomena. For example,
a large isotope effect by substituting deuteron for hydro-
gen is well known in hydrogen-bonded ferroelectric or
antiferroelectric materials, and have been investigating
from a number of theoretical aspects1"5) and experimen-
tal ones.6'7) On the other hand, it has been reported that
M3H(XO4)2 [M=Rb, Cs, X=S, Se] and MHX04 type di-
electric crystals exhibit a ferroelastic phase transition at
high temperatures, and the anomalous large increase of
electrical conductivity near the phase transition temper-
ature has been observed.8"13) X-ray diffraction studies
by Baranov et al. indicate that the ferroelastic phase
transition is due to the disordering in the geometical ar-
rangement of hydrogen-bonds. NMR studies14"16) show
that the charge carriers are the protons. Thus the trans-
port phenomenon in MsH(XO4)2 and MHXO4 is associ-
ated with the dynamical behavior of protons among the
hydrogen-bonds. This has aroused keen interests as a
new type of superionic conductors. Plakida and Sale-
jda17) proposed a phenomenological theory of the fer-
roelastic phase transition and transport phenomena in

Rb3H(Se04)2.
Figure l(a) shows a schematic view of the crystal

structure of the M3H(XC>4)2 projected on the ab plane
at room temperature, where M atoms are not shown for
simplicity. This material is composed of XO4 tetrahedra.
These tetrahedra form XO4-H-XO4 dimers by hydrogen-
bonds in the ferroelastic phase, and these structurally

* Present address: ANALYSIS LABORATORY, TOSHIBA MI-
CROELECTRONICS Corp., 1, Komukai Toshiba-cho, Saiwai-ku,
Kawasaki-shi 210-0901.

isolated XO4-H-XO4 dimers form an ordered structure.
The space group belongs to A2/a. In this material the
hydrogen-bonds do not form a network, but a domain
structure so that one needs not take account of "ice
rule". When the temperature is increased, an order-
disorder phase transition as to the system of hydrogen-
bonds occurs, and the space group changes to R3m. This
is called a ferroelastic phase transition. In the vicin-
ity of the phase transition temperature Tc, the electri-
cal conductivity rapidly increases, and it is described by
a power law as for the temperature dependence. In a
paraelastic phase above Tc the conductivity is exceed-
ingly high as ionic conductors. In Rb3H(Se04)2, for ex-
ample, while low-temperature conductivity is of approx-
imately 10"8 ft^cm-1 at T = 300 K, the conductivity
reaches up to the value of 5xlO~3fi^1cm^1 along the
a or b axis at Tc = 450 K. The high-temperature con-
ductivity is fitted well by the Arrhenius' equation, and
exhibits two-dimensional character, in which the conduc-
tivity along the o or b axis is 20 ~ 50 times higher than
that along the c axis.18) Such transport phenomenon has
been understood so far in the following way:9) Here we
pay attention to the conduction within a layer shown in
Fig. l(a), reflecting an anisotropic behavior of the con-
ductivity. When the temperature is increased from room
temperature, the XO4 tetrahedra start to rotate in the
vicinity of Tc, so as for an oxygen atom responsible for
the formation of a hydrogen-bond of each tetrahedron to
tilt toward a respective direction of the three neighbor-
ing XO4 tetrahedra. Here we call the oxygen atom par-
ticipating in a hydrogen-bond the top oxygen for each
XO4. This orientational disordering of the tetrahedra
causes the breaking of hydrogen-bonds and the forma-
tion of new ones when the top oxygen of a tetrahedron
is tilted and the tetrahedron is simultaneously displaced

1999
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t>F
b

XO,

hydrogen-
bond (H)

(a) (b)

Fig. 1. (a) Projection of the crystal structure of the MsH(XO4)2 [M=Rb, Cs, X=S, Se] in the room temperature phase on the ab plane.
M atoms are not shown for simplicity, (b) Schematic representation of the orientational disordering of each tetrahedron in a crystal,
and successive breaking and formation of hydrogen-bonds in the high temperature phase.

toward a neighboring one in order to form a hydrogen-
bond newly as shown in Fig. l(b). This gives rise to the
disorder as to the available sites for protons among the
hydrogen-bonds. Since the distance between the neigh-
boring XO4 tetrahedra is nearly equal, the protons can
hop among the three structurally equivalent positions in
the hydrogen-bonds, resulting in the high electrical con-
ductivity as stated above.

However, even in the disorder phase of protonic posi-
tions, there exists a unique correlation between the rota-
tional displacement of XO4 tetrahedra and the transfer
of protons among the hydrogen-bonds. Thus the above
transport phenomenon is different from a simple diffu-
sion of protons in ordinary ionic conductors.

In this context we propose a new mechanism of pro-
ton conduction in the paraelastic phase by taking into
account the interplay between the transfer of protons
and the displacement of XO4 tetrahedra. Then we de-
velop a formula to calculate the density of states and
conductivity based on the new mechanism.

§2. A Mechanism of Ionic Conductivity
In this section we describe a mechanism of ionic con-

ductivity of the M3H(XO4)2- In the high temperature
paraelastic phase, the tetrahedra rotate as stated above,
and the geometrical arrangement of the hydrogen-bonds
is random. In order to describe the correlated behavior
of the protons and of the rotation of the tetrahedra, let
us start with a certain arrangement of hydrogen-bonds
shown in Fig. 2(a), where XO4-H-XO4 dimers are repre-
sented by the thick solid lines. Suppose a hydrogen-bond
between two tetrahedra marked by i and j is broken ther-
mally, by the rotational displacement of each top oxygen
as shown by the short arrows in Fig. 2(a). Then, when j

is tilted and displaced toward a neighboring tetrahedron,
say k, as shown by the dotted lines in this figure, the pro-
ton in the hydrogen-bond denoted by ij hops to an inter-
stitial position between the tetrahedra j and k as shown
by the arrow, and then tetrahedron k is tilted to j so as
for the energies before and after a hop to be equal with
each other. Simultaneously the electron separated from
the proton is accommodated in the tetrahedron i. As a
result two kinds of defect states, H2XOi+e) and XO4~

e),
are formed in the paraelastic phase, as indicated in the
dotted circles as shown in Fig. 2(b). The formation pro-
cess of defect states is of the thermal activation type,
because the breaking of the hydrogen-bond is caused by
the thermal rotational motion of the tetrahedra. In the
H2XO4 defect state, two hydrogen-bonds denoted by
the thick solid and gray lines are attached to the top
oxygen, while in the XO4 defect state there are no
hydrogen-bonds. The (+e) and (—e) represent the extra
charges yielded in the respective one of the two tetrahe-
dra when the hydrogen-bond is broken.

First we shall pay attention to the HaXÔ "1"6^ defect
state. When a new hydrogen-bond is formed between j
and k, this brings about the breaking of the hydrogen-
bond between the tetrahedra k and I. Then, when I
is tilted to a neighboring tetrahedron, say m, an extra
proton in the hydrogen-bond kl tunnels to an interstitial
position between the tetrahedra / and rn, because the
energies before and after the tunneling of a proton is
equal. As a result the H2XO4 defect state which was
originally located at k moves to the tetrahedron m. In
the same way, the XO4~ defect state moves from i to
a neighboring tetrahedron, say m', when the proton in
the hydrogen-bond I'm' tunnels to an interstitial position
between the tetrahedra i and I' as shown by the arrow.
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(a) (b)

Fig. 2. (a) Schematic view for the breaking of a hydrogen-bond by the rotational displacement of two tetrahedra. (b) Schematic view
for the formation of two kinds of defect states, H2XO4 and XO4 , and the coherent motion of these defect states due to successive
proton tunneling.

In this way, the successive breaking and formation of
hydrogen-bonds at different positions appear, and the
coherent protonic transport phenomenon takes place.

In closing this section we summarize what we have
explained above. First, two kinds of defect states,
H2XO4

+e) and XO4~
e), are formed thermally by breaking

a hydrogen-bond. Then the H2XO4
+e^ defect state and

the XO4 defect state move coherently from an XO4
position to a distant XO4 position by successive proton
tunneling through available sites for protons in hydrogen-
bonds like a chain reaction. An important feature of this
mechanism is that the electrical conduction is not caused
by a simple diffusion of protons in ordinary ionic conduc-
tors but by the coherent motions of two kinds of defect
states.

§3. Theoretical Model
In this section we construct a theoretical model for

expressing the coherent motions of two kinds of defect
states described in a previous section. In this model the
collisions between defect states are neglected. Then we
can treat each defect states independently. Let us first
pay attention to the motion of a single H2XO4

+e) defect
state, as shown in Fig. 3(a), where the XO4 tetrahedra
in the paraelastic phase are placed at the equivalent po-
sitions, and these positions for a tetrahedron are denoted
by i, j , etc. In the present model the sites of protons are
taken at the mid-points of hydrogen-bonds for simplicity,
because we are investigating a problem of the inter-bond
proton hopping, but not the intra-bond motion between
double-minima within a hydrogen-bond. Such sites are
indicated by circles in this figure, and the notation such
as ik is used to show an available site for a proton in
the bond between i and k. In this figure the vacant sites
and occupied sites of protons are shown by the open and

solid circles, respectively.
Defect states are characterized by their positions and

their orientations in a crystal. In Fig. 3 (a) those are de-
noted by a, /?, etc. When either of the two protons(the
solid circles) in the H2XO4

+e^ defect state at 2-position is
transferred to an adjacent site as shown by the solid ar-
rows in Fig. 3(a), the H2XO4

+e^ defect state moves from
i-position to one of the four next-neighboring XO4 £-, p-,
q-, and r-positions, and the state a changes to f3, 7, 5, or
v. But the transfer of protons at ik- or ij-site to im-site
is excluded, because the state of two defects is energet-
ically unfavorable. As a result the motion of a defect
state occurs by the proton tunneling, and the defect state
moves resonantly to one of the next-neighboring XO4 po-
sitions one after another, changing the state, say from a
to /?, and then to 7. Consequently a band-like state is
formed. Similarly a band-like state is also formed for the
motion of an XO4~

e) defect state, as shown in Fig. 3(b).
In this case the XO4 defect state can move to one
of the three next-neighboring XO4 positions. Since we
can treat the two kinds of defect states in a similar way,
here we consider only the motion of the H2XO4

+e^ defect
state in detail, and for the XO4~°' defect state only the
calculated results are presented.

Choosing the site energy of the defect states as the ori-
gin of energy, the model Hamiltonian to describe the co-
herent motion of the H2XO4

+e' defect state is expressed
bv

- r i , (3.1)

where F represents the resonant integral of a defect state,
in other words, the transfer interaction of a proton be-
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(a) (b)

Fig. 3.

o vacant site of proton

• occupied site of proton

(a) H2XO4 ' defect state is situated at i-position. The possible paths for the transfer motion of the defect state is represented
by the solid arrows, (b) XO^ state is situated at the i-position.

tween adjacent available sites. The symbols a\ • and â -
are the creation and annihilation operators of a proton
in the site ij, respectively. The factor ( ^ • a\-aij — 1) is
1 when the H2XO4 defect state lies at the i-position
while otherwise zero. As for the XO4 e^ state, we
can construct the model Hamiltonian in a similar form.
Based on this model we will calculate the density of
states for the two kinds of defect states and the mobility
for the coherent motions of these defect states.

§4. Formulae for the Density of States and the
Mobility of the Defect States

In this section we present the formulae to calculate the
density of states and the mobility, based on the model
Hamiltonian (3.1). Using a basis set for the defect states
\a), |/3), etc., the Green's functions are defined by

(4.1)
ie-H

(4.2)

where E is the energy of a system, and e a positive in-
finitesimal. As is well-known, the density of states p(E)
is obtained from the diagonal element of eq. (4.2).

Then we calculate the mobility. For this purpose we
introduce the current operator defined by

3 = (f (4-3)

where Rji = Rj —Ri with Ri being the position vector of
i-position, and q is the effective charge of a defect. Then
the mobility is calculated from the Kubo formula.19) Cal-
culating the correlation function of current-current oper-

ators and assuming that the system is isotropic within a
layer, the mobility \x is expressed in terms of the Green's
function as follows:20'21)

I e-E'kTZ(E)&E fe-E/kTp(E)dE,

(4.4)

\2qkTj

where

Z(E) = -77

(4.5)

Here k is the Boltzmann constant, T the absolute tem-
perature, N the total number of the defect states, and
Rpa represents the displacement vector of a defect asso-
ciated with the change of a state from a to f3, which is
equal to Ru in Fig. 3(a).

As seen above, the calculations of p(E) and \x are as-
cribed to calculating the Green's function (4.1). We ex-
pand it in a power series of H/z. The result is

1.
+ -

yiHyia, (4.6)
v=\ 71 72 7i/

where z = E+ie. Let us consider the diagonal element
of the Green's function, Gaa • As shown in eq. (4.6),
(zGaJ — 1) is equal to the sum of all closed paths which
start from a state a and end at the starting state a via
intermediate states 71, 72, etc., since only the matrix
elements of H between nearest neighbor states are not
zero. Thus, we have to find closed paths. This is called
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an interaction map.

§5. Interaction Map

When we construct the interaction map from all the
closed paths, careful attention should be paid to find-
ing the looping-back-paths which correspond to those
returned to the initial state by taking the intermediate
states on a loop. It is not hard to find such looping-
back-paths in the case of the H2XO4

+ defect state. For
example, we can see in Fig. 3(a) that, when a proton
moves with three steps around the tetrahedron k clock-
wise, the defect state at the «-position changes first from
the a to /3, then to 7, and finally returns to the initial
state a. This is called a triangular looping-back-path. It
should be noted that there exist no other looping-back-
paths except for such triangular paths. Here we should
note a case in which, even when a defect state returns
to an initial tetrahedron position, the initial state is not
necessarily restored. For example, if protons move as in-
dicated by the dotted arrows 1, 2, and 3 in Fig. 3(a),
the defect state begins to move from the z-position and
returns to the same position i. In this case the initial
defect state is not restored, because the configuration of
all the protons in the whole crystal is not identical. Thus
this is not a looping-back-path.

In this way we can obtain the interaction map for the
H2XO4 defect state as shown in Fig. 4(a), where the
defect states are denoted by vertices. The remarkable
characteristic of the interaction map is that the interac-
tion map basically belongs to a category of the Bethe
lattice(Cayley tree), though it contains triangular loops.
Investigating the XO4 defect state in a similar way as
shown in Fig. 3(b), the interaction map can be obtained
as shown in Fig. 4(b). It is clearly seen from this figure
that the interaction map for this case is just the Bethe
lattice. Here, based on the obtained interaction map
for the H2XOl defect state, we can construct the dia-
grams for zGaa • The result is schematically illustrated
in Fig. 5, where each defect state and each hopping step
are denoted by a vertex with value 1 and a line with F/z,
respectively.

As a method of summing up the closed paths described
in Fig. 5, we employ Haydock's recursion method.22'23^
Here, we give a brief summary of this method. In that
method the diagonal element of the Green's function is
expressed in a form of a continued fraction. In doing
so, a Hamiltonian matrix is transformed to a tridiagonal
form by a new basis set |0}, |1}, |2}, • • •, \n}, • • •, etc.
This new basis set | } is obtained from the original basis
set |0), |1), |2), •••, \n), ••-, etc., which corresponds to
the orthonormalized set of the defect states a, f3, etc., in
the present case, by the following recurrence relation;

ao|0}

bn+i\n + 1} = H\n} - an\n} - bn\n - 1}, n > 1,

(5.1)

H X

X H
(a) (b)

Fig. 4. (a) Interaction map for the H2XO4 defect state, (b)
Interaction map for the XOj, defect state.

• =1

Fig. 5. Diagrams of zG&} for the H2XO^+e) state. Symbol a
denotes the starting and terminating vertex, and symbol j3 and
7 denote variable intermediate vertices. The numerical factors
before diagrams represent the number of diagrams of respective
type.

where a new starting state |0} is chosen as |0). When
one obtains |n + l} , coefficients an and bn are determined
so as for H\n} to orthogonalize to the preceding states
\n} and \n — 1}, and the coefficient 6n+i is determined
to normalize \n + 1} to unity. In the new basis set |n},
the Hamiltonian matrix is expressed in the tridiagonal
form;

{n\H\n} = an

{n - l\H\n) = {n\H\n - 1} = bn (5.2)

{n\H\m} = 0 otherwise.

As a result, (0|(z — H)~1\0) can be easily evaluated, and
thus one can obtain GQQ (Z) in the following form of the
continued fractional representation

= 1—^2 .(5-3)

-a0-

with

t(z) = (5.4)

In an ordinary case, the an and bn approach quickly
to constant values ax and 600 when a step n in eq. (5.1)
exceeds a certain value no- Thus one can terminate the
continued fraction by putting ano = a^ and bno = bx.
Then the remainder of the continued fraction t(z) can be
written as



2004 Takuo ITO and Hiroshi KAMIMURA (Vol. 67,

t(z) =
(z -Qco) ± sj{z-ao (5.5)

The (+) sign in eq. (5.5) is rejected, because t(E + ie)
must vanish as E —> oo in order that the G^ (z) in
the form of eq. (5.3) preserve its analytic character of
the form E^1 at E —> oo. Thus only the (—) sign in
eq. (5.5) is chosen.

§6. Calculated Results

6.1 Density of states
Based on the obtained interaction map and Hamilto-

nian (3.1), the density of states for the H2XO4
+e) defect

state is calculated by means of the recursion method.
When the coefficients an and bn are calculated by the
ordinary procedure, the values of an and bn after the
second iteration are found not to change. Then we ob-
tain Goa in the following analytic form;

1
(6.1)

- r -
with

t(z) =
-F-

(6.2)

For the H2XO4 defect state at certain position, say
i. as shown in Fig. 3(a), three configurations are pos-
sible with regard to the association of two protons, be-
cause the two protons in the defect state can be accom-
modated in the three available sites around «-position.
Since eq. (6.1) has been obtained for a special configura-
tion of protons among the three configurations given in
Fig. 3(a), we have to multiply eq. (6.1) by 3 to obtain
the density of states. Further, it must be divided by 2 in
order to avoid the double counting of paths. As a result,
the density of states, pi(E), is obtained as

Pl(E) =-Gaa(E). (6.3)

The calculated result of P\{E) is plotted as a function
of energy E in Fig. 6(a), where the unit of energy is
taken as F. Here pi(E) satisfies the normalization con-
dition; Jpi(E)dE — 1. The calculated width of the
density of states is 4i/2|.T|, which is narrower than that
of an ordinary square lattice with the same four near-
est neighbor sites, since the bandwidth for the ordinary
square lattice is 8|.T|. This means that, since the inter-
action map belongs basically to a Bethe lattice, the mo-
tion of the H2XO4 defect state has a one-dimensional
character. Indeed, two maxima of the density of states
near the band edges resemble the shape of the van Hove
singularity (two infinites) at the band edges of the one-
dimensional band. The shape of P\(E) is asymmetric
with respect to E=0. This is due to the existence of the
closed paths with odd steps, i.e., the triangular looping-
back-paths seen in Fig. 4(a). The density of states for the
XO4 state, p2(E), can be obtained in a similar way.
The result is shown in Fig. 6(b). In this case, since there
is no closed path with odd steps in the interaction map,

0.1

-5.0 0.0

Energy (eV/ in )

(a)

0.0 5.0

E n e r g y ( e V / i r ' l )

( b )

Fig. 6. (a) Density of states for the H2XO4 ' defect state where
the unit of energy is \F\. (b) Density of states for the XOj
defect state where the unit of energy is \F' .

the shape of P2{E) is symmetric with respect to E=0.
The width of the density of states is 4v^|r ' | , where F1

is the resonant integral of the defect states,

6.2 Mobility
To calculate the mobility of the H2XO4

+e) defect state,
we have first to calculate the off-diagonal element of the
Green's function, Gj^J by eq. (4.6). In doing so we sum
up all the paths which start from a state a and end at a
state /? via intermediate states. For convenience, we call
the paths which have no any common intermediate states
on the route, "irreducible routes". Suppose the length
of the shortest path between a and j3 is m steps. Then

may be denoted by due to the topological
equivalence of vertices in the interaction map. If we con-
sider the case, for example, where 771 is two as shown in
Fig. 7(a), we see that four irreducible routes indicated by
line graph exist in Fig. 7(b), where each state and each
step on the irreducible routes are denoted by a vertex
with value 1 and a line with F/z, respectively. We de-
note the difference between the steps in each irreducible
route and those in the shortest route by I. Thus each
irreducible route may be characterized by I.

Now it is convenient to introduce the following three
quantities defined by £, £', and £": The quantity £ cor-
responds to zGaa , which has been already obtained in
order to calculate the density of states; £' and £" corre-
spond to the sums of the closed paths which start from
and end at, say 72 as shown in Fig. 7(a), but £' does
not contain a state adjacent to 72, say a, while £" does
not contain two states adjacent to 72, say a and 71, on
the way. Under these restrictions, £' and £" can be calcu-
lated by means of the recursion method like the case of £.
Thus, putting £, £', and £" on the irreducible routes so as
to avoid double counting of paths as shown in Fig. 7(c),
one can express zG^L2

 a s ^ne s u m of the four diagrams.
We note here that the diagrams with the same £ lead
to the same expression and that the number of such dia-
grams with t is iCi- Thus, we obtain the following result
for m=2



1998) New Mechanism of Ionic Conductivity in Hydrogen-Bonded Crystals M3H(XO4)2 [M=Rb, Cs, X=S, Se] 2005

(a)

1=0

T l

1=1
(b)

(c)

Fig. 7. (a) Interaction map for the H2XO4 ' defect state in-
volving in the calculation of zGwJ. (b) Four irreducible routes

for zGga in the case where the length between a and /3, m, is
two steps. Here I represents the difference between the steps of
each irreducible route and that of the shortest one (£=0). (c)
Diagrams of zGw~ in the present case.

- e'2
pN 2 + 1

I c'2 c"
z /

2+2

In this way, zG^J for a combination of arbitrary a and
/3 is expressed as

-m+lL

Finally we consider the closed paths a H> /3 ->• 7 -*•
<5 ->• a for the terms in eq. (4.5), H(E). As seen in
this equation, a pair a and j3 and a pair 7 and <5 are
adjacent. Then we can classify the present problem into
the following two cases: (I) a, /3,7, and 6 are all on a
triangular route and (II) otherwise.

In the case (I), four cases further arise. In every case
two states among the four states, a ~ 5, are identical

(I-a)

= Gn

Fig. 8. Diagrams in N^ in the case (I).

on a triangular route, i.e., a=6, /3=7, a=j, and (1=5.
Then, 2x3 diagrams for TVS' on a triangular route are
constructed for each of the four cases as shown in Figs.
8(I-a)-8(I-d). Here the factor 3 means the number of
ways to choose the starting state a from among the three
vertices on the route, and the factor 2 represents the
number of ways to choose (3 as a successive step. The
diagrams in the cases (I-a) and (I-b) of Fig. 8 yield the
same expression. The same scenario holds for the cases
(I-c) and (I-d). Thus the group of (I-a) and (I-b) and
that of (I-c) and (I-d) lead to, respectively, the following
expressions;

and

2 x 2 x 3 x G0Gir2R6l • R

2 x 2 x 3 x G(r2RS-y • R,

(6.6)

(6.7)

The inner-products appearing in eqs. (6.6) and (6.7) give
R2

 COS(2TT/3) and R2
 COS(TT/3), respectively, where R is

\R\. As a result, the terms in NS in eq. (4.5) for the
case (I) are calculated as

For the case (II), it is convenient to divide it further
into two cases. The first case (II-l) is that no loop
appears in the shortest path among the closed paths
a—>-/3->7-><5—»a. The second case (II-2) is that
loops appear in the shortest path. In the first case, the
shortest path a —> (3 ^ -y ^ 5 —> a lies on a linear
route. Let us take the length from one end to another
end of a linear route as m+1 steps. Then the diagrams
for NS are constructed along a linear route with m+1
steps as shown in Figs. 9(11-1-a) and 9(11-1-b). The case
(II-1-a) shows that the length between (3 and 7 is equal
to that between 5 and a on the linear route. (Here the
case of m = 0 is treated later as an exceptional case).
These lengths are both m steps. The case (II-1-b) shows
that the length between (3 and 7 is different from that
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between 5 and a on the linear route. One of these is
(TO - 1) steps, and the other is (TO + 1) steps. Thus, the
diagrams for the cases (II-1-a) and (II-1-b) are expressed
as

and

4 x Gl r2R5l • R

4 X

•pa;

Rs-y • R/3a,

(6.9)

(6.10)

respectively. As seen in Figs. 9(11-1-a) and 9(II-l-b), the
values of the inner-products appearing in eqs. (6.9) and
(6.10) are the same magnitude but with opposite sign to
each other, respectively. Hence, the term in NS for the
case (II-1) is expressed as

— Gm)r (6.11)

As for the exceptional case of m = 0, in which a, j3,7,
and 5 are on a linear route of one step, we can write
four diagrams as shown in Fig. 9(II-l-c). Thus NS is
expressed as

Z((jri — Lrnji XL . yO.xZj

In the case (II-2), only one or two loops can be formed in
the shortest path among the closed paths a —> 13 -> 7 —>
S —> a. For each case, we show examples of diagrams for
NS in Figs. 10(11-2-a) and 10(II-2-b). Though eight di-
agrams can be constructed for each case, we choose here
two diagrams for these cases. When we obtain equations
corresponding to these diagrams, we find that because
the two quantities in each case are the same magnitude
but with opposite sign, these cancel each other. The
same is true for the remaining diagrams. Thus the case
(II-2) has no contribution to NS.

Combining eqs. (6.8), (6.11), and (6.12), S(E) is ex-
pressed as follows;

(loop)

(6.13)

m = l (m)

(0)

where a reason for the appearance of the factor 3/2 is
the same as the reason that the factor 3/2 has appeared
in the expression for the density of states, pi(E). The
symbol ^2im\ represents the summation taken over the
linear routes of (m+1) steps under the restriction men-
tioned above, X](0) ^

ne summation taken over the linear
routes of 1 step, and ^2,nO0 \ the summation taken over
the triangular routes. These can be written as

/ J — J V X < ± X Z X Z X x — L 1\ , V 0 - 1 V

(m)

(0)

(loop)

x - =
2

- = -
3 3

(6.15)

(6.16)

a J3 9 ™ . .

(II-1-b) (II-l-c)

Fig. 9. (II-1-a) and (II-1-b): Diagrams in NE for a linear route
of (m +1) steps in the case (II-l). (II-l-c): Diagrams in NS for
a linear route of 1 step.

0 e

^<1 ^Xj.
(II-2-a) (II-2-b)

Fig. 10. Examples of diagrams in N^ in the case (11-2). In (II-
2-a) and (II-2-b) one and two loops are formed in the shortest
path among closed paths a —> (3 —»7—> 5 —> a, respectively.

where 1/2 appearing in eqs. (6.14) and (6.15), and 1/3
appearing in eq. (6.16) are the factors which are needed
for avoiding double counting of paths. The remaining
problem is to calculate -R 7̂ • Rpa

 m eQ- (6.13) for the
case (II-l). The direction for successive transfers of a de-
fect state is random. Therefore, when a defect moves by
changing the state from a to j3, then from /3 to /3i, • • • and
finally from 7 to 5 along the linear route of m+1 steps
without repeating identical states, the ensemble average
of the inner-product of the first and the last displacement
vectors Rs-y • Rpa is simply expressed as i?2(l/3)m. This
randomness in the direction for transfers of a defect plays
an important role in attaining a finite mobility, because
no other scattering mechanism is assumed in the present
model. Thus, eq. (6.13) is written as

3 A (2

m = l

(6.17)
Li

As for the XO4~
e' defect state, case (I) is not present.

Therefore S can be calculated analytically.
Assuming both \F\ and \F'\ <C kT, the mobility JJL for

the coherent motion of the H2XO4
 e state is calculated

from eqs. (4.4), (6.3), and (6.17), while the mobility JJ,' for
the coherent motion of the XO4 state is also calculated
in a similar way. The obtained results are

x 1.070TikT
for the H2XO4 defect state,

,24\\r\R2
 x ! 066

hkT x 1-ut)t)

for the XOi~ defect state,

(6.18)
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where q and q' are the effective charges of an H2XO4

defect state and an XO4~
e^ defect state, respectively.

When we investigate the contribution from each term in
E, in eq. (6.17) to the mobility in detail, we find that, for
the case of the H2XO4 defect state, the contribution
from the first term in the right hand side of eq. (6.17)
is negligible, and that the second and third terms con-
tribute approximately to a half of the total magnitude of
mobility. The same is true for the XO4 defect state,
though a term which corresponds to the first term in
eq. (6.17) is not present. As seen in eq. (6.18), we no-
tice that the mobility has the form of Einstein relation
in its temperature dependence. From this result one can
say that the defect state, for example the H2XO4 e^ de-
fect state, hops successively with the diffusion constant
D = R2\r\/h x 1.070. However it should be noted that
the motion of the defect state is not simply a classical
random hopping but a coherent hopping in the present
model. In this sense it is a quantum mechanical phe-
nomenon.

Now, let us calculate the conductivity. In doing so we
recall that two kinds of defect states are formed ther-
mally by breaking a hydrogen-bond within a layer. Thus
the concentration of defects, n, is expressed in the form
of the Boltzmann distribution,

n = N e~E-lkT, (6.19)

where Ea is the formation energy for creating simultane-
'ously an H2XO4 defect state and an XO4 ' defect

state thermally by breaking a hydrogen-bond. Thus,
from eqs. (6.18) and (6.19) the static conductivity is ob-
tained as follows;

cr = qn(fj, + v')
_ g2i?2iV(1.070|r| + 1.066|r I
- hkf

(6.20)

The obtained conductivity obeys the Arrhenius' equa-
tion, which is consistent with experimental results.

We estimate the magnitude of u for the case of
Rb.3H(SeO4)2. From experimental results11-1 we ob-
tain Ea = 0.26 eV, R = 5.8 xlO~8 cm, and Tc = 450 K.
Then assuming that q=\q'\=e, n0=1022 cm"3, and
| r |= | r ' |= l ( r 5 eV, we estimate the mobility as 2.6 x 10"4

cm2/Vsec. Thus the conductivity has the order of a mag-
nitude of 10-3 fir^m-1.

§7. Summary and Concluding Remarks

In this paper, a new mechanism of ionic conductiv-
ity in the high temperature paraelastic phase of the
M3H(XO4)2 [M=Rb, Cs, X=S, Se] has been proposed.
The key features of the mechanism are the following two:
(1) Two kinds of defect states, H2XO4

+e) and XO4~
e), are

formed thermally by breaking a hydrogen-bond. This
thermal activation process is the origin for the observed
Arrhenius' equation in the temperature dependence of
conductivity; (2) the H2XO4

+e' defect state and the
XO4~

e) defect state move coherently from an XO4 po-
sition to a distant XO4 position as the result of the suc-
cessive proton tunneling among hydrogen-bonds. In this
sense the proton conduction has a quantum mechanical

nature. In fact, in obtaining the Green's function for
the present model, the characteristic paths, called inter-
action map, have appeared. We have showed that the
interaction maps are essentially a Bethe lattice. Based
on the present model, the density of states and the mobil-
ity have been calculated both for the coherent motions of
the H2XO4

+e) defect state and the XO4~
e) defect state.

The density of states shows the characteristic feature of a
one-dimensional band, reflecting the feature of the Bethe
lattice. We have further showed that, even though the
hopping motion of the defect states is coherent, the mo-
bility has the form of Einstein relation, i.e., its tempera-
ture dependence is of 1/T form.

Finally a remark is made on the mechanism of phonon-
assisted tunneling proposed by Yamada and Ikeda for
explaining dynamical properties of protons in KH2PO4.
Although we have assumed that the energies before and
after the tunneling of a proton is equal, in reality the
XO4 tetrahedra vibrate and rotate around sites i,j,k,
etc., so that the energies before and after the tunneling
might not be equal. In that case the phonon-assisted tun-
neling plays an important role for the M3H(XO4)2 like
KH2PO4. We hope that the neutron incoherent scat-
tering experiments will elucidate a mechanism of proton
tunneling in M3H(XO4)2 in the near future.
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