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Variable-range hopping: Role of Coulomb interactions
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The effect of Coulomb interactions on hopping conduction in the variable-range hopping regime is analyzed
within a linear-response formalism. Here the conductivity and the dielectric function are related to the density-
density response function for which a generalized master equation (GME) can be derived using the Mori-
Zwanzig projector formalism. The GME can be thought of as a random resistor network with frequency-
dependent internode conductances, whose values can be determined from a function related to the current-
current correlator at the two nodes. We evaluate the internode conductances using a diagrammatic perturbation
formalism. For a single electron hop with all the other charges frozen, we obtain hop rates correct to all orders
in Coulomb interaction. This gives us a finite temperature generalization of existing results for the interacting
system. We then incorporate relaxation effects that accompany electron hops, using a dynamical model of the
Coulomb gap. We argue that the parameter that governs the local relaxation is related to the conductivity itself.
These internode conductances are then used to calculate the dc conductivity of the network by effective-
medium approximation. We show that a crossover from Efros-Shklovskii's Tm behavior to Mott's r"4 be-
havior occurs due to the relaxation effects, as the temperature is increased. At low temperatures the relaxation
is slow so that electrons hop in a frozen charge background and thereby sense the Coulomb gap. This gives the
r"2 behavior. At higher temperatures the relaxation gets faster and the Coulomb gap is alleviated leading to
Mott's behavior. [S0163-1829(99)05207-8]

I. INTRODUCTION

In this paper we shall be concerned with the role of Cou-
lomb interactions in the hopping conduction of localized
electrons. We shall consider situations where the Fermi level
lies in the region of strongly localized states and at tempera-
tures where variable-range hopping (VRH) dominates. It has
long been realized that Coulomb interactions play a crucial
role in the hopping conduction of electrons, since the local-
ized states are not very effective in screening the long-range
part of the Coulomb interaction. Since Mott's remarkable
arguments, which predicted that as temperature is lowered
the activated dependance of dc conductivity [<r(T)
<*cro(T) exp(—e^/kgT)] should go over to the form <r(T)
^ ^ ( D e x p K - r ^ / r ) " 4 ] , 1 there has been a tremendous
amount of theoretical and experimental work aimed at under-
standing various aspects of VRH. Mott's formula was based
on rather simple considerations of the hopping rate between
two sites, which has the generic form,

(1)

where R is the distance between two sites and A £ > 0 is the
energy difference between the sites. In the higher-
temperature range, the first term in the exponential restricts
the hopping to the smallest values of R, leading to nearest-
neighbor hopping. But as the temperature is lowered, the
most efficient rates are obtained by hopping to longer dis-
tances, which allows for decreased activation energy. Fol-
lowing Mott's arguments there have been numerous efforts
to put Mott's results on firmer theoretical foundations. They
have largely been based on the rate equation approach of
Miller and Abrahams.2 The linearized rate equation is
equivalent to • rrnidom-reiiUtpr network, which in thl» niuin-

tion is amenable to a percolation analysis.3 This analysis and
various improved treatments of random-resistor networks
yield results qualitatively identical to Mott at low
temperatures.4" However, all these calculations ignore
Coulomb interactions.

Coulomb interactions influence the situation in several
ways. One very significant effect first pointed out by Pollak15

and Srinivasan16 is the existence of the Coulomb gap, i.e.,
the vanishing of the density of states (DOS) of the Hartree
energies of the localized levels precisely at the Fermi level.
Subsequently, Efros and Shklovskii (ES) argued it to be a
soft Coulomb gap with the DOS vanishing quadratically with
energy around the Fermi level.17 The Coulomb gap basically
reflects the difference between the minimum energies of add-
ing an electron and subtracting one from the system, without
disturbing the other charges. Knotek and Pollak18 have
viewed it as the amount of lowering of the Hartree energy,
which occurs due to the relaxation of the surrounding charge,
when an electron is added to a site at the Fermi level. ES
have extended Mott's reasoning to argue that due to the soft
Coulomb gap, Mott's 7"1/4 behavior should be changed to the
following temperature dependence,

= <ro(T)exp[(-TE5/T)m]. (2)

However, ES's derivation has been questioned on the follow-
ing points. The excitation energy A£^ that enters Eq. (1)
when an electron hops from site i to site j separated by a
distance /?, ; can be written in terms of the site Hartree ener-
gies {£,} as

( 3 )
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where Kjj denotes the Coulomb energy c2//c/?,y,K is the
background dielectric constant, and the energies E, are given
in terms of the one-electron site energies {e,} as

(4)

where fj denotes the electron occupation number of the state
at site j . ES's derivation of the soft Coulomb gap for the
DOS of Ej (Ref. 17) comes from the requirement that the
occupation numbers fj in the ground state must be such that
all one-electron excitation energies defined in Eq. (3) are
positive definite. The soft gap predicted by ES has been con-
firmed in many numerical simulations. However, it should be
noted that a gap in the DOS of the Hartree energies does not
imply a similar form of the gap for the excitation energies
AE,;-, which is what is relevant for Mott's argument, in
which the DOS for A£ was assumed to be a constant.

Further due to interactions, the hopping of an electron is
accompanied by local relaxation of charge around the sites
involved in the hop.3'18'19 Around the site the electron jumps
from, the electrons on surrounding sites move in, raising the
Hartree energy of this site from the value it had when the
electron was present on it. While around the site the electron
hops to, there is an outward movement of charge and a con-
sequent reduction of the Hartree energy from the value it had
when the site was unoccupied.

Such relaxations and shifts of local energies cannot be
considered systematically in the rate-equation model, which
ignores interactions apart from the constraints of double oc-
cupancy of a site. The role of interactions in hopping trans-
port has received considerable attention. Possibility of mul-
tielectron transport was first considered by Knotek and
Pollak,18 who argued that below a certain temperature corre-
lated electron motion dominates over the independent
electron-hopping process. They also argued that in the lowest
range of temperatures, the conductivity must again be due to
activation across the Coulomb gap. Mott introduced the no-
tion of "charge polaron" to describe the quasiparticle that
hops along with its charge cloud, which process consists of
other electron hops constituting the relaxation process de-
scribed above.20 Arguing that for the hops of such quasipar-
ticles there is no Coulomb gap, Mott found the TU4 law to be
again valid even in the presence of interactions. This whole
subject has been recently reviewed in two exhaustive papers
by Ortuno and Pollak,21 and Efros and Shklovsii.19

This problem has also been extensively studied experi-
mentally for a large variety of systems. Early work provided
some confirmation to Mott's T114 law but was questioned due
to the limited temperature range of fits. Many critical analy-
ses have since appeared that show data can be fitted with
temperature exponents that cluster around the values of 1/4
and 1/2.19'22"26 Castner23 has observed that for systems that
are close to metal-insulator transitions (MIT), the data fits
quite well to Mott's law, while for those far away from MIT,
the exponent 1/2 is more appropriate. More recently, several
studies have appeared that show both behaviors, with TUA

behavior crossing over to TV2 behavior as the temperature is
lowered.27"32 From further analysis of some data, it has been
argued that in terms of some properly scaled variables, the
crossover behavior is universal.33'

The purpose of this paper is to present a calculation of the
dc conductivity of the hopping electron system, which takes
into account the effect of Coulomb interactions on electron
transport in a systematic manner. For this purpose, we use
the linear response formalism as first developed for this
problem by Brcnig el alp These authors showed that the
conductivity of the system is related to the density-density
response function. Using Mori-Zwanzig projector formalism
it is possible to recast the equations of motion of the density-
density response function ^ as a generalized master equation
(GME).3 A Markovian approximation of the GME yields
the rate equation, which has formed the basis of conductivity
calculations of the earlier papers. The GME can be viewed as
a resistor network equation with frequency-dependant con-
ductances between nodes, which can be calculated from a
correlation function of time derivatives of electron numbers
at the nodes. This formalism allows us to consider the prob-
lem of transport of interacting electrons in two parts. First,__
one calculates the internode conductances using a formal ex-f

pression through which interactions can be incorporated by a
standard diagrammatic perturbation formalism. Second, one
solves the resistor network problem, which brings in the con-
siderations of disorder and percolation in the calculation. For
the latter problem, several procedures have been
developed,6'8"14 one of which we adapt for our present
analysis.12"14

The paper is organized as follows. In Sec. II we present
the basic Hamiltonian and write out the equations of the
linear response formalism for the hopping conduction prob-
lem. In Sec. Ill we set up the formalism for the calculation of
the internode conductances, and include Coulomb interac-
tions at the lowest order in electron-hop amplitude. This cal-
culation is to all orders in Coulomb interaction. Sec. IV is an
attempt to build in the relaxation effects that accompany
electron hops. The diagrammatic analysis enables us to select
the processes that represent the relaxation effects. Though
we can write formal expressions for these processes in a
self-consistent manner, it is very difficult to compute physi-
cal quantities from them. However, guided by these expres-
sions, we incorporate relaxation effects by a physical model,
which allows us to write a certain spectral density needed for
the response function directly. Section V is devoted to solv-
ing the resistor network of the above conductances for ob-
taining dc conductivity. We end the paper with a summary
and some discussion in Sec. VI.

II. LINEAR-RESPONSE FORMALISM
FOR CONDUCTIVITY

A. Hamiltonian

The relevant Hamiltonian for the system of localized elec-
trons in interaction with phonons can be written as

<,a\an

V r t t *V

The first term is a summation over the random-site energies
€j associated with the localized state at site i, Jtj (in the
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second term) is the amplitude for electron transfer between
sites i and j , and the third term is the Hamiltonian for free
phonons. The fourth term represents the electron-phonon in-
teraction, and the last term represents the intersite Coulomb
interaction between electrons at sites i and j , Kjj being de-
fined after Eq. (3). It is assumed that the one-clcctron cigen-
states resulting from the first and second terms of the Hamil-
tonian are localized. Further, we take the intrasite Coulomb
interaction to be so large that the sites are at most singly
occupied. We also ignore the off-diagonal part of the Cou-
lomb interaction, which is a reasonable assumption for
deeply localized states.

For subsequent analysis it is useful to apply the "polar-
on" canonical transformation37'38 to the Hamiltonian, as fol-
lows:

H=esHe -s

> = 2J S,n,

(6)

(7)

(8)

After this the Hamiltonian (apart from a negligible term pro-
portional to n,n7) is

with

and

where the new site energy is

(9)

(10)

The site energies are shifted on account of the polarization
displacement of the surrounding atoms. For notational sim-
plicity we use {e} to refer to the energy {e} given in Eq.
(10).

B. Linear response theory for conductivity

The calculation of the conductivity3639 requires evalua-
tion of the response of the system to a perturbation of the
form — 1jVj{t)rij, where for an electric field E in the x
direction Vj(t) = eEXjeia". The deviation <5n,(r) of the occu-
pation number at a site i, from its equilibrium value / , , in
response to the potential switched on at f = 0, can be written
to the first order in V as

(11)

(12)

It is convenient to work with the Laplace transform of these
relations, in terms of which Eq. (11) has the form

where Xij(z) is given by

(14)

and X'I'/<") is the Fourier transform of xi/,0- The conduc-
tivity of the system a(a)) can be obtained from the dynamic
susceptibility by the relation

uoe
(15)

Similarly, the dielectric-constant matrix /<,,(«) can be ex-
pressed in matrix notation as

l = l+X(*>)K, (16)

where K denotes the interaction matrix Ktj. The next step of
the formalism is to write the equation of motion of the
density-response function in a way that it resembles the rate
equation. For this one defines a Kubo relaxation function
* y ( 0 . which is,

(17)

(18)

where the angular brackets ( ) denote a thermal equilibrium
average such as {ni(t)) = lrpni{t), where p
= e~pt11 Ite~pH is the density matrix. Eq. (18) is a short-
hand notation for the right-hand side of Eq. (17). The rela-
tion between the relaxation function and the susceptibility is
given by

i(3[z<£>ij(z) — i<£>ij(t = O)] = Xij(z)- (19)

Further note that the static susceptibility Xij~Xij(z — 0) is
given by /3<J>,;(< = 0). For noninteracting electrons, the static
susceptibility is

/?)• (20)

One now writes down in a formal manner the Laplace trans-
form of the equation of motion of the relaxation function in
terms of the quantum Liouvillian operator L,39 as

where the dynamic susceptibility x" >s

*iM)=<nt\jzz\nj)- (2i)

Using the Mori-Zwanzig projector formalism,3639 one writes
the above equation as

(22)
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where the matrix M(z) is

with

and

(23)

(24)

Q.z-LQ

where Q is the projection operator defined as

(26)

Using Eqs. (21), (22), and (23), we can write the equation for
the dynamic susceptibility as

This allows us to write the equation for the deviation in the
occupation numbers to be

izSn(z)=-C(z)x'l(O)Sn(z)-C(z)V(z). (28)

If one uses the Markovian approximation in Eq. (28), that is,
replace C(z) by C(0), and identifies the C(0) matrix as

(29)

where I"1,-; is the hopping rate between sites i and j , one
obtains the linearized version of the standard rate equation
for electron occupation numbers

v / (31)

where T is the complex time in the domain [ — /?,/?] and TT

represents ordering in T. We shall refer to S/j as the current-
current Green's function, even though «, are not quite the
current operators. We can establish the relation between the

matrix C(z) of Eq. (25) and S,;(r) through its spectral func-
tion Ajj((t)) obtained from the relation

Ajj(o)) = Im Sij(i<ok—yh(0+i rf),

(25) where

=4 I"'«
•̂  J - 0

(32)

(33)

and wk=2iml/?. Now the standard fluctuation-dissipation
theorem allows us to write

__Lf dto Ajj((o)

i o)(u>~z)
(34)

For evaluating SJJ(T) we split the Hamiltonian H of Eq. (9)
as H = H0 + V, where

and

#0=2

V= X JtJe

«/«,- •2
9

nCtia* (35)

(36)

We now employ the formalism of finite-temperature pertur-
bation theory. In this scheme, within interaction representa-
tion the time development of the electron and phonon opera-
tors is given by

(30)

This identification of the equation of motion with a lin-
earized rate equation, which in turn is identical to a random
resistor network is of great conceptual value. The effective
conductance between nodes can now be obtained from the
rigorous formula for C given in Eq. (25). In its evaluation
one can incorporate, in principle, all the effects of interac-
tion. Having obtained these, one can tackle the next part of
the problem, which is obtaining the conductivity of the sys-
tem from the network equations. Here, disorder plays the
crucial role. For simple resistances many effective methods
have been developed. In a later section we shall discuss the
method we have adapted for our network analysis, but first
we describe the evaluation of the matrix C(z).

III. EVALUATION OF THE CONDUCTANCE MATRIX

Dersch et a/.36 have evaluated the matrix C(z) to order
(72) at zero temperature. To this order multielectron trans-
port and relaxation effects cannot be incorporated. So here-
we introduce a systematic approach based on diagrammatic
perturbation theory. For this purpose we calculate the
thermal-causal Green's function SJJ(T) defined as

The perturbation expansion for the current-current Green's
function 3y(T), in the interaction representation is

X(rr[n1.(r)n ;.(0)V(rn)- • • V{rx)])connec,ed.

(38)

AH averages are now with the density matrix corresponding
to Ho. The expression for the current «,( T) is

' ( ) [ H ]

(39)

The perturbation Hamiltonian V in Eq. (36) includes the hop-
ping term Jjj and the Coulomb-interaction term ATy. So the
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A
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IAAAAJ

CO,
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(a) (b)

FIG. 2. First-order terms in interaction K for 7 , / T ) , (a) Hartree
term, and (b) electron-hole interaction term.

KM\
J

• / •

dr-

- T)gj( ~ T,

(53)

These are represented in Figs. 2(a) and 2(b). Figure 2(a) is
just the Hartree term representing the interaction of the
charge at site / (or j) with the other charges in the system.
Figure 2(b) represents the electron-hole interaction between
sites i and j , respectively. One can easily convince oneself
that at all higher orders in K, only these two kinds of terms
arise due to the diagonal nature of the Coulomb interaction
retained in the Hamiltonian. This means that to include in-
teraction to all orders, we need to sum over the bubble dia-
grams and the electron-hole interaction ladders. The sum-
over bubble diagrams in frequency space can be written as

2 -gS;(«*)-2 -p

2 Jgj^k)\Kjp

where

(54)

(55)

with Ej as defined in Eq. (3). Note that we also replace fp by
fp, where fp is the Fermi function corresponding to the self-
consistent Hattree energy £,-. For the rest of the calculations
we use the gt in place of the bare propagator g,.

The frequency representation of the electron-hole interac-
tion term of Fig. 2(b) is

2J
k ft

(56)

«m+CO|

COm+C0| S\S\S\J\.

« j

CO,

FIG. 3. Ladder summation over electron-hole interaction terms.

The next step of the calculation would be to sum over the
higher-order terms of the series of the same kind implying
repeated electron-hole interactions as shown in Fig. 3. This;
means a summation of the following series:

v 1 .
2 , -gg/(

*o| 2

ji 2

_ fi-fj

io)m-EJi

where

(57)

(58)

which is the energy required to transfer an electron from site
i to / In the expression for A;, if we set the temperature to
zero, the net energy required for an electron transition from a
site j to an empty site i, is same as in Eq. (3), which is the
excitation energy for a single-particle excitation used by
Efros and Shklovskii.17 Thus, our results are a finite tempera-
ture generalization of the earlier result, which formed the
basis for the Coulomb gap for the Hartree energies in the
ground state. The final form for y,7 is, therefore, given by

7,7,7=2 fi-fj
(59)

We now need to evaluate the phonon propagation factor
Fjj(wi). This has been done earlier,38 and we express it in
terms of the phonon propagator Dq(T) defined as

V ] , (60)

where nq is the thermal number of phonons with energy
h vq. The expression for F,j( r) is found to be
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perturbation expansion [in Eq. (38)] will contain higher or-
ders of both. But at first we study the perturbation expansion
up to order J1 in the hopping term and to all orders in the
Coulomb interaction K. This means that we wish to restrict
our study at this stage to processes that involve the transfer
of a single electron between sites, and the effect of Coulomb
interactions on the physics of single-electron transfer. Terms
of higher order in J involve transfer of more than one elec-
tron, and we shall look into such terms in the next section,
when we study the physics of charge-relaxation processes.

The perturbation expansion to order J2 can be written as

0 0

i J j i

(a) (b)

FIG. 1. Zero order diagrams for yl;( T) .

i^n). (47)

X ( TT\ exp- 5 I dr'Zi Knmnm{r')nn(r') At this stage we define the thermal-electron propagator g,(r)
\ I n'm

X[c)(0)c,(0)-cJ(0)c,(0)] ),

where

The structure of Eq. (40) allows us to write

(40)

(41)

7ik(T),

where

where FJJ(T) is the phonon factor given by

and GJJ(T) is

(43)

(44)

, . - /drm--- dr.

X(TlK(rn)--K(rl)]

X[ct(T)c,.(T)ct(0)c,- (45)

This factorization is possible because the phononic contribu-
tion F^ is not affected by the Coulomb-interaction term. The
form Eq. (42) completes the analogy with the generalized
resistor network. This form implies current conservation,
which is merely a consequence of electron number conser-
vation. In frequency space Eq. (43) is rewritten as

(46)

The first term in the series for Gl} [Eq. 43)] is then

= <rT[c,(r)c)(0)]). (48)

The Fourier transform of g,(r) is

-£ (49)

where <ak=(2k+\)TTl/} are the fermionic Matsubara fre-
quencies. We shall represent g,(r) and gj(<i>k) by vertical
lines labelled by either r variables or frequencies. On apply-
ing Wicks theorem to Eq. (47) the zeroth-order term is

( T)gj( - r ) ] . (50)

A diagrammatic representation of y^ '( r) is shown in Figs. 1
(a) and l(b). The Wj/s are represented by the curly lines.
Each of these diagrams represent the phonon-assisted hop-
ping of a single electron from a site i to a site j . The fre-
quency transform G^\T) is

««-y]. (51)

which, on summing over frequencies wk yields

, (52)

where ey,= Cj— ii, which in the absence of interactions rep-
resents the energy required to transfer the f lectron from site
i to the site j , and /? , is the Fermi function corresponding to
the energy et. The next term of the series for G,7, which is
first order in K, can be written as
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r,7(a))=r,.,.(o) 1 +
h<o

(74)

The result for y,; in the interacting case is expressed in
Eq. (59). The effect of Coulomb interactions is to replace the
site energies e by the Hartree energies E and the excitation
energy between sites i and j is Ayi- in place of e,,, defined in
Eq. (58). Following the same procedure as for the noninter-
acting case we find that the spectral function for the interact-
ing case within this approximation is

+ nB(A,,)}n(A,,-o>)

X { S( a, - A,-,- - vq) - < $ ( « - A,-, + vq)

(75)

This leads to the following hop rates:

X
nB(vq)

• (76)

We shall now extend the calculation of the intersite hopping
rates to incorporate charge-relaxation effects. For this one
has to go beyond the approximation of this section. Here we
have assumed that when one electron makes a jump, the
remaining electrons remain fixed in their positions. Any re-
alistic picture of the conduction mechanism cannot choose to
ignore the effect of a hopping electron on its immediate
neighborhood.

IV. RELAXATION EFFECTS

The charge-relaxation effects are contained in the self-
energy of the electron propagators or equivalently in the
frequency-dependant dielectric constant of the system. For
reasons that become evident in the following discussion, we
shall focus on a certain class of processes in the self-energy.
Note that for site-diagonal interactions and localized elec-
trons, the only self-energy contribution is the Hartree term
represented by the bubble diagram of Fig 2(a). Further cor-
rections arise only when we include terms of higher orders in
J, as these terms represent processes that allow for the move-
ment of the charge in response to the potential of the electron
under consideration. The two representative diagrams are
shown in Figs. 4(a) and 4(b). We shall be interested in those
self-energy corrections that involve the polarizability of the
medium. Such diagrams can be schematically represented by
Fig. 4(c), where the loop shown represents the susceptibility
X- The contribution of these diagrams can be written as

KuXjk(o>m)Kki. (77)

J

www

N k

WWWVAA j

(a) (b)

(0
FIG. 4. Typical higher-order terms in the self-energy.

To get a further physical feeling for this set of processes,
consider the situation in which one electron is added to the
system at a site i at time t=0. This means a perturbation
Vj(t) = KjjO(t). In response to this perturbation the occupa-
tion numbers at the site k changes according to Eq. (11) as

(78)
j Jo

This means that the Hartree energy at the site i changes ac-
cording to the equation

iX KJ'Xjk{t-t')Kkidt'. (79)
kj Jo

Taking the Laplace transform yields

1
(80)

The second term in the right-hand side is just the counterpart
of Eq. (77), when the electron at the site j is taken to be
static. This, in principle, allows for a self-consistent calcula-
tion of the conductivity and the polarizability. However, the
solution of such self-consistent equations for random sys-
tems is one of formidable difficulty. Here we adopt a simpler
physical approach which this formal reasoning suggests. To
make the ideas explicit, we first describe them in time do-
main, but actual calculations are done in the frequency do-
main and require a little different modeling.

We assume that the Hartree energies of the sites involved
in the electron hop relax by a simple exponential law. Fur-
ther, the relaxation is of the order of the Coulomb-gap en-
ergy A c , which is given by EC(EC/W)m, where Ec is the
average Coulomb energy between neighboring sites, i.e.,
Ec<xe2/kd where d is the mean distance between the sites
and W is the width of the band of the localized states. Thus,
if the electron jumps from an occupied site i to an unoccu-
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(in)

where

(61)

(62)

For explicit calculations we shall expand the exponential and
retain terms up to the first order in Dq, i.e,

(m )

(63)

Inasmuch as we are looking at the polarization effects in the
system, which is brought about by phonon-assisted charge
transport, we shall not detract from the physics of the prob-
lem by assuming that at most a single phonon is being ex-
changed in these transitions at low enough temperatures.

The exact form of the propagator is decided by the choice
of Ai(q)- In these systems it is customary to use the defor-
mation potential approximation,40 where the electron phonon
coupling is written as

(64)

Here D is deformation potential constant and p 0 , V, and s
are, respectively, the density, volume, and the velocity of
sound. Using the linear dispersion relation for the phonons,
i.e., vq=sq, the prefactor in the expressions for the phonon
propagator can be obtained to be

= exp -

X q sin

Further, if J'{j is taken to be of the form

(65)

(66)

the entire prefactor can be expressed as an exponential e D'J
and the single-phonon contribution to F,;- takes the form,

(67)

X n^d -/?)-(1

T t *-+ /

(68)

The spectral function >4,;(a>) can be evaluated as

(69)

From Ajj((o) we derive the frequency-dependant transition
rate F i ;(z) as follows:

1 f du> Ajj(a))
r';(z)=2^U T^^Tzz)

X

(70)

T h e s e equations in the low-temperature limit lead to the stan-
dard expressions often used in literature for F,7(0)

l i r 3

y |}],

where

(72)

Here we have also assumed Btj(q) to be q independent. We
refer to these rates as AHL rates, as they were first used by
Ambegaokar, Halperin, and Langer.3 At finite frequencies
the expression for the transition rates are

The hopping rates between two sites, which are correct to
order J2 but include Coulomb interactions to all orders can
now be explicitly calculated. First we record the expressions
for yjji.it>i) for the noninteracting case. These expressions
include only one phonon part of F y . Then we find,

(73)

which at low temperatures is just



4760 SUBHALAKSHMI LAMBA AND DEEPAK KUMAR PRB 59

pied site j , in the vicinity of the Fermi level the Hartree
energies at these two sites are assumed to relax in the fol-
lowing way:

1

(89)

where R is just the average-hopping distance. Then, using
Eq. (88), one sees the plausible connection between y and
<rdc to be

= £,--Ac(l-*-")• (81)

These equations admittedly simplify grossly the complicated
relaxation process, which also differs from site to site. How-
ever, the advantage is that the self-consistency problem be-
comes tractable if we assume y to be related to a parameter
of the density-density response function as Eq. (80) suggests.
To make the connection plausible we calculate the self-
energy correction given in Eq. (80) under the following sim-
plified conditions. We assume (a) the system to be uniform
and (b) the conductance matrix to be Markovian. Then Eq.
(27) allows us to write

ISC(q)
(82)

where x(<7,0) and C(q) are the spatial Fourier transforms of
Xij and Cjj, respectively. Further substituting Eq. (82) in Eq.
(80) one obtains

_ -1 y

Defining

f3C(q)/X(q,0) =

one obtains

/3C(q)/X(q,0)

_

(83)

(84)

• (85)

(86)

Now the conductivity of the uniform system in Markovian
approximation is simply related to Dq by the relation

For the time dependence, Eq. (85) yields

^ • 2

* '

which for the dc conductivity yields the well-known Einstein
relation

<rdc= lim li (88)

For disordered systems Eqs. (82) and (86) are much more
complicated. Our assumptions in Eq. (81) imply that the re-
laxation is dominated by just one rate. Comparing Eq. (86)
with Eq. (81) we infer that

R2 e2
X(0,0)

(90)

This leads to a reasonable physical picture that the local
charge-relaxation rate is related to the dc conductivity itself.

With this background we return to the procedure of incor-
porating these relaxation and dielectric effects in the formal
calculation. In principle, these self-energy calculations must
now be included in the calculation of y, /w,) , which deter-
mine the internode hopping rates. Our earlier calculation
without relaxation effects leads to Eqs. (75) and (76) for the
spectral functions Ai;(ct),) and the hop rates Fy(z), respec-?
tively. Due to the sharpness of the Hartree levels, we find
that the spectral function consists of delta functions at the
precise excitation energies associated with the hop. The re-
laxation effects due to the motion of other electrons cause
the Hartree levels to broaden, i.e., fluctuate in time as well as
shift on average by amounts of order A c , the Coulomb gap.
We model this directly in the spectral function by replacing
the S functions by the following expressions, which incorpo-
rates both the above effects

1

1
+ — •

(91)

where the parameters a,r)\,Tj2, and /a re all dependent on
the relaxation parameter y alone. They are chosen as fol-
lows: a(y) = e~?, rjx = y, and 772

(x: 1/y2. Finally, the func-
tion f(w/y) is taken to be

1
(92)

This model basically reflects the time-dependant effects de-
scribed qualitatively earlier. We replace the single peak at
the excitation A, ;± vq by two Lorentzians having weights
a(y) and [1 -a(y)]. The first peak is at the original excita-
tion energy, which is there in the absence of relaxation ef-
fects, and its weight is also unity if y=0 . The width of the
peak is also taken to be y, so as y—>0 we get the original S
function. The second term of Eq. (91) represents the shift in
excitation energy due to relaxation effects. This shift, which
is approximately given by Ac/(a>/y), depends on the exter-
nal frequency and the relaxation rate y through their ratio.
The slow processes (<o—+0) allow the neighboring charge to
relax and so the relaxation shift is large and tends to A c ,
while the fast processes are not expected to be affected by
relaxation, so the shift goes like Ac/w2 . As for the broaden-
ing of this level, we expect this level to get sharper if the
background relaxes fast, so we have taken the width of the
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level to go like y 2. Finally, the weight of the peak in-
creases with the relaxation rate, becoming unity as y—»<».
There is obviously some arbitrariness in our choice, and any
other function with this qualitative behavior should serve the
purpose. We believe our main results are not much sensitive
to the precise choice of the functions.

In Fig. 5 we plot this function as the function of phonon
frequency v for the following parameters: A,y=0.04 units,
A c =0.02 , and for four different values of the relaxation pa-
rameter y. In Fig. 5(a) the peak occurs at i>=A,y, while in
Fig. 5(b), which has a larger value of y, along with a peak at
v= A,7- there is also a small peak at v=0.054. In Fig. 5(c) for
a still larger y the second peak has shifted to v=0.059 with
a slightly larger weight than in Fig. 5(b). In Fig. 5(d), which
is for a much larger value of y, the peak at v=A,y has
shifted to v= A, J +A c =0.06 . So with an increasing relax-
ation parameter the gap seen by the electron gradually be-
comes smaller. With this form for the spectral function the
transition rates for the numerical calculation are calculated
by the method detailed in the next section.

V. CALCULATION OF dc CONDUCTIVITY

For the calculation of the conductivity we use the method
of Movaghar and Schirmacher (MS). In their approach the
rate equation is solved using a self-consistent effective me-
dium approximation.1213 Using the tight-binding analogy

1-5x10

0 0.02 0.04 0.06 0.0* 0.10

(a)

J.OOxlo'

0.75x10*

0.50x10'

0.15x10'

0

0 0.02 0.04 0.0* 0.08 0.10

(b)

. A . . .
0 0.02 0.04 0.0« 0.0S 0.10

( C )

0.02 0.04 0.0< 0.08 0.10

(d)

FIG. 5. The spectral function as modeled in Eq. (91).

they handle the path summation problem by a renormalized
perturbation expansion. Exact solutions are possible only for
Bethe lattices. For finding the conductivity they make ap-
proximations in the nature of extending results of the Bethe
lattices to real systems. This method gives a good account of
dc conductivity in the VRH regime.14 The conductivity is
evaluated from the following set of equations:

gc(R)g(E)g(E')R2

1 - 1
(93)

where n is the number of electrons per site, Nd is the number of sites, g(E) is the density of states of electrons per site, gc(R)
is the radial distribution function for the position of the sites, F's are the hopping rates between two sites, and F(E) is given
by f(E)[\ —/(£)] and comes from the static susceptibility factor that occurs in Eq. (28). Finally, a{{E,oi) is an auxiliary
energy and frequency-dependent parameter to be determined from the following self-consistent equation.

\ I g(E")gc(R)

[Y{E' ,
(94)

where ap is a factor that takes into account the overcounting
of paths with respect to the Bethe lattice and has been esti-
mated to be e~l. MS calculate the dc conductivity using the
AHL transition rates [Eq. (71), with T^e'2"*1)], a constant
p(£) and taking gc(R) to be unity in Eqs. (93) and (94),
which is appropriate for the noninteracting situation. The cal-
culated conductivity shows Mott's TV4 behavior at low
temperatures.14 The estimated values of TM found by them
matches very well with the value suggested by Mott.1

The above procedure has been developed for systems in
which the internode conductances are independent random
variables, having the same probability distribution. This is
not the cage for our calculation, as the Hartree energies are
obviously correlated and the conductance formula also in-
volves the static susceptibility matrix. To tackle such corre-
lated disorder one has to go beyond single-bond effective-

medium approximation. We are not aware of any
qualitatively new effects that arise in such calculations. So,
as a first step, we neglect the correlations between the inter-
node conductances calculated by us. Then these equations
can be used by inserting the hop-rates F we have obtained
and making one further approximation of taking for static
susceptibility matrix, the noninteracting value given in Eq.
(20). At this point we have also not invested effort in obtain-
ing the static susceptibility for the interacting case. For dc
conductivity we believe that this may not affect things quali-
tatively.

Before we describe the full calculation done by us, we
present some exploratory calculations with these Eqs. (93)
and (94). These studies also yield somp insights into the
connection between temperature-behaviors of conductivity
and effective density of states for the excitation energies.
First we study the conductivity with the AHL transition
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FIG. 6. lntr(O) plotted with (1/F)"2 for a temperature range of
0.00075-0.0042 eV, using the AHL transition rates and a DOS
with a Coulomb gap.

rates, but with an energy-dependent DOS, which has now a
Coulomb gap of the following form

(95)
for - A c / 2 < E < A c / 2

l/W forAc/2=s|£|s£W<72.

We work with the following set of parameters for the nu-
merical calculation. The density of charge carriers nNd=6

X1016 cm"3, W=0.1 eV, a " ' = 30 A, and A c=0.02
eV. The constant a3 in Eq. (95) is decided by the condition
that at £ = ± A c / 2 , g(E)=\/W. The range of temperature
for the calculation is 0.000 75 to 0.004 eV, which implies a
temperature range of 8-50 K. In Fig. 6 we plot In o<0) with
T~ "2 for this calculation. We see a very good fit to a straight
line in Fig. 6 at the low-temperature end. This puts the two-
site argument of Efros and Shklovskii on a firmer founda-
tion.

Finite temperature Monte Carlo simulations for the DOS
of the Hartree energies in the lattice model show that the

FIG. 7. In a<0) plotted with T~ "2 for a temperature dependent
DOS (Eq. 95) over a temperature range of 0.00075 to 0.004 eV,
using the AHL hop rates for (a) Tsc=0.01 eV and (b) r? c=0.002
eV.

Coulomb gap fills in with temperature. More quantitatively it?

seems that g(fi)^T2.19 In our next set of calculations we
introduce a temperature dependent DOS given by

aT2 + (b-cT2)E2 for - A c / 2 < £ < A c / 2

l/W for Ac/2«|£|=sW/2,
(96)

where values of a,b,c are decided by a temperature Tgc at
which the gap A c disappears. We perform calculations for dc
conductivity for two values of Tgc keeping other parameters
the same as in the previous calculation. In Fig. 7 we plot
these results for In o(0) against T~ m. As one might expect,
we find that the Tm behavior is seen only over the lower
temperature range, the extent of the range increasing with
T

Next We present results of a calculation with hop rates
given by Eq. (76), which incorporates self-consistent Hartree
correction and electron-hole interaction to all orders. At low
temperatures these transition rates can be simplified to

J

;) for Ej>0,Ej<0 or £,<0,E,>0

^ for Ej,Ej<0 or £,,£,>0 . (97)

For these calculations the energy unit is taken to be e2a xlK
and the length unit is a" 1 . In these units the bandwidth is
chosen as W= 8, and the range of temperatures studied is
-0.06<T<0.66. We use the DOS of Eq. (95), with A c

= 0.1 and a 3 = 0.5. We present results for n = 3/47r. Fig. 8
shows the plot of In o{0) with T~I/2, in this case again the fit
is good at very low temperatures over a temperature range of
0.06 to 0.26 units.

What these calculations show is that it is possible to re-
produce the desired temperature variation of conductivity in
the VRH regime, by incorporating interaction effects through
the density of states in the conductivity formula derived from
essentially independent electron approximation. For ex^
ample, though our results of Fig. 7 do give a crossover from
Tm behavior to Tm behavior, the form for the DOS given in

Eq. (96) does not follow from any theory. The more signifi-
cant point is that the true effect of interactions comes via the
conductance matrix Cjj(z) as in Eq. (27), and incorporation
of these effects through DOS is a nice intuitive procedure
that needs to be justified.

Our final set of calculations are based on zero-frequency
hopping rates of Eq. (76) in which we have further incorpo-
rated the relaxation effects by replacing the S functions as in
Eq. (91). These rates are dependant on a relaxation parameter
y, which we have argued to be proportional to the conduc-
tivity <r(0) through Eq. (90). In principle, a self-consistent
calculation of the conductivity is possible from Eq. (90).
However, for the disordered system the relationship between
o-(O) and y is not quantitative. So we work with the follow-
ing form for y:
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30

FIG. 8. In o{0) plotted with T~ "2, calculated using the transition
rates for interacting electrons and a DOS with a Coulomb gap.

(98)

where the constant y0 is defined through a suitably chosen
value that gives the right order of magnitude for the conduc-
tivity at the lowest temperature at which the calculation is
performed. Further, on the basis of the numerical experience
obtained from results given in Fig. 8, we can simplify the
calculation by dropping the R dependence of the transfer
energy Ay i , which means replacing it by just EJ—EJ — EJ.
Our earlier calculations indicated that the results are not
qualitatively changed by the addition of the e2/KR term,
once the effect of Coulomb interaction is incorporated
through the Coulomb gap in the DOS. The transition rates F
in this case are numerically calculated from the spectral
function using Eq. (91), which is then used to calculate the
conductivity using Eqs. (93) and (94). We start with a value
of y = 10~5 at kBT=7.5X 10" 4 eV. We present results for
the DOS with the Coulomb gap, specified through Eq. (95).
The parameters W, n, and Ac are the same as in the earlier
calculation, and the temperature range covered is 0.00075
<kBT<0.00425, i.e., from 9 to 50 K. The self-consistency
in selecting y at each temperature is achieved by doing each
calculation for a range of y values, and picking the value that
is consistent with the original choice of the prefactor y 0 . In
Fig. 9, we show two typical variations of conductivity with
y. One finds a regime in which conductivity varies linearly
with y followed by saturation. The saturation indicates that
once the value of y is large enough, the conductivity is not
affected by the relaxation. The results of the calculation are
plotted in two ways in Fig. 10. We plot lncr(0) with T~m

and In CT(0) with T~1/4. From these two curves it is clear that
over a range of 0.0012<T< 0.00225 eV the conductivity
shows the Tm behavior and over 0 .003 \<T< 0.00415 eV
the conductivity exhibits the Tm behavior.

Further convincing evidence of crossover in the numerical
calculations can be provided by obtaining the exponent as a
function of temperature using the formula

0 0.02 0.04 0.06 0.08 0.10

(a)
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4.3x10
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FIG. 9. Variation of conductivity with y at two different tem-
peratures.

A plot of v with temperature is shown in Fig. 11. It is
seen that the v— T curve has constant values of 0.5 in the
temperature range of 0.000 84<7/< 0.0019 and of 0.25 in
the temperature range 0.003 K f < 0.0046. So the effect of
relaxation is to induce a crossover in the conductivity behav-
ior from T112 at lower temperatures to TlH at high tempera-
tures.

This suggests the following physical mechanism for the
two behaviors of conductivity and the crossover between
them. In the lower-temperature regime when the conductiv-
ity is low, the electron hops in the background of frozen
charge as the surrounding charge cannot relax sufficiently.
Under these conditions the electron senses the Coulomb gap
and exhibits the Tl/2-type behavior. On the other hand, in the

15.0 17.6 20.0 22.5 35.0 27.5
-12.0

v— —
d2\nald{\r\T)2

d\ncr/d(\nT) " (99) FIG. 10. (a) lno{0) plotted with 7""2 and (b) ln<K0) plotted
with T~ "4 for conductivity with relaxation.
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T

FIG. 11. Variation of the conductivity exponent with tempera-
ture.

higher-temperature range of VRH, due to higher conductiv-
ity the charge around the hopping sites can relax, which in
our modeling leads to a larger density of states for small
excitation energies. Thus, the Coulomb gap, which is a mul-
tielectron effect gets obviated and one finds Mott-type Tu4

behavior. This is much along the lines Mott envisaged for the
behavior of the "charge polaron."20

We now compare our results to a detailed study of the
crossover behavior in hopping conduction by Zhang et al?2

This data was analyzed by Aharoni et al.,34 who observed
that data on different samples can be put in the following
scaling form:

lnp(O)/po=A/(77rx) ,

/(*)= (100)

where p(0) = cr(0) ', and the scale factors TX and A depend
on the individual samples but the function f(x) is universal.
In Fig. 12 we have fitted the conductivity choosing a cross-
over temperature of Tx=0.00191 eV, which is in very good
agreement with the crossover temperature of Massey and
Lee,41 which is rx=A*3 / rJ[f . Though we have not tested
the universal scaling in full detail, it is quite satisfying to find
this agreement.

VI. SUMMARY

In this paper we have presented a detailed calculation of
the dc conductivity of localized electrons in the variable-
range hopping regime. This transport problem has two as-
pects, disorder and the long-range Coulomb interactions.
Since it is a long calculation, we feel it would be useful to
summarize the main sequence of steps and results. The start-
ing point of the calculation is the expression of conduction
and dielectric properties of the localized electrons in terms of
a density-density response function of the system. Through
the use of Mori-Zwanzig projector formalism, the equation
of motion of the density-density response function is cast as
a generalized master equation. This can be thought of as a
generalized frequency-dependent random-resistor network in

FIG. 12. The circles are the plot of lnp(0) with TITx, the full
line shows the fit to the crossover function f(T/Tx).

which the memory-function matrix plays the role of inter?,
node conductances. This identification allows us to tackle the
problem in two parts. One, the evaluation of internode con-
ductances, which can now be obtained from a rigorous for-
mula, which basically involves computation of correlators of
the time derivatives of densities at the two nodes. This cor-
relator is evaluated using the full Hamiltonian of the prob-
lem, which includes electron-phonon interaction as well as
the Coulomb interaction.

We have done a detailed analysis of this correlator using
diagrammatic perturbation theory. This enables us to identify
the physically more important processes through which in-
teractions affect the conduction process. The earlier zero-
temperature results are generalized to finite temperatures,
and more importantly, built into the calculation in a system-
atic manner. We have paid particular attention to the relax-
ation effects that accompany electron hops. While the impor-
tance of these effects is well recognized, as far as we know,
the earlier calculations that were largely based on the Mar-
kovian rate equation have not included these effects. Our
modeling is basically related to a dynamical view of the
Coulomb gap, which implies that due to relaxation, the en-
ergy of a site is lowered on occupation, by an amount of the
order of A c , while the energy of an emptied site rises by a
similar amount. Further, we argue that the rate of the local
relaxation is proportional to the conductivity of the sample.
We show how such effects can be formally built into the
conductivity calculation, and find that a good account of the
crossover can be given by these ideas.

These calculations can be extended to obtain ac conduc-
tivity. Such calculations would provide further and possibly
more stringent tests of these ideas. We have initiated work
on these calculations. It is also of interest to examine the
frequency-dependent behavior of dielectric function. These
calculations are being reported in a separate paper.
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Abstract
We have studied one aspect of the effect of Coulomb interactions on the hopping
conductivity of a band of localized electrons in a disordered system, that is
correlations in successive hops due to the Coulomb gap. At low temperatures,
the correlation holes around sites involved in the hop do not relax, and there
is an enhanced probability for backward hops. We calculate both dc and
ac conductivities by considering correlated random walks in the disordered
medium.

1. Introduction

In this paper we shall be concerned with the role of Coulomb interactions on the hopping
conduction of localized electrons at low temperatures. In a classic paper, Mott [1] showed
that as the temperature is lowered, the conductivity changes from its usual activated form
tfdc oc exp(— E-i/knT) toaformcrdc oc expf—(Tu/T)^4]. This has been termed 'variable range
hopping' (VRH), as the carrier tends to optimize between the distance of the hop and the energy
barrier of the hop. Mott's formula has been used quite successfully to analyse a large number
of experiments of hopping transport in impurity bands and amorphous semiconductors [2].
However, it was realized early by Efros and Shklovskii [3] that this picture ignores Coulomb See endnote 1
interactions between the carriers. Coulomb interactions change the temperature dependence
derived by Mott in a qualitative manner, i.e. to [3] cr<ic a expf—(TES/T)]/2]. This is
understood in terms of the Coulomb gap, whose existence had been shown earlier by Pollak [4]
and Srinivasan [5]. They argued that in a system of localized electrons, the ground state
Configuration of electron occupation is such that there would be a soft gap in its excitation
energy. This has been termed the 'Coulomb gap', and means that the single-particle density
of states (DOS) of excitation energy has the form p(e) oc (e — CF)2 around the Fermi energy
(F- There have been numerous studies [6], in which the 7 1 / 2 behaviour has been observed.
Also in several studies [7, 8] one sees a crossover from T^4 behaviour (Mott's regime) to 7 I / 2

behaviour (Coulomb gap regime) as temperature is lowered.
Mott's VRH arguments have been formalized using the rate equation approach of Miller

and Abrahams [9]. The linearized rate equation can be solved using standard Green function

0953-8984/03/000001+ 10$30.00 © 2003 IOP Publishing Ltd Printed in the UK . 1
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techniques as applied to disordered systems. Physically, this amounts to calculating the
conductivity ofa random resistor network which is also equivalent to the calculation of diffusion
of a single particle executing a random walk in a disordered medium. The main problem with
such approaches lies in incorporating the effects of Coulomb interactions, as these are basically
single-particle approximations of transport. The analysis of Efros and Shklovskii [3] takes into
account the Coulomb interactions by incorporating their effect only through the Coulomb gap
in the DOS, which again allows the use of the single-particle picture.

There have been several efforts [ 10-13] to incorporate the effect of Coulomb interactions
on hopping conduction. Building on the work of Dersch et al [ 13], Lamba and Kumar [ 14] have
given a detailed many-body treatment to describe the crossover from Mott's to the Coulomb
gap regime. This crossover has also been well described by some empirical approaches [7,15].
In order to consider other aspects of correlations, it is important to keep in mind the physical
nature of the Coulomb gap. The Coulomb gap is basically the difference between the energy of
an occupied site and a unoccupied site around the Fermi level. This happens due to correlations
in the occupation of sites of the following kind. In the neighbourhood of an occupied site, the
occupation of other electrons is less than average, which in turn reduces the Hartree energy
associated with the occupied sites near the Fermi level. Similarly the neighbourhoods of
unoccupied sites have larger than average occupation of electrons (negative holes), thereby
raising their Hartree energy.

Thus when an electron jumps from an occupied site to an unoccupied site, it has to
overcome an energy barrier of the order of the Coulomb gap. However, this assumes that the
electron hops with the other electrons frozen at their sites. If one allows for the relaxation of
correlation clouds around the two sites between which the electron hops, then the energy barrier
also relaxes. The electron hopping which occurs concomitant with the charge relaxation was
termed 'polaron' hopping by Mott[ 16]. He further argued that under these conditions the T l / 4

law should apply. Using an explicit model, Lamba and Kumar [14] argued that the relaxation
of charge clouds responsible for the Coulomb gap is related to the conductivity itself. So at
low temperatures when the relaxation is low due to small conductivity, the charge hopping is
occurring in the frozen background of charge, and the Coulomb gap effects the conduction
process. With increasing temperature, the Coulomb gap relaxes [14], leading to a crossover
from the Tl/2 to the r 1 ' 4 law.

The purpose of the present paper is to deal with one other aspect of correlated motion
of carriers in the calculation of the dc and ac conductivities in the Coulomb gap regime. In
particular, we wish to take into account backward correlations in hopping, which have been
observed in numerical simulations of conductivities. In particular, in the simulations of Maas<s. See endnote 2
et al [17], it is seen that when disorder and Coulomb interactions are of comparable strength,
the successive carrier hops are strongly correlated. A carrier is likely to jump back to the
site from which it came with greater probability than in uncorrelated diffusion. This can be
physically understood in the terms discussed above. At low temperatures in the T[^ regime,
the relaxation of holes as the carrier jumps is slow, so there should be a tendency for the electron
to go back to the hole it left behind in the previous jump, as the other unoccupied sites have
energies higher by the order of the Coulomb gap.

In this paper, we consider the effect of this correlation using a random walk model and
relate the enhanced backward hopping rate to the Coulomb gap by a simple consideration.
Correlated random walks [18, 19] are a class of random walks in which, unlike Markovian
Walks, the memory is not lost after each step. Correlated random walks have various physical
applications. The two most important are conformation of polymers and tracer diffusion in
metals. Most of the theoretical work has concentrated on correlated random walks on ordered
lattices. Hilfer and Orbach [20] and Hilfer [21 ] have introduced disorder into this formalism by
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considering walks on a bond percolation model. We extend their treatment to a more general
class of disordered systems. Our treatment is restricted to the memory of one last step only.

2. Correlated random walk

Consider the hopping of a single particle in a disordered medium. For a Markovian random
walk, we start with writing a master equation for P(i, (), which is the conditional probability
to find a particle at site i at time Hf it started from the origin at time t = 0. The effect of
correlation is to retain the memory of the last step. So one defines the probability P{i, j , t) to
find a walker at site i at lime t given that it arrived at i via a direct transition from site j . The
probability density P(i, t) is obtained by summation over all possible histories in P(i, j , I) as

where the sum is over all sites of the system excluding i. The initial condition that the walker
is at the origin (o) at time t = 0 is P(i, 0) = <5,-,o. A transition rate Wh is assigned to a jump See endnote 3
from site j to site i if the previous jump was from site i to site j . A transition rate Wy is
assigned to a jump from site j to i if the particle had jumped to j from any site except i. The
conditional probability P(i, j , t) obeys the following master equation [19, 20]

Hi, j , t) = Y, Wu P(j, k, t) + W*P(j, i, t) - \j2 wu + W*] P& J^ 0, (2)

where P implies a time derivative of P. If we define SWfj = Wf. — Wy, equation (2) can be
rewritten as

Hi, j . t) = WUPU, t) + SWijP(j, i, t) - T ^ Wkl + 8Wj]p(i, j , t). (3)

Summing over j in equation (3) we get an equation for P(i, t)

where we have defined

A(iJ,t)= P(j,i,t)-P(i,j,t). (5)

Using equation (3) we can write an equation for P(j, i, t) and thereby obtain an equation for
A(i, j , t). One can get a closed set of equations, by replacing £ t W*,- by Wt which is its
average over sites, Wt = {^2k Wu). This yields the equation

A(i, j , t) = Wij[P(i, t) - P(j, t)] - [Wt + 2SWu}A{jt i, t). (6)

The approximation made here seems physically reasonable for the two-site probabilities
and avoids introduction of higher-order multi-site probabilities. Using initial conditions
P(i, 0) = 5;,o and A(j, i, 0) = 0 and taking Laplace transform of equations (4) and (6),

' we obtain

•PP.o - PH.o) =

where P(i, s) denotes the Laplace transform of P(i, t). We now make a further assumption by
taking SWij to be site-independent, as we later relate it to the Coulomb gap. Replacing

m•) - PH.,)][*„ - s™;'^w.]
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by its average value SW\,, we get an equation equivalent to the Markovian rate equation, but
with a scaled frequency 5 = sh(s) where

\. (8)

Equation (7) is solved in terms of the Green function Gjj(s)

P(i, s) = h{s) J2 Gij(s)P(j, 0), (9)
j

where in the matrix notation G obeys the equation

G(s-W) = I, (10)

with

Wij = Wij-SijJ^Wki. (11)

3. Model

We consider a system of randomly placed sites with a density n. Each site has an energy 0,-,
where 0; are randomly drawn from a rectangular distribution taken to be

(12)

(13)

Pit)

Pit)
The DOS for the site

git)'-

1
= 2W
= 0

energies

= go = ~

has

n

101

101
the

<; w,

> w.
form

101 ^ W. (14)

In the presence of Coulomb interactions, the single site energies are modified by Hartree terms
and take the form

j

where Kjj = e2/KRJJ denotes the Coulomb interaction between electrons at the sites i and j ,
tij are the site occupation numbers and K is the dielectric constant of the medium. As shown
by Efros and Shklovskii [3], the stability of the ground state requires that the DOS g(e) for
the Hartree energies has a gap around the Fermi level ep. and is given by

g ( O = C ( g ~ g p ) V k - * F K A , (16)

g(*) = go A < k - e F | < W , (17)

where C is a dimensionless constant of order unity and A is the width of the Coulomb gap,
which is obtained by continuity to be See endnote 4

& = - — • (18)

Next we model SW\,. It is the difference between the probability of a jump between sites
around the Fermi level and the probability of the backward hop. For temperatures k^T <SC A,
we assume that most of the unoccupied sites available to the electron have energies higher by
order A and the backward hop is a downward jump in energy of this order, so we take

(19)Y
knTJ
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. For temperatures, k^T <£. A, S W\, « Wt, which makes backward hops as probable as the jump
probability to all other sites. As the temperature increases, this quantity decreases as expected.
In this paper we have focused on the low-temperature regime.

The general transition rates in the Coulomb glass problem are the asymmetric rates given
by, Tjj = i>oexp[— (-^- + ^7- )] where eit (j are Hartree energies of the sites i and j
defined in equation (15), €jj = e,- — e7- — Kij and u0 is taken to be the phonon Debye frequency.
At low frequencies where a(co) = cr(0) (see the results section), the VRH and percolation
pictures tell us that the critical hop is a long hop. As the frequency increases and dispersion
in conductivity sets in, the hop distance decreases and is approximately proportional to ln(<y).
So at high frequencies the K^ factor becomes important. We have neglected the Kij factor
in our calculation, so our results are not valid at high frequencies. In earlier calculations on
dc conductivity, we have numerically checked [14] that the conductivity results do not change
qualitatively if we replace the asymmetric transition rates by the symmetric transition rates,
W(R, €) = v o exp[ - (£ + j^f)]. From this, for kBT <£ A, we obtain

r'nic'i/e(>. (20)

We work in the frequency units of v<).

4. Calculation of conductivity

For the calculation of conductivity in a disordered system, several effective medium
approximations have been proposed [22]. All of them require a self-consistent calculation.
In the present calculation, we adopt the procedure of Movaghar and Schirmacher [23]. In this
approach one makes an effective medium approximation using the renormalized perturbation
expansion. This procedure has given fairly good results for conductivity in disordered
systems [24, 25], however, it is difficult to implement this method in the presence of energy
disorder and asymmetric transition rates. So in this paper we use the symmetric transition rates
mentioned above. The expression for frequency-dependent conductivity can be written as

where the angular bracket denotes the configurational average, io> = s is the scaled frequency
defined by equation (8), and F(e,) = /(e,-)(l - /(e;)), where /(e/) is the Fermi function.
Since our transition rates are symmetric, we take /*", = F = q(i — q) for all i, where q is
the number of electrons per site. Using a two-site approximation, an effective transition rate

has been derived in [23], which obeys the equation

L — l . (22)
EJThe self-consistent equation for the average value o\ (co) of E ; gij c a n be recast into the form

Oy((b) = (O\{ci)) +\(b) I - TTT" 7 , (23)

ind the conductivity is given as

Fe2
 2 ,

with

<7,(o>)+i
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Using transition rates defined in section 3 and the condition A ^> k^T, equation (23) can be
written in terms of dimensionless variables as

f f €2r2drd€
ox(co) = (ox(co) + \co)p / / , ,-,. • - . , . , „—TT7T ( 2 6 )

J J (cri (co) + ico)W(r, e ) - 1 + 1
Where p = 47tna3(kBT)3K3/e6 = Wt/4. Equations (24) and (26) differ from the earlier
work in two respects. First, the frequency co is replaced by the scaled frequency co, given by
equation (8). Secondly, there is a prefactor of h(co) in the expression of conductivity.

5. Results

We first look at the calculation of conductivity for the uncorrelated system. The previous
analysis [24, 25] was done by neglecting the frequency dependence of mean square
displacement, which is rather weak. Thus the frequency dependence of conductivity is largely
determined by &\ (CO). Analysis of equation (28) shows that the significant dispersion in o\ (co)
sets in only when frequency becomes greater than a\ (0). The equation for o\ (0) is equivalent
to the percolation criterion employed by Ambegaokar et al [26]. Solving equation (28) for
co = 0 one gets

[ / 1 8 0 \ ' / 6 l F / T \ ^ 1

-(—J J = e x p r (T) } (27)

In the infinite frequency limit, o\(co) is proportional to the total transition rate Wt. In the
intermediate frequency range the conductivity obeys a power law in frequency, a\ (co) oc to5.
The slope is crudely given by s = (u + In Wt)/u. The slope increases as the temperature p
decreases.

For the correlated walk, the conductivity becomes a function of a scaled frequency u>
instead of co. The behaviour of o\ as a function of co and co is shown in figures 1 and 2 for
two different temperatures. The curve for u\ {co) shifts to the left with respect to o\ (co) on
the frequency scale. The shift depends upon the frequency-dependent correlation factor h(co).
As seen from figures 1 and 2, the shift is apparent for the frequency range o\ (0) < co < Wt.
At high frequencies, co ;» Wu h(co) ^ l s o the correlation effect is negligible. Since there
is no dispersion in the low-frequency range co < a\(0), the curves again coincide. The
crossover frequency Wt is temperature-dependent and does not scale with ffi(0). Comparison
of figures 1 and 2 shows that the crossover from correlated to uncorrelated hopping occurs at
different frequencies for different temperatures.

The calculation of conductivity with correlated hopping requires computation of the factor
{R2(cb)). This leads to the reduction of the conductivity by a factor of \/h(co). The results for
conductivity for two values of p are shown in figures 3 and 4. At temperatures reported here,
/i(0) is weakly dependent on temperature, so the change in dc conductivity is also weakly
dependent on p, as seen in these figures. At higher frequencies co > Wt, h(co) « 1, so
no correlation effects are present and the curves coincide. Enhanced backward correlations
increase the slope of conductivity by \n[h(0)]/u. This is significant at high temperatures
(small M). The increase in slope due to backward correlations decreases as temperature
decreases (u increases), as seen in figures 3 and 4.

We next discuss the scaling of the ac conductivity, which has been seen in numerous
studies [27,28]. The experimental studies show that over a considerable range of temperatures
scaling of the form

(28)
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to2
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Figure 1. Plots of ln[<ri (a))/(T| (0)] with \n[co/a\ (0)] for (O) correlated and ( • ) uncorrelated
hopping for p = 0.0002.
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Figure 2. Plots of \n[o\(a>)/o\(0)] with ln[a»/cri(0)] for (O) correlated and ( • ) uncorrelated
hopping for p = 0.00002.

holds for a wide range of materials, including ionic conductors. In the present calculation
we have already seen that the frequency dispersion of conductivity sets in only when
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Figure 3. Logarithmic plots of scaled conductivity !n[<r(a>)/<7i(0)] against scaled frequency
ln[<w/<Ti (0)] for (O) correlated and ( • ) uncorrelated hopping for p = 0.0002.
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In
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Figure 4. Logarithmic plots of scaled conductivity \n[cr(a))/<T\{0)] against scaled frequency
ln[co/<r\ (0)] for (O) correlated and ( • ) uncorrelated hopping for p = 0.00002.

(o > (Ti(0) oc 7Vdc- The reason for this is quite apparent in equation (23). However, the
scaling of equation (28) requires that a (w)/odc will not have any temperature dependence apart
from that contained in o\ (0). This, as in earlier studies [27], is true when the temperatures are
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low and a Sommerfeld approximation can be made to evaluate the integrals in equations (23)
and (25). Since u> — 0 for co = 0 the equation for ai(0) is the same for both correlated as
well as Markovian hopping. However, for the correlated hopping the difference comes in the
evaluation of the dc conductivity in which there is an additional factor of h{6). Thus we can
write*"

( * ) ( 2 » M (29,

This shows that the scaling frequency changes due to correlated diffusion by the factor
h(p\ (0)/h(0)), which has been termed as the Haven ratio [28]. This factor has been introduced
in an earlier work on ionic conduction on an empirical basis. Our work provides a quantitative
estimate of the Haven ratio in the Coulomb gap regime.

6. Concluding remarks

In this paper, we have treated the effect of Coulomb interactions on hopping transport from
two aspects. These are:

(a) depletion of single-particle DOS, which has a dominant effect on the temperature
dependence of dc conductivity,

(b) the enhanced backward hopping, which is a consequence of an unrelaxed Coulomb hole
(anti-hole) around an occupied (unoccupied) site.

The latter aspect has a considerable influence on the ac conductivity in the dispersive regime.
We show that the scaling property of conductivity with frequency is still obeyed approximately.
We also provide a quantitative estimate of Haven's ratio in the Coulomb gap regime of
conduction.
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