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If a beast looks like a tiger, 
smells as a tiger,  
roars as a tiger,  
prey on as a tiger 
may be it is really tiger? 
 
It is clear that the increase of disorder sooner or later has to lead at low temperature to the change of 
the conductivity mechanism from the diffusive conductivity to the hopping one. The question is: when 
does it happen in 2D?   

It is commonly accepted that the transition to the hopping conductivity occurs when the 
conductivity becomes lower than e2/h and the strong enough temperature dependence arises. One of the 
reason for such conclusion is the well known Landauer formula which shows that the conductivity of 
one open channel is e2/h. For the first sight the 2D network of the open 1D channels will have the 
conductivity e2/h also. This is true without taking into account interference. The interference of the 
waves propagated over the different channels has to lead to decreasing of the conductivity value. 
Therefore it seems that the value of conductivity e2/h is not lower limit for the diffusive conductivity. 
 Usually, the conclusion on the conductivity mechanism comes from an analysis of the 
temperature dependence of the conductivity. When σ<e2/h, the experimental  dependences ρ (T) can be 
well described by the expression 

pTTTnT )/exp(),()( 00ρρ =               with    0.3<p<0.8. 

Such value of power p leads to the conclusion that the variable range hopping regime takes place. 
However some unusual features are observed in 2D, compared with the well-studied 3D hopping 
conductivity: 
 

2D 3D 

 
The power  p remains less than unity  up to high 
temperatures so that the transition to nearest 
neighbor hopping regime or to ε1 regime does not 
observed. 

 
The power  p changes at increasing T from the 
value less than unity for variable range hoping to 
p=1 for nearest neighbor hopping regime or ε1 
regime.  

 
The extrapolation of the resistivity to T→∞  
gives the value of ρ0  close to h/e2 for different 
carriers density and different structures. 

 
In hopping regime ρ(n, ∞) is determined by 
overlapping of the wave functions of the 
localized states and therefore exponentially 
depends on density of localized states. 

 
The Hall coefficient practically does not depend 
on the temperature down to σ = (0.1-0.01) e2/h 
and gives true density of carriers. 

 
In hopping regime, the Hall effect either can not 
be measured or has strong temperature 
dependence and does not give true carrier 
density. 

 
The negative magnetoresistance is observed 
within wide conductivity range down to σ = (0.1-
0.01) e2/h. The shape of the magnetoresistance at 
low conductivity  is very close to that for high 
conductivity values σ=(10-100) e2/h. 

 
The negative magnetoresistance is observed 
within narrow electron density range after merger 
of  the impurity and conduction bands. 



 
We believe there is another way to understand not only strong temperature dependence of the 
conductivity at kF l close to unity but the magnetic field and temperature dependences of the Hall effect 
and magnetoresistance without the contradictions mentioned above.  
This way is consideration of the diffusive conductivity taking into account the quantum correction. 
 
Really, the quantum corrections to the conductivity in the main determine the temperature and 
magnetic field dependences of the both diagonal and off-diagonal conductivity tensor components of 
2D systems at kF l >> 1. These corrections are negative and increase when the temperature decreases. 
 
In principle, at low enough temperature these corrections can be comparable with the Drude 
conductivity and thus lead to strong temperature dependence of the conductivity. 
Indeed, practically all theoretical results for the quantum corrections were obtained for large kF l values 
and small value of the quantum corrections, however these mechanisms remain in force at kF l close to 
unity also. 
 
The conventional theories of quantum corrections give numerous predictions: 
Low magnetic field (weak localization correction)  
1. The specific shape of the negative magnetoresistance at low magnetic field which results from 
suppression of the interference. 
2. The absolute value of the phase breaking time which can be found from the negative 
magnetoresistance. 
3. The conductivity and temperature dependences of the phase breaking time. 
High enough magnetic field (e-e inetraction correcton) 
4. Logarithmic temperature dependence of σxx. 

5. An absence of the temperature dependence of σxy. 
6. An absence of the magnetic field dependence of ∆σxx while gµBB<kT. 
Zero magnetic field 
7. The logarithmic temperature dependence of σ(0).  
8. The slope of this dependence is determined by sum of the interference correction and correction due 
to e-e interaction which can be found separately.  
 
From our point of view, to get the reliable conclusion on the conductivity mechanism it is not enough 
to analyze the dependence σ(T) alone. It is essentially to analyze at least the temperature and magnetic 
field dependencies of the conductivity and Hall effect at low and high magnetic field.  
 
We have made such measurements over wide conductivity range for 2D structures with simplest, well 
known energy spectrum and carried out consequent analysis starting from the well understandable from 
theoretical point of view case kF l >> 1. 
  
Samples 
Three types of single well GaAs/InGaAs/GaAs heterostructures were studied. They were the gated 
structures with doped quantum well, with doped barriers, and undoped structures which conductivity 
was changed by illumination. The measurements of the ohmic conductivity and Hall effect were carried 
out within the temperature range 0.4-10 K and magnetic fields up to 6 T. Nonohmic conductivity was 
analyzed within the temperature range 0.4 – 4 K.  
 
Results  
I.  The electron-electron interaction contribution to the conductivity was obtained from analysis of the 
temperature and magnetic field dependences of the conductivity tensor components σxx, σxy. The 
conventional theory predicts that e-e interaction contributes to  σxx only. When it is the case, one can 
find the e-e correction from the temperature dependence of σxx 
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Such analysis was carried out for different types of the structures over the wide kFl range. Fig.1 shows 
the kFl dependence of the e-e interaction correction for one of the structure investigated.  



 
So, the correction to the conductivity due to e-e interaction decreases with lowering kFl. 
 (These results were published in PRB 67, 205307 (2003)) 
 
II.   The interference correction to the conductivity was determined from the detailed studies of the 
negative magnetoresistance and temperature dependences of the conductivity at zero magnetic field. 
The theory [I. L. Aleiner, et al Waves Random Media 9 201 (1999)] taking into account the second 
order terms in 1/σ  was used for data treatment. These terms do not change the temperature 
dependences of the conductivity at zero magnetic field and shape of the magnetoresistance curve but 
vary the value of magnetoresistance (i.e. lead to decreasing prefactor in σ(B) expression).  

Fig.3  shows that at σ=16.7 e2/h (kF l=18) and σ=0.06 e2/h (kF l is about 1-1.2) the shape of the negative 
magnetoresistance curves is very similar and is well described by the Hikami-Larkin-Nagaoka (HLN) 
expression. The theory [I. L. Aleiner, et al ] describes the value and shape of the negative 
magnetoresistance quantitatively down to σ=0.6 e2/h (kF l is about 2) and qualitatively at lower 
conductivity. 
 
III.   The value and the conductivity dependence of the phase breaking time τϕ found from the negative 
magnetoresistance is well described by theoretical expression down to very low conductivity value as 
seen from Fig.4.  
 

Fig.3 The conductivity dependence of the prefactor α.Fig.2 The shape of the negative magnetoresistance
      at different σ.
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The interference correction to the conductivity is three – five times larger than the correction 
due to the e-e interaction within whole kF l range.  
Fig.5 shows the kF l dependence of  both quantum corrections at T=0.46 K.  
At kF l =2 the value of the interference correction is not small and is about 70% of the Drude 
conductivity. 

IV.   The temperature dependences of the conductivity at B=0 are well described by self-consistent 
theory of the “weak localization” [D. Vollhardt and P.Woelfle, Phys. Rev. B 22, 4666 (1980)] down to 
σ=0.01e2/h. This theory predicts that σ(T) is solution of the equation 
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(in this equation σ is measured in G0). 
When τϕ  is power function of T, the (σ(T)+ln(σ(T))-versus-ln(T) dependence has to be linear. 
Fig.6 demonstrates  dependences σ(T) plotted in coordinates which correspond to: a – diffusive 
conductivity when the value of quantum corrections is small compared with the Drude conductivity; b - 
diffusive conductivity when the value of quantum corrections is comparable in magnitude with the 
Drude conductivity.  
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Fig.4 The conductivity dependence of the phase breaking time.
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Fig.5 The kFl dependence of the conductivity, interferece and interaction corrections.
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Good agreement is evident down to conductivity 0.01e2/h. 
 
Thus all the predictions of the conventional theories for diffusive conductivity with the quantum 
corrections are fulfilled quantitatively down to conductivity about  0.1e2/h and qualitatively 
down to conductivity about 0.01e2/h. 
 
Note, that as shows Fig. 6b,c, the data at σ<e2/ h can be described equally well within the framework 
of self-consistent theory of weak localization and variable range hopping conductivity.  
 
So, the temperature dependence of the conductivity alone does not allow us to specify the 
conductivity mechanism.  
 
An additional information on the conductivity mechanism can be obtained from the study of the 
nonohmic (nonlinear)  conductivity. Really, at the diffusive conductivity the nonlinearity results from 
electrons heating, while for the hopping conductivity additional mechanisms of non-linearity occur, 
namely, increasing of the hopping probability in electric field and impact ionization of localized states.  
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In Fig.7 we have plotted the temperature and power dependences of the conductivity for conductivity 
values higher and lower than e2/h. To compare the nonlinearity over wide conductivity range we have 
introduced it as F(P,TL)≡(∆σP/P)/(∆σT/∆T) at ∆σP=∆σT, where ∆σP is conductivity variation under 
imparted  power P and ∆σT is the conductivity variation with increasing temperature by ∆T. For 
diffusive conductivity there  is a simple relation between F(P,T) and energy relaxation rate P: 
P=F(P,T)-1 (Te-TL). 
 

Theory for energy relaxation rate in the diffusive regime predicts only slight dependence of 
nonlinearity F on the conductivity. The conductivity dependence of nonlinearity plotted in Fig.8 shows 
that it is the case down to conductivity σ(1.5K) � �

0.1-0.01) e2/h and  only at lower conductivity values 
F strongly increases.  
 
Thus, the conductivity dependence of the nonlinearity shows that down to the conductivity  � 0.1-
0.01) e2/h the conductivity mechanism remains unchanged. 
(In more detail the results on the conductivity nonlinearity is presented in Poster.) 
 
Thus, we have traced the value of quantum correction to the conductivity at decreasing kFl. 
We show that at kFl  ≈1-1.5 the value of interference correction at low temperature becomes 
comparable  with the Drude conductivity and, as sequence, the value of low temperature conductivity 
becomes significantly lower than e2/h .  
Down to this kFl value the temperature and magnetic field dependences at low and high  magnetic field, 
the nonohmic conductivity  look like ones for the diffusive conductivity, 
namely: 
the shape of the negative magnetoresistance; 
the value of the negative magnetoresistance; 
the value of the phase breaking time found from the negative magnetoresistance; 
the conductivity dependence of the phase breaking time; 
the temperature dependence of the conductivity at zero magnetic field; 
the value and temperature dependence of the nonlinearity of the conductivity. 
 
We conclude 
 If a beast looks like a tiger, 
 smells as a tiger,  
 roars as a tiger,  
 prey on as a tiger 
most probably it is tiger. 
 
We believe the crossover to the hopping conductivity occurs at kFl < l and at low temperature 
conductivity less than 10-3 e2/h. 
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Fig.8 The conductivity dependemce of nonlinearity at T
L
=1.5 K.
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