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reaction-diffusion systems and chemical patterns

chaotic chemical fronts labyrinthine patterns

Turing patterns spiral waves and chemical turbulence



Transverse Front Instabilities in Chemical Systems

• origin of transverse instabilities

• Kuramoto-Sivashinsky equation

• cubic autocatalysis

• experimental observations



in reaction-diffusion media mechanism of front instabilities relies on
the fact that species may diffuse at different rates

cubic autocatalytic reaction

A + 2B
k→ 3B

where the autocatalyst B consumes the fuel A

two-dimensional system infinitely extended along x and of width L
along y; initially, let the domain x < 0 of the system contain B and
the domain x ≥ 0 contain A, with a sharp planar interface separating
them at x = 0

the autocatalyst will consume the fuel and the front will move to the
right (increasing x) with velocity v; does the front remain planar or
develop structure along y?



physical argument:
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for some ratio of diffusion coefficients d = DA/DB > 1 the planar front
will lose its stability



reaction-diffusion equation

∂c(x, t)

∂t
= R(c) + D∇2c

reduce the RD equation to an equation for the dynamics of the front



to study the instability we need the solution to the planar front problem

planar travelling fronts – constant speed v along x; connects two dif-
ferent concentration regions at x = ±∞

c0(u) – concentration field, u = x − vt the moving frame coordinate

RD equation D d2

du2
+ v

d

du

 c0(u) + R(c0(u)) = 0

solved for front speed v and the front profile



stability of 1d front – linearize 1d RD equation about c0(u)

c(x, t) = c0(u) + δc(u, t)

substitution into RD equation yields

∂δc(u, t)

∂t
=

D d2

du2
+ v

d

du
+

δR

δc0

 δc(u, t)

≡ ΩR(u)δc(u, t)

defines the linear operator ΩR



some notation – let 〈u|c〉 = c(u) and 〈u|Ω̂R|u′〉 = ΩR(u)δ(u − u′)

eigenvalue problem for Ω̂R is

Ω̂R|ζi〉 = λi|ζi〉

ζ0(u) = dc0/du is an eigenfunction of Ω̂R with eigenvalue λ0 = 0 – broken
translational invariance along u

Ω̂R is not self-adjoint so consider adjoint eigenvalue problem

〈ζi|Ω̂†
R = λi〈ζi|

adjoint operator is

Ω†
R(u) = D

d2

du2
− v

d

du
+

δR

δc0

eigenfunctions satisfy the orthonormality condition 〈ζi|ζj〉 = δij – as-
sume eigenvalue problem is solved and determine the interfacial dy-
namics in 2d



Kuramoto-Sivashinsky equation

suppose a propagating front exists in a 2d system; interfacial profile
χ0(y, t)

y

u

v
( y,t )

0
χ

if transverse variations in front are not too large, solution to RD equa-
tion has the form

c(r, t) = c0(u + χ0(y, t)) + δc(u, y, t)

concentration field corresponding to 1d front solution evaluated at
u + χ0(y, t); accounts for displacement of front position from u arising
from transverse variations in front position



goal is to obtain equation of motion for the front profile, χ0(y, t)

linearizing about c0

∂δc(u, y, t)

∂t
+

∂χ0(y, t)

∂t
ζ0(u) =

ΩR(u) + D
∂2

∂y2

 δc(u, y, t)

+D


∂2χ0(y, t)

∂y2
ζ0(u) +

∂χ0(y, t)

∂y


2

ζ′
0(u)


where ζ′

0(u) = dζ0(u)/du

eigenfunctions of Ω̂R form a complete set in the u space; expand de-
viation in these eigenfunctions

δc(x, y, t) =
∑
i>0

χi(y, t)ζi(u)

expansion coefficients are χi(y, t)



substitute expansion of δc(u, y, t) in terms of eigenfunctions of 1d prob-
lem and project onto the interfacial mode |ζ0〉

eigenvalue problem for Ω̂R is not self-adjoint and left and right eigen-
functions corresponding to the zero eigenvalue needed

projecting onto |ζ0〉

∂χ0(y, t)

∂t
=

∞∑
i=0

〈ζ0|D|ζi〉
∂2χi

∂y2
+ 〈ζ0|D|ζ′

0〉
∂χ0(y, t)

∂y


2

equation expresses χ̇0(y, t) in terms of χ0(y, t) and all other χi(y, t),
(i > 0)



to obtain a closed solution construct evolution equations for the χi(y, t)
– project onto |ζi〉 (i 6= 0)

∂χi(y, t)

∂t
=

∞∑
j=0

Wijχj + 〈ζi|D|ζ′
0〉

∂χ0(y, t)

∂y


2

matrix operator W has elements

Wij = λiδij + 〈ζi|D|ζj〉
∂2

∂y2

equation for χi, (i > 0) may be solved formally treating χ0 as an inde-
pendent function to obtain a closed equation for χ0(y, t); full solution
does not admit a simple analysis



approximate solution for weakly curved interfaces

neglect spatial gradients along y in W and higher than second order
derivative terms which are quadratic in χ0 to get

∂χ0(y, t)

∂t
= 〈ζ0|D|ζ0〉

∂2χ0

∂y2
+ 〈ζ0|D|ζ′

0〉
∂χ0(y, t)

∂y


2

−

−
 ∑
i>0

〈ζ0|D|ζi〉〈ζi|D|ζ0〉
λi

 ∂4χ0

∂y4



to simplify equation introduce the definitions:

ν = 〈ζ0|D|ζ0〉

κ =
∑
i>0

〈ζ0|D|ζi〉〈ζi|D|ζ0〉
λi

coefficients must be evaluated for problem of interest but, typically,
sign of ν depends on diffusion coefficient ratio d while κ is positive

coefficient of nonlinear term in χ0(y, t) may be evaluated explicitly –

since 〈ζ0|Ω̂R|ζ0〉 = 0

〈ζ0|D|ζ′
0〉 = −v/2



substituting these results we obtain the Kuramoto-Sivashinsky (KS)
equation

∂χ0(y, t)

∂t
= ν

∂2χ0

∂y2
−

v

2

∂χ0

∂y


2

− κ
∂4χ0

∂y4

that describes the evolution of the front profile



linear stability analysis and front dynamics – linearize and Fourier trans-
form in y

∂χ0(k, t)

∂t
= −(νk2 + κk4)χ0(k, t) ≡ λ(k)χ0(k, t)
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decay rate λ(k) = −νk2 − κk4 for parameters above instability thresh-
old; assumed ν < 0 (diffusion destabilizing) and κ > 0 (fourth-order
derivative term stabilizing at high wavenumbers)



• plot characteristic of a phase instability: a band of unstable wavenum-
bers extends from zero to some maximum value

• maximum in the dispersion relation lies at km = (−ν/2κ)1/2 and max-
imum unstable wavenumber is kmax = (−ν/κ)1/2 – long wavelength
instability with dissipation at short wave lengths; characteristic dissi-
pation length `c ≈ 2π/km



results of direct simulation of KS equation (in scaled units where −ν =
κ = v/2 = 1) – minima in field plotted
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front dynamics exhibits spatio-temporal chaos



an example: cubic autocatalysis – RD equation

∂cA(r, t)

∂t
= −kcA(r, t)cB(r, t)2 + DA∇2cA(r, t)

∂cB(r, t)

∂t
= kcA(r, t)cB(r, t)2 + DB∇2cB(r, t)

• small values of d – simulations show front is planar

• for sufficiently large d planar front unstable



front has a complex cellular structure for d = 5

movie: www.chem.utoronto.ca/̃ rkapral



front dynamics of cubic autocatalysis in terms of space-time represen-
tation
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space-time dynamics has same appearance as that for KS equation
simulations



• to determine value of d at instability, extract front equation from full
RD equation

• possible numerically for arbitrary diffusion coefficients

• analytical estimate of KS parameters using perturbation theory about
equal diffusion case

planar front profiles for cubic autocatalysisd
d2

du2
+ v

d

du

 cA(u) − cA(u)c2
B(u) = 0 ,

 d2

du2
+ v

d

du

 cB(u) + cA(u)c2
B(u) = 0

scaled time t → kt and space r → (DB/k)−1/2r

boundary conditions are cA(∞) = cB(−∞) = 1 and cA(−∞) = cB(∞) = 0



equal diffusion – additional conservation law cA(u) + cB(u) = 1; pair of
equations reduces to d2

du2
+ v

d

du

 cA(u) − cA(u)(1 − cA(u))2 = 0

with solution cA(u) = (1 + exp(−vu))−1 and front speed v = 1/
√

2

• eigenvalues and right and left eigenvectors can be computed for d = 1
and KS parameters evaluated using perturbation theory: instability
occurs when ν passes through zero at d = dc = 5/2 – larger than d = 1
so perturbation theory doubtful

• direct numerical solution gives dc = 2.300



experimental observation of a front instability – iodate-arsenous acid
reaction

reaction rates for IO−
3 = A and I− = B species are

RA(cA, cB) = −RB(cA, cB) = −(ka + kbcB)cBcAc2
H+

RD equations are

∂cA(r, t)

∂t
= RA(cB, cA) + DA∇2cA ,

∂cB(r, t)

∂t
= RB(cB, cA) + DB∇2cB



in experiments reaction is carried out in thin (α-cyclodextrin=C) gel
film; gel suppress convective effects and complexes with the autocat-
alyst I− = B

B + C ⇀↽ C · B

with equilibrium constant KC = cC·B/(cCcB)

– species B exists in two forms: free B and complex C · B; total
concentration of B in both forms is cT

B = cB +cC·B = cB(1+KCcC) ≡ cBσ

– assuming C ·B does not diffuse, RD equation for total concentration
of B is

∂cB(r, t)

∂t
= σ−1(RB(cA, cB) + σ−1DB∇2cB

by varying concentration of gel one may change the diffusion coef-
ficient of the autocatalyst (and its reaction rate) and trigger a front
instability



planar front will be stable or unstable to transverse perturbations de-
pending on the relative values of the diffusion coefficients of the iodine
and iodate species

rapid diffusion of the autocatalyst iodine (B) causes the decay of per-
turbations, stabilizing a planar front while the diffusion of iodate (A)
tends to be destabilizing

experiments confirm this scenario (Horvath and Showalter, 1995); low
values of gel concentration – planar fronts; for gel concentrations be-
yond certain value front developed a transverse structure
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