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Abstract

We consider passive tracer advection in a model of a large planar basin of fluid with two sinks opened alternately. In
spite of the incompressibility of the fluid, the phase space of the tracer dynamics contains (simple) attractors, the sinks.
We show that the advection is chaotic due to the appearance of a locally Hamiltonian chaotic saddle. Properties of this
saddle and its invariant manifolds are investigated, and fractal and dynamical characteristics of the tracer patterns are
extracted by means of the thermodynamical formalism applied to the time-delay function.

PACS: 05.45.+b; 47.32.-y

1. Introduction

The passive advection of tracer particles in hydrodynamical flows is one of the most appealing
applications of the chaos theory. Assuming that inertial effects are negligible, the equation of motion
for a tracer expresses the coincidence of the tracer's velocity r with the velocity field v(r,t) of
the flow that is assumed to be known: f(t) = v(r(t),t). This is a simple set of ordinary differential
equations for the unknown tracer motion r(t) with a given, typically nonlinear right-hand side. The
solution of such an equation can be chaotic.

Advection in two-dimensional incompressible flows represents an important subclass of the phe-
nomenon. The incompressibility of the flow leads then to an area conserving tracer dynamics in
the phase space that coincides with the configuration space. The case of steady flows corresponds
to a set of two autonomous equations of first order and, consequently, to integrable dynamics. The
advection in nonsteady flows is, however, described by a driven Hamiltonian dynamics with one
and a half degree of freedom. The particle motion is then typically chaotic even in the case of the
simplest time-dependence of strict periodicity. In the last decade, a comprehensive knowledge has

1 This paper is dedicated to Professor 1. Abonyi on the occassion of his 65th birthday.
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accumulated in this field both for flows in closed containers [1-14] and for open flows with asymp-
totic simplicity [15-33]. The tracer dynamics takes place then in a bounded or in an unbounded
phase space, respectively. In the latter case, the asymptotic dynamics is simple and the tracer motion
can be considered as a scattering process with all the characteristics of chaotic sealtering [34]. In
this paper we examine how the presence of sinks or sources influences the tracer dynamics that
is then asymptotically simple but no longer Hamiltonian. As a consequence, global time reversal
invariance does not hold, and the tracer dynamics is qualitatively different in the direct and in the
time reversed dynamics.

Piecewise steady flows have long been playing an important role in understanding chaotic ad-
vection. They are maintained by keeping the flow steady for a time interval (often half of the full
period), and then jumping suddenly to another flow kept steady for another time interval. Then a
jump follows back to the original flow, and the whole process is repeated periodically. The corre-
sponding particle motion is then a kind of kicked dynamics due to the sudden jumps in the flow field.
A pioneering example of this kind is Aref's blinking vortex system [1]. Another famous model for
stirring in closed regions is related to the journal bearing flow [2, 3] whose experimental realisation
was also possible [3,4]. A piecewise steady model for open flows with Hamiltonian particle dynam-
ics, introduced recently, is based on a periodic repetition of a vortex action and of a homogenous
flow [27].

In order to study the effect of asymptotic dissipation in the particle dynamics of a piecewise steady
model, we shall investigate the blinking vortex-sink system of Aref et al. [17]. It models the outflow
from a large bath tub with two sinks that are opened in an alternating manner. In the course of this
process, a chaotic mixing might take place. Note that the time reversed model describes the periodic
injection of fluid into the basin via two different sources accompanied with rotation, and can be
called a blinking vortex-source system. It represents a model of mixing due to injection. We show
that, despite of the qualitatively different forward and backward global dynamics, both systems have
a common nonattracting set with Hamiltonian local dynamics. This invariant set is responsible for
the mixing in both the direct and the time reversed tracer motion.

The problem of fractal dye boundaries in open flows has recently been addressed [17,28-33] in
the context of Hamiltonian dynamics. The blinking vortex-sink system is ideally suited for studying
basin boundaries because it has two attractors (the two sinks) and a well-defined basin of attraction.
The original aim of Aref et al. in [17] was to show that this boundary can turn to be a fractal
in a broad range of parameters. We shall explain their finding in terms of the nonattracting set:
the basin boundary is the stable manifold of this set and becomes a fractal as soon as the set
becomes chaotic. Thus, the fractality of the boundary is a unique sign of chaotic advection, and
vice versa.

The paper is organized as follows. In Section 2 the advection in the velocity field of the blinking
vortex-sink system is described, and the tracer dynamics is represented by a stroboscopic mapping.
Then in Section 3 we explain the transient chaotic behaviour of the advected particles by means
of an invariant chaotic saddle governing the discrete dynamics. In Section 4 this explanation is
extended by examining the time evolution of the chaotic saddle and its invariant manifolds. Due
to the explicit form of the tracer map, we are able to study the dependence of the dynamics in
a large range of the vortex and sink strengths (Section 5). Multifractal and dynamical properties
of the saddle are determined by means of the thermodynamical formalism in Section 6. Finally, in
Section 7 concluding remarks are given along with a discussion of multicolored dye boundaries.
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2. The blinking vortex-sink model and the advection map

An ideal fluid filling in the infinite plane with a point vortex in it that is simultaneously sinking can
be a model of a shallow but infinite basin of fluid with a sink. This corresponds to the observation
that a rotational flow is formed around the sink in the course of drainage.

The velocity field due to the sink is thus modelled by the superposition of the potential flows of
a point sink and of a point vortex. The complex potential [35] for a sinking vortex point located at
the origin can be written as

w(z) = - ( C + i /Olnz, (1)

where z is the complex coordinate in the plane of the flow. Here 2KC is the sink strength, i.e.
the amount of fluid drained by the sink in unit time, and 2nK is the circulation measuring the
vortex strength. The velocity field corresponding to w(z) consists of the superposition of a radial
component vr — —C/r and of a tangential component vv = K/r. The imaginary part of the complex
potential, *¥ = — K\nr — C<p is the streamfunction [35]. The streamlines (the level lines of W) are
logarithmic spirals: (p = —K/C In r + const.

A passively advected tracer particle follows the velocity field of the flow without any inertia. Its
equations of motion in polar coordinates are

r = vr, <p = vjr. (2)

By solving these equations with initial conditions (ro,(po), we find

r(t) = ( r l V 2

<p(t)=(po-(K/C)lnr(t)/ro.
 { }

The particles move along streamlines as the flow is stationary. By returning to the complex repre-
sentation, z = rexp(u/>), we obtain that a tracer particle starting at a point z0 will arrive, after time
t, at

z(t) = zo(l-2Ct/\zQ\2)i2"K2C. (4)

Because the motion is undefined after reaching the sink center, the time in this expression has to be
limited from above:

t<\zo\
2/(2C). (5)

With this condition, Eq. (4) uniquely describes the tracer motion.
The blinking vortex-sink system [17] is obtained by having two such sinking vortex points some

distance apart from each other, both being active alternately for a duration of T/2. In this system the
velocity field is periodic with T, but in a special way: it is stationary for half a period and stationary
again but of another type for the next half period T/2. The velocity field corresponds to a sinking
vortex flow centered at z = — a and at z = a in the time intervals (0,772] and (7/2,7*], respectively.
The entire flow is no longer stationary, there are jumps in the velocity field at each half period.

The tracer motion can be easily built up from Eq. (4). A trajectory starting at t = Q follows the
corresponding streamline up to / = T/2, when the velocity field suddenly changes. Then, the tracer
finds itself on another streamline that will be followed for the next time interval of length T/2. Thus,
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Fig. I. Two different tracer trajectories in the vortex-sink system for the parameter values i/ = 0.5, c = l O with initial
conditions differing by an amount of 1O~2. Breakpoints are due to the sudden jumps in the velocity field of the flow.
Black dots denote the vortex-sink centers. Black squares at the breakpoints mark the discrete time trajectories for the
/o = O stroboscopic map. The tracers of cases (a) and (b) leave the flow through different sinks, providing an example for
the sensitive dependence on initial conditions.

on a time scale of several periods, the trajectory will have several break points and can be much
more complicated than any of the streamlines. Fig. I presents such trajectories.

Since the velocity field is periodic, it is convenient to monitor the particle motion on a stroboscopic
map obtained by recording the position of particles after integer multiples of T only. In this section
we choose the starting time of taking stroboscopic snapshots t0 to be t0 = 0 corresponding to the
instant when the right sink is switched off. For the tracer position at t = T/2 and t=T we obtain
from Eq. (4) by a simple coordinate transformation that they are

and

CT

\z(T/2)-a\
a, (6)

respectively. By introducing dimensionless coordinates via z —> az, one notices that the dynamics is
fully specified by two parameters:

= CT/a2 and c - K/C , (7)

the dimensionless sink strength and the ratio of the vortex to sink strength, respectively. The locations
of the sinking vortex points are z = ± 1 in the new, dimensionless units.

The rule connecting the coordinates on snapshots taken at / = 0 and t = T is exactly the same
as for the t = nT and t~(n+ \)T stroboscopic instants. By introducing zn=z(nT) as the particle
position after n periods, we obtain the general form of the discrete time advection dynamics as

1/2—ic,2
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where

[ ) - 1 (8)

is a dummy variable corresponding to the particle position at t = (n + \/2)T. It is the jump in the
flow field at t= TI2mod(T) that made the submaps connecting zn to z'n, and z'n to zll+i different.

We note that due to the alternating character of the flow, effective sink cores have been formed.
Tracers which are inside a circle of radius R = y/fj around any of the sinks at the instant when it
starts to be active, will leave the system in the next time interval of T/2. We do not follow their
dynamics but take into account that particles having entered these disks disappear from the map.
This formally corresponds to having infinitely strong dissipation within the sink cores. Thus, the sink
cores are extended nonchaotic attractors of the advection map (although the time continuous tracer
dynamics possesses point attractors only, the two centers). Therefore, Eqs. (8) are valid outside of
these sink cores only. Here, however, the map has Hamiltonian character: it is area-preserving and
invertible.

It is worth mentioning a simple symmetry property. The map is invariant under the transformation
/ —> t 4- r/2 and z -—>• — z, i.e. under the time shift of a half period and the reflection with respect to
the origin. This is due to the fact that the flow is invariant under the transformation of exchanging
the vortex-sink centers and shifting the time by half a period.

For c = 0 we obtain a pulsed sink system without any rotation similar to the pulsed source-sink
system introduced by Jones and Aref [16], but numerical evidence shows that the tracer dynamics
is regular for any value of n. In the limit r\ —> 0, c —> oo, so that r\t = const, we recover the blinking
vortex system of Aref [1] that exhibits chaotic advection in a closed region. In what follows, we
shall deal with the properties of the advection map Eq. (8), and its parameter dependence in the
finite r\ and c regime.

3. The chaotic saddle and its invariant manifolds

For a detailed investigation we choose the parameter values »7 = 0.5 and c = 10. Two complicated
tracer trajectories have already been shown in Fig. 1. Although there is only a slight difference in
the initial conditions, the shapes of the trajectories are rather different, and the tracers finally leave
the system through different sinks.

It is instructive to look for periodic orbits since if they exist, they certainly are examples for
orbits never leaving the system, i.e., never reaching the attractors. At these parameter values we
found three period-one orbits whose forms (both continuous time and discrete representations) are
shown in Fig. 2. They turn out to be all hyperbolic with local Lyapunov exponents on the order
of 2.

The key observation for understanding the complicated dynamics is the existence of a strange
invariant chaotic set, a chaotic saddle in the system. The saddle is nonattracting, and lies in the
Hamiltonian part of the space, outside of the attractors. The saddle consists of all the countable
infinite number of unstable periodic orbits of the mapping. It also contains an uncountable infinite
number of non-periodic orbits [37], the ones never reaching any of the sinks in the direct dynamics,
and being bounded to a finite region in the time reversed dynamics. The tracers leaving the system
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Fig. 2. Three period-one orbits for the parameter values 17 = 0.5, c= 10. Black dots denote the vortex-sink centers. Black
squares mark the discrete time orbits, the three fixed points of the t0 = 0 stroboscopic map. The Lyapunov exponent of
the symmetric and the two asymmetric orbits is 2.03 and 1.97, respectively.

after only a long time are those coming close to the chaotic saddle. The stroboscopic picture of
this invariant set is shown in Fig. 3(a). All the points of the saddle seem to be hyperbolic, having
different stable and unstable directions.

The entire saddle has a stable manifold. This set is formed by points that can come arbitrarily
close to the saddle in the future (of the direct dynamics). The unstable manifold of the saddle is the
set along which the particles having reached the saddle with high accuracy leave it after a long time.
More precisely, the unstable manifold is the stable manifold of the time reversed tracer dynamics.
These invariant manifolds are shown in Figs. 3(b) and (c). The invariant set is the common part of
the stable and unstable manifolds. Since both the stable and the unstable manifolds are lines with
Cantor-set-structure in their intersections, the chaotic saddle also has Cantor-set-structure both in its
stable and unstable directions. Thus, the invariant set appears as a (slightly distorted) direct product
of two Cantor sets.

In chaotic systems, it is worth considering ensembles of particles instead of isolated ones because
the ensembles have well-defined averages. In a hydrodynamical problem the ensemble has a clear
physical interpretation as a droplet of tracers. Let us therefore briefly investigate the droplet dynamics.
If a droplet overlaps with the stable manifold, it moves in the direct dynamics towards the saddle.
Particles starting exactly from the stable manifold will hit the chaotic saddle, and thus they will
never leave the system. Particles starting near enough to the stable manifold are advected in the
vicinity of the chaotic saddle and stay there for a long time. Finally these long living tracers will
leave the system along the unstable manifold (see Fig. 4). Consequently, the shape of the droplet
after sufficiently long time traces out with a high accuracy the unstable manifold. This invariant set
becomes thus a direct observable in the droplet dynamics. In fact, the unstable manifold of Fig. 3(b)
was numerically obtained as the shape of a droplet of size 0.5 x 0.5 after n = 4 steps.

In the time reversed system the role of the stable and unstable manifolds is interchanged. Since
the time reversed system can be interpreted as a blinking vortex-source model, the stable (unstable)
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Fig. 3. Invariant sets of the tracer dynamics in the vortex-sink system on the to —0 stroboscopic map, Eq. (8), for i/ —0.5,
c = 10. (a) The chaotic saddle is the set of orbits never reaching the attractors either in the direct or in the time reversed
dynamics. It is the direct product of two Cantor sets, (b) The saddle's unstable manifold is the set of initial conditions
leading to the saddle in the time reversed dynamics. The circle around the ( — 1,0) sink encloses the attractor on the left
half-plane, i.e., the area leaving the system in the next half-period, (c) The saddle's stable manifold is the set of initial
conditions leading to the saddle. It coincides with the basin boundary of the two attractors.

manifold of the original system corresponds to the unstable (stable) manifold of the latter, while the
chaotic saddle is the same for both systems. A droplet originally overlapping with the stable manifold
of the time reversed dynamics will thus trace out the unstable manifold, i.e. the stable manifold of
the vortex-sink system (Fig. 5). The stable manifold of Fig. 3(c) was numerically determined as
the n = 6th image of a droplet of size 0.5 x 0.5 in the time reversed dynamics. The chaotic sets
shown in the paper (as e.g. Fig. 3(a)) were obtained as common parts of stable and unstable
manifolds.

Finally, we connect the concept of invariant manifolds to that of the basin boundaries whose study
was the original motivation of the authors of Ref. [17]. A natural definition of a basin in the vortex-
sink problem is the set of all points leaving the system via a given sink. The boundary between
the basins of the left and right sinks has to contain, therefore, points never leaving through any of
the sinks. Boundary points must thus tend to the chaotic saddle. Consequently, the basin boundary
is the saddle's stable manifold. A comparison of Fig. 3(c) with the basin boundary generated in
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Fig. 4. Time evolution of a droplet of 300 x 300 particles uniformly distributed over the region [—0.25,0.25] x [-0.5,0]
on the to =0 stroboscopic map, Eq. (8) (parameter values rj = 0.5, c = 10). The pictures show the shape of the droplet at
discrete times 0, 1, 2, 3, 4 and 5 (a,...,f). After already w = 4 steps the droplet traces out the unstable manifold with an
accuracy of resolution better than 1 percent.

Ref. [17] for the same parameter setting supports this statement. In the vortex-source system, a basin
can be defined as the set of all points injected into the flow via a given source. Consequently, the
basin boundary is the saddle's stable manifold in this system, i.e., the saddle's unstable manifold
in the vortex-sink system. In any case, the fractality of the basin boundary is a unique sign of
the chaoticity of the tracer dynamics. We shall see later (in Section 5) that for certain parameter
values the chaotic saddle does not exist, the nonattracting set is a single periodic orbit with smooth
manifolds. The basin boundary is then indeed a nonfractal curve.
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Fig. 5. Time evolution of a droplet of 300 x 300 particles uniformly distributed over the region [—0.25,0.25] x [—0.5,0] on
the time reversed to — 0 stroboscopic map (parameter values »7 = 0.5, c = 10). The pictures show the shape of the droplet
at discrete times 0, I, 2, 3, 4 and 5 (a f). The convergence towards the stable manifold is slower due to its large
extension but even so inside a circle of radius 1.5 the deviation between the droplet and the manifold is less than !%
after 5 steps already.

4. Time dependence of the invariant sets

The stroboscopic snapshots can be taken not only at /O = 0mod(r). One can choose arbitrary
starting times /0, and record the tracers' positions at the time instants t — nT + tQ as z,,(r0)- Varying
t0 between 0 and T we get different discrete-time representations of the tracer dynamics. A series
of pictures showing the invariant sets on the stroboscopic map taken at different times /0 can be
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Fig. 6. The chaotic saddle's temporal evolution for the parameter values f/ = 0.5, c = 10. The pictures show the chaotic
saddle at times T = 0, -^, -^, -^, -̂  and -^ mod(l) (a,...,f). The saddle for T > J is the mirror image of the one at
T — \ taken with respect to the origin.

considered as the (periodic) time evolution of these sets. Without loss of generality, we can assume
that t0 < T/2 because the symmetry properties of the system guarantee that the behaviour after a time
shift of T/2 is the same if a reflection is applied with respect to the origin.

Using the results of the previous sections, we can easily determine the position of a tracer after
a time-period T, if it starts from zn at time nT + /0- First, we determine its position at (« + \/2)T
from Eq. (4) as

vl/2—ic/2

" I , (9)
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Fig. 7. Temporal evolution of the saddle's unstable manifold in the vortex-sink system for the parameter values
r\ = 0.5, c, = 10. The time instants corresponding to the pictures are the same as in Fig. 6. The manifold for T > | is
the mirror image of the one at T — | taken with respect to the origin. The manifold was obtained with the droplet method
after n = 4 iterations. Note that the most drastical changes occur in the first interval of length one sixteenth because there

•are points very close to the newly opened sink at ( — 1,0), and the angular velocity of the rotation increases as r~2 where
r is the distance from the sink. The effective sink cores (attractors) are shown as circles around (—1,0).

because the particle is advected by the sinking vortex at z = — 1 for a duration of 7/2 — t0 only.
Here we have introduced the dimensionless time (or phase) parameter T = tQ/T. The position of this
tracer at t = (n + 1)7" is obtained according to the first line of Eq. (8) as

. 1 - 2 — i.

+ 1 (10)
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Fig. 8. Temporal evolution of the saddle's stable manifold in the vortex-sink system for the parameter values
/7 = 0.5, c = 1 0 . The time instants corresponding to the pictures are the same as in Fig. 6. The manifold for r>\ is
the mirror image of the one at T - \ taken with respect to the origin. The plot was obtained by means of the time
reversed droplet method after n = 6 iterations. Reading the pictures in reversed order ( f ,e , . . . ,a) , the evolution of the black
line corresponds to the evolution of the boundary separating particles injected into the flow via different sources in the
blinking vortex-source system. Picture (f) corresponds to an instant when the right source stops and the left one starts
injecting.

Then the tracer is advected again by the left sinking vortex for the remaining time interval of length
t0, and arrives finally at

2,/T
A : - i ; - 2

1 . ( H )



G. Karolyi, T. Tell Physics Reports 290 (1997) 125-147 137

The time evolution of the chaotic saddle is presented in Fig. 6 for the parameter values r\ = 0.5,
£ = 10. Since this is the set of points staying in a finite region forever and never reaching any of the
attractors in both the direct and in the time reversed dynamics, its behaviour has entirely Hamiltonian
character. The shape of the saddle changes periodically in time. It does not mean, however, that
all the points of the set return to their original position after a certain time. There are uncountably
many points of the saddle with chaotic trajectories. In fact, the entire set moves as if the points
of Fig. 3(a) were advected by the flow. Since the advection is a smooth transformation, the fractal
dimension of the saddle is the same on all snapshots.

Similarly, we can determine the time evolution of the saddle's unstable manifold (see Fig. 7).
It is special in the sense that the number of points starting on this set decreases exponentially,
although the geometrical shape is moving periodically. We note that after the right sink is closed
at t0 = 0, there is an interval in T when the unstable manifold of the map is not connected with
any of the sinks. This fact is again due to the sudden jump in the velocity field of the flow. The
evolution of the saddle's stable manifold is illustrated in Fig. 8. Just like the chaotic saddle itself,
its manifolds change their shape as if they were advected by the flow.

5. Parameter dependence

Tracers with long life times typically approach the system's nonattracting set (that can be either
a chaotic saddle or some unstable periodic orbits) along its stable manifold, then remain in the
vicinity of this set for a transient period and follow the dynamics on it. Later they leave the set
along its unstable manifold and reach one of the attractors. Therefore, the tracer behaviour in the
blinking vortex-sink or vortex-source system strongly depends on how the nonattracting set changes
when the two dimensionless parameters v\ and c are varied. Fig. 9 shows the nonattracting invariant
sets for 16 different pairs of r\ and C on the to = 0 stroboscopic map. From the top to the bottom
rj, the sink strength, decreases, while from the left to the right c,, the ratio of the vortex to the
sink strength, increases. For parameter values where the system is non-chaotic (small t] or c values,
lower left triangle region), the nonattracting set has numerically been found to consist of one point
only, a hyperbolic period-one orbit. Our numerical investigations suggest that the chaotic saddle
appears suddenly as the parameters are changed. Periodic orbits are born in a very tiny region
around the unstable period-one orbit in a similar way as in the course of the abrupt bifurcation in
chaotic scattering [36]. We can also observe in Fig. 9 that after chaos has appeared, the size of
the chaotic saddle grows with c. For some (typically large) c, values there are also extended areas
surrounded by the chaotic saddle. Such regions are present e.g. in the upper right picture of Fig. 9
and are due to the fact that stable periodic orbits (elliptic points) have appeared surrounded by KAM
tori.

Three different types of tracer behaviour thus can occur depending on the parameters, simi-
larly as in other models [28, 30]. The first is a simple nonchaotic motion with only one point
as the nonattracting invariant set. This point is hyperbolic with two real eigenvalues. The second is
a chaotic behaviour with a fully hyperbolic chaotic saddle. This nonattracting invariant set has a
structure of the direct product of two Cantor-sets. The third type of behaviour is also chaotic, but
with an invariant set consisting both of a hyperbolic and a nonhyperbolic component. The latter
component appears around the KAM tori. In this region the local Lyapunov exponents can take on
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Fig. 9. The to — 0 stroboscopic section of the nonattraeting set for different parameter values. The [—5,5] x [—5,5] region
of the (x, v) plane is shown; the vortex-sink centers are denoted by black dots. For small r\ and c values the nonattraeting
set consists of one single hyperbolic fixed point only, in other regions chaotic saddles exist.

arbitrarily small positive values. Consequently, tracers coming close to the torus will stay there for
anomalously long times. (Note that tracers starting inside a torus cannot escape, they remain to be
trapped there forever. KAM tori - if they exist - form the boundary of fluid blobs of finite area
that never become drained from the system.)

The saddle's unstable manifold is qualitatively different for the parameter values corresponding to
chaotic and nonchaotic cases. This is clearly visible in Fig. 10. The unstable manifold is a simple
curve in the lower left pictures associated with nonchaotic behaviour corresponding to the single
period-one orbit as the nonattraeting set. For the parameter values where the nonattraeting set is
a fractal, the unstable manifold is also a complicated winding curve. As the parameter values r\
or £, grow, the extension of the unstable manifold increases. The circle around the left sink shows
the attractor on the advection map. Clearly, for all cases this circle contains a certain part of the
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Fig. 10. The fo = 0 stroboscopic section of the nonattracting set's unstable manifold in the vortex sink-system for different
parameter values in the same region as in Fig. 9. The circles around ( — 1,0) indicate the left attractor of the advection
map. For small i] and c the unstable manifold consists of a line segment only. In other regions it is a complicatedly
winding fractal curve.

unstable manifold corresponding to the fact that the unstable manifold directs the particles into the
attractor(s).

The saddle's stable manifold is shown in Fig. 11 for the 16 different parameter pairs considered.
They are again simple line segments for the nonchaotic cases, where the nonattracting invariant set
is a single point, and complicated fractal curves where a chaotic saddle is formed.

6. Extracting fractal and dynamical properties

Almost all the tracers leave the system after a certain time (apart from those starting from islands
surrounded by KAM tori). This escaping property assures that the chaotic behaviour is restricted to
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4=0.1 4=5

I

Fig. 11. The ?o = O stroboscopic section of the stable manifold in the vortex-sink system for diilcrent parameter values in
the same region as in Fig. 9. For small r\ and c the stable manifold consists of a line segment only. In other regions it
is a complicatedly winding fractal curve. The large black areas are due to the finite resolution and the finite number of
steps (n = 8) taken in the time reversed droplet method to generate the manifold.

a finite domain both in space and time. Therefore, by applying the results of the theory of transient
chaos [37] and chaotic scattering [34], it is possible to define a natural measure on the nonattracting
chaotic saddle. Calculating the average Lyapunov exponent with respect to this measure, it can be
positive. Other relevant characteristics of chaos can also be determined.

A quantity of central importance is the time-delay function. It is denned as the number of steps
the tracers need to reach any of the attractors as a function of their initial coordinate along a line
segment. For the parameter values )] — 0.5, c = 10 Fig. 12 shows this function for initial coordinates
taken along a straight-line segment. It has a well defined, hierarchical structure with singularities on
a Cantor set formed by the intersections with the saddle's stable manifold. Taking into consideration
that the whole saddle is contained in the Hamiltonian region of the flow, the properties of the saddle
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•$• n
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-0.50 •0.25 0.00 0.25

Fig. 12. A discrete time-delay function in the vortex-sink system for ;/ = 0.5, c = 10. The picture shows the number of
periods (n) the tracers, starting from the line x € [—0.73,0.35], y= I, need to leave the system through any of the sinks.
The fractal structure emerges in the limit of extremely long exit times.

must be the same along both the stable and unstable directions. Thus, it is sufficient to examine the
statistical features on the intersection of the stable manifold with a straight line — the time-delay
function - to get relevant information about the entire chaotic saddle. The use of the thermodynamical
formalism [38] is very well suited for this purpose.

The scaling behaviour of the time-delay function and of the chaotic saddle can be fully charac-
terized by the so-called free energy function [37-39]. Let us consider the intervals of the initial
conditions on the time-delay function where the delay is larger or equal to n. We denote the length
of the /th such interval by l)"\ By increasing n, one finds more and more intervals with shorter and
shorter sizes. Taking the limit n —* oc resembles thus to performing the construction of a Cantor set.
It is therefore natural to expect that fractal and other properties can be extracted from the interval
hierarchy.

The free energy function F(fl) is defined by

*-imit)n (12)

for np-l, where N(n) is the number of intervals on the nth level of the hierarchy, and (i is any
real number. The free energy characterizes the length scale distribution of the intervals covering
the singularities in the time delay function. These intervals are transported away by the flow along
the stable manifold, are slightly deformed, and after a certain time approach the saddle. The chaotic
saddle's coverage with short intervals along its unstable manifold has thus the same scaling properties
as the intervals in the time delay function. Therefore, the same free energy characterizes the chaotic
saddle, too [39].

The total length of the intervals /)'" on the /7th level is proportional to the number of the tracers
staying in the flow after n iterations of the map. Thus, the escape rate K characterizing the exponential
decay of the tracers remaining in the system is calculated as fiF(/i) taken at fi— 1. The reciprocal
of K is the average lifetime of the chaotic tracer dynamics. The topoloaical entropy Ko describing
the exponential growth of the number of the intervals N(n) with n (as exp(/C()/7)) can be deduced
again from Eq. (12) taken at /f = 0. Two other important dynamical properties can be derived from
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Table 1
Basic chaos characteristics determined from the thermodynamical formalism for different parameter values. The table shows
the values of the escape rate K, the average Lyapunov exponent /., the partial fractal dimension da and the topological
entropy Ko for the 16 pairs of parameter values of Fig. 9. From these quantities the information dimension and the metric
entropy can easily be obtained as d\ = 1 — K/A, and K\ = /. — K, respectively, [37, 38]

0.5
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K

A.

do
Ku

K
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do
Ko

K

A

d0

Ko

K

A

d0

Ko

0.1

2.20
2.20
0
0

1.03

1.03
0
0

0.51
0.51
0
0

0.10
0.10
0
0

5

0.8
2.67
0.59
1.25

1.08
3.46
0.56
1.60

1.20
3.00
0.53
1.13

0.50
0.50
0
0

10

0
0
I

2.30

0.54

2.19
0.69
1.30

0.66

2.44
0.74
2.11

0.92
0.92
0
0

20

0

0
1
4.21

0
0
1
2.50

0.41

2.16
0.79
1.90

0.30

2.00
0.83
1.86

the free energy function: the average Lyapunov exponent /, on the nonattracting set is the derivative
of fiF{fi) at /}= 1, while the fractal dimension d0 of the singularities in the time-delay function is
the value of fi where F vanishes. Since the singularities are projections of the nonattracting set on
a curve roughly parallel to the unstable manifold, d0 is also called the partial fractal dimension of
the saddle. These most important characteristics can thus be extracted from the free energy as '

K = F(1), Ko=-(PF(P))\p = o, I = d(PF(P))/dp\l{=l, F{do) = 0. (13)

The quantities given by (13) are summarized in Table 1 for the parameter values investigated in
the paper. Note that the escape rate, the average Lyapunov exponent, and the topological entropy
typically have a local maximum in £,, while the fractal dimension has a tendency to increase with £.

' In order to better understand Eq. (13), it is worth considering a simple example. Assume that at level n there are b"
(b>\) intervals of equal length /J"' = a" ( a < l ) in the time delay function. Then Ko = Inb and JO= — \nab immediately
follows. The intervals expand in the time reversed dynamics after n steps to a length of order 1, thus — \n{l\n))/n is a
kind of local Lyapunov exponent. Since all the intervals have equal length, / .= — In a. The intervals of the nth level
can be covered by N(r.) = b" boxes of size t = a". Thus the fractal dimension is do = \nb/\n(\/a). On the other hand,
from Eq. (12) (iF(P) = — In b — filna. The validity of the general rules are easy to verify in this simple example. Note,
that the graph of PF(ft) is now a straight line corresponding to a behavior governed by one local expansion rate and a
monofractal invariant set. In particular, the case of nonchaotic advection due to a single hyperbolic orbit of Lyapunov
exponent lo>O is described by a free energy (!F(P) = /J/o, and hence Ko = do = 0, K = A = AQ-
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Next, we show that the invariant set's dimensions follow from dQ. Using the fact that the dimension
of a direct product of two fractals is the sum of the components' fractal dimensions [41], we get
that the chaotic saddle's fractal dimension is d^ = 2d0 on the stroboscopic map. The manifolds are
the direct product of a line and a Cantor set, therefore, rfmanjibid — 1 + <̂o- Thus fractal dimensions of
the singularities in the time-delay function uniquely determines the fractality of the chaotic saddle
and of its invariant manifolds.

The free energy is, in general, a nonlinear function. In fact, the curvature of /iF(li) contains
information concerning multifractal like properties. First, we introduce scaling indices /. by writing

/.,-= - ( l / « ) l n / ) ' " . (14)

They tell us how rapidly the length scales decrease with n and can be considered as local Lyupunov
exponents. The range in which the values /., lie is typically a finite interval.

As n grows, there are more and more intervals of the same exponent /.. Their number W(n, /.) also
grows exponentially, and we can define an entropy function S(A) of the local Lyapunov exponents
as the growth rate of W:

W(n,l)~zs0)", (15)

valid for large n. Alternatively, it can be obtained as the Legendre transform of the (iF(p) function:
S(/.) = /.p-PF(P)\ii = ft/), where 0(/.) is defined by /. = d(pF(P))/dp. Whenever F(P) is not constant,
S(/.) is a smooth single humped function.

One can define a natural distribution on the chaotic saddle describing how often different pieces
of the set are visited by tracer trajectories. For hyperbolic saddles, the measure of a box taken with
respect to this natural distribution is proportional to its linear size. More precisely, the measure P)n)

of each interval covering the saddle along its unstable manifold is proportional to the length of the
interval. Normalization implies that

/*'>~eKB/r)~e(K-;-') l1 (16)

can be considered as the interval measure. It is then easy to see [39] that the value of /. that belongs
to the point where the slope of S(/.) is 1 specifies the average Lyapunov exponent /. of the dynamics.
Furthermore, all multifractal spectra, like the / ( a ) spectrum [42] or the set of generalized entropies
Kq [38] can be shown [39] to be expressible by means of F{ji) or S{/.). For the parameter values
along the diagonal of Table 1, some of these functions are exhibited in Fig. 13. Notice that in
nonchaotic cases the spectra 5 and / consist of one point only (S(/.0) = 0, / (0) = 0); K(l = 0, and
F([j) is a constant (cf. footnote 1). In chaotic cases, the / ( a ) spectra are shifted with increasing c to
larger values of y., while their height is increasing. The change of the other characteristic functions
is not monotonous with c, partially due to the fact that /. and AT0 have local maxima at c = 5 and
c = 10, respectively.

We briefly mention that for the parameter values where the chaotic saddle is not fully hyperbolic
and the asymptotic behaviour is affected by KAM surfaces, the exponential statistics is no longer
valid for very large n. The escape is slower than exponential and can be described by an algebraic
decay as N(n) = n~" as n —> oc. This is due to the sticky surface of the KAM tori, where the tracers
spend a long time following some approximately quasiperiodic motion. Thus, the escape rate K is
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Fig. 13. Geometrical and dynamical multifractal spectra characterizing the tracer dynamics for r] = 2, c = 0.1 (diamond),
ri=l, 1 = 5 (triangle), J? = 0.5, I— 10 (square), 17 = 0.1, C=20 (black dot), (a) The free energy functions are determined
from time-delay functions like the one in Fig. 12. (b) The spectrum S(A) of the local Lyapunov exponents /. obtained
as the Legendre transform of fiFifi). (c) Generalized entropies [38] Kq defined via Yl, ^ ~ e xP(C ~ <7)*V7)- They
can be expressed with the free energy as KH=q{F(q) - K)/{q - 1). (d) Multifractal spectrum / ( a ) [42] of the partial
dimensions of the nonattracting set. It can be expressed with the entropy function as / ( a ) = S'(/.)/A|;. = K,.(i_,,, where a is
the crowding index, /'(a) is the fractal dimension of intervals of the time delay function with the local scaling property

expected to be zero together with the average Lyapunov exponent /, [43]. The fractal dimension
d0 should converge to do=\ by using very fine resolution [44]. In Table 1 we indicated these
asymptotic values where KAM tori are present. In such cases the free energy is identically zero for
fi> 1 but has a nontrivial branch in the range of /?<1. These two contributions are associated with
the nonhyperbolic and hyperbolic components of the chaotic saddle, respectively. At /? = 1 a "phase
transition" occurs. Since such nonanalyticities have been thoroughly investigated in general settings
[45], we do not discuss here further details.

Finally, we note that local Lyapunov exponents and other multifractal-like properties can also be
determined directly by following the deformation of material lines [46]. Our approach based on the
analogy with chaotic scattering provides, however, a simpler method since it requires the analysis
of only straight-line segments of an interval, extracted from the time delay function, instead of
two-dimensional deformations.

7. Conclusions

The vortex-sink system, or its time reversed version, the vortex-source system, belong to a new
class of open flows: they contain singular points with nonzero divergence. As a consequence, fluid
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disappears or is created in the course of time. For the advected passive particles this means that the
global dynamics is not time reversal invariant. The forward and backward dynamics is different but
both are physically realisable. We have shown that the nonattracting invariant set of both dynamics
is, however, in common, and of Hamiltonian character.

If the tracer dynamics is chaotic, a strange saddle underlies both the direct and the time reversed
dynamics. The invariant manifolds of the saddle play also important roles: the unstable one is
traced out by droplets, while the stable one define the fractal basin boundary in both types of
dynamics. The structure of dye boundaries in open flows has been the subject of recent papers
[28-31,33]. These boundaries are defined as borderlines between different colours injected into the
flow somewhere in the inflow region. It has been shown [29] that in systems where the tracer
dynamics is chaotic, the dye boundary has a fractal and a nonfractal part, and the former coincides
with one of the invariant manifolds of the chaotic saddle. The question arises, why the basin boundary
of our system is entirely fractal and does not contain nonfractal parts. We could, of course, paint
the points according to the sink which they exit through or, in the blinking vortex-source problem,
according to the place of injection. This type of colouring corresponds to qualitatively different
dynamical behaviour (reaching different attractors, or emanating from different repellers). If, however,
we subdivide the disk around the vortex centers (the attractor for the repeller of the advection map),
say into the upper and lower semidisks, and paint differently with 4 dies, the dye boundary will
have also nonfractal components in our system. The preimages (images) of the dividing line segment,
however, converge to the saddle's stable (unstable) manifold, and such a manifold will thus be the
fractal part of the boundary. Just like in other open flows [33], the fractal dye boundaries will
have a surprising topological property, the so-called Wada property [40]. In any neighbourhood of
any point on the fractal part of the boundary particles of all colours used are present. Thus, not
only the chaotic saddle, but also the neighbourhood of its invariant manifolds is strongly mixing in
such flows.
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We review and generalize recent results on advection of particles in open time-periodic
hydrodynamical flows. First, the problem of passive advection is considered, and its fractal and
chaotic nature is pointed out. Next, we study the effect of weak molecular diffusion or randomness
of the flow. Finally, we investigate the influence of passive advection on chemical or biological
activity superimposed on open flows. The nondiffusive approach is shown to carry some features of
a weak diffusion, due to the finiteness of the reaction range or reaction velocity. © 2000 American
Institute of Physics. [S1054-1500(00)02001-2]

Advection of passive tracers in open nonstationary flows
is an interesting phenomenon because even in simple
time-periodic velocity fields the tracer particles can ex-
hibit chaotic motion, and tracer ensembles display pro-
nounced fractal patterns. As an illustrative numerical ex-
periment we analyze a model of the von Karman vortex
street, a time-periodic two-dimensional flow of a viscous
fluid around a cylinder. First, we consider the problem of
passive advection, and discuss the chaoticity of the par-
ticle dynamics and its relationship to the appearance of
fractal patterns. Then we include weak diffusion and
show that this leads to a washing out of the fine-scale
structure below a critical length scale, while still preserv-
ing fractal scaling above this scale. Finally, we study how
chemical or biological processes superimposed on open
flows are influenced by the properties of the underlying
nond.ffus.ve pass.ve advecfon. We present an elemen-
tary der.vat.on of the reaction equation that describes
accumulation of products along the unstable manifold.
Moreover, the similarity of this fattening of a fractal to
that due to diffusion is discussed and analyzed, and our
method is compared with the traditional description via
reaction-advection-diffusion equations.

I. PASSIVE ADVECTION IN OPEN FLOWS

The advection of particles by hydrodynamical flows has
attracted recent interest from the dynamical system
communitv 1~32

I f a d v e c t e d p a r t i c l e s t a k e o n t h e v e l o c i t y o f m e flow v e r y

rapidly, i.e., inertial effects are negligible, we call the advec-
tion passive and the particle a passive tracer. The equation
for the position r(f) of the particle is then

r—v^r, j , (i)

where v represents the velocity field that is assumed to be
known. The tracer dynamics is thus governed by a set of
ordinary differential equations, e.g., like those of a driven
anharmonic oscillator, whose solution is typically chaotic.

A w i ^ f e a t u r e o f c h a o t i c advection in time-dependent
^ Compressible flows is that the fractal structures
characterizing chaos in phase space become observable by
^ ^ ^ ^ {om Q{ $ ,_4 ^ ^ ^

t h e f e e x i s t s a streamfunction ^ {x,y) (Ref. 33) whose de-
rivatives c a n b e i d e n t i f i e d w i t h t h e v e l o d t y c o m p o n e n t s a s

x

di/'fl(,)(x,y)
y

(2)
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and whose level curves provide the streamlines. The sub-
script /u.(t) indicates the set of all parameters determining the
streamfunction, which is generally time dependent. Note that
Eq. (2) is a consequence of incompressibility because it im-
plies V - v = 0 . Combining Eq. (2) with Eq. (1) for a planar
flow, where r=(x,;y) and \=(vx,vy), one notices that the
equations of motion have canonical character, with
ft^,)(x,y) playing the role of the Hamiltonian and x and y
being the canonical coordinates and momenta (or vice versa),
respectively. Thus, the plane of the flow coincides with the
particles' phase space. This property makes passive advec-
tion in planar incompressible flows especially interesting and
a good candidate for an experimental observation of patterns
that are typically hidden in an abstract phase space. In sta-
tionary flows when ft is independent of t, the system (1) and
(2) is integrable and the particle trajectories coincide with the
streamlines. In time-dependent cases, however, particle tra-
jectories and streamlines are different, and the former ones
can only be obtained by solving Eqs. (1) and (2) numerically.

Here we consider passive advection in open flows. This
means that there is a net current flowing through the obser-
vation region where the velocity field is time dependent. In
the far upstream and far downstream regions the flow is con-
sidered stationary. In such cases complicated tracer move-
ments are restricted to a finite region. This will be called the
mixing region outside of which the time dependence of ft is
negligible. It is worth emphasizing that a complicated flow
field (turbulence) inside the mixing region is not required for
a complex tracer dynamics or for the appearance of fractal
patterns. Even simple forms of time dependence, e.g., a pe-
riodic repetition of the velocity field with some period T, is
sufficient. However, the periodicity of such flows allows for
a simpler presentation of the chaotic advection dynamics via
the so-called stroboscopic map. It is a discrete map M^ de-
fined by the sequence of snapshots taken at time instants
separated by T connecting the coordinates (xn ,yn) of the
particle at snapshot n with those at the next one as

Since the parameters of the flow are time periodic with T, the
parameters /x on the snapshots are n-independent, and hence
the map is autonomous. Due to the incompressibility of the
flow, map M^ is area preserving.

The complicated form of trajectories implies a long time
spent in the mixing region. In other words, tracers can be
temporarily trapped there. It is even more surprising, how-
ever, that for very special initial tracer positions nonescaping
orbits exist. The simplest among these orbits are the periodic
ones with periods that are integer multiples of the flow's
period, T. All the nonescaping orbits are highly unstable and
possess a strictly positive local Lyapunov exponent. Another
important feature of these orbits is that they are rather excep-
tional so that they cannot fill a finite portion of the plane.
Indeed, the union of all nonescaping orbits forms a fractal
cloud of points on a stroboscopic map. This cloud is moving
periodically with the flow but never leaves the mixing re-
gion.

Typical tracer trajectories not exactly reaching any of the
nonescaping orbits are, however, influenced by them. They

follow some of the periodic orbits for awhile and later turn to
follow another one. This wandering among periodic (or,
more generally, nonescaping) orbits results in the chaotic
motion of passive tracers. Indeed, as long as the tracers are in
the mixing region, their trajectories possess a positive aver-
age Lyapunov exponent X. Hence the union of all nonescap-
ing orbits is called the chaotic saddle. It has a unique fractal
dimension £)<)

saddle> on a stroboscopic map, independent of
the time instant at which the snapshot is taken.

While many of the tracers spend a long time in the mix-
ing region, the overwhelming majority of particles leaves
this region sooner or later. The decay of their number in a
fixed frame is typically exponential with a positive exponent
K (<X) , which is independent of the frame. This quantity is
the escape rate from the saddle (or the mixing region). The
reciprocal of the escape rate can also be considered as the
average lifetime of chaos, and therefore the chaotic advec-
tion of passive tracers in open flows is transient chaos.34

The chaotic saddle is the set of nonescaping orbits which
tracer particles can follow for an arbitrarily long time. Each
orbit of the set, and therefore the set as a whole, has a stable
and an unstable manifold. The stable manifold is a set of
points along which the saddle can be reached after an infi-
nitely long time. The unstable manifold is the set along
which particles lying infinitesimally close to the saddle will
eventually leave it in the course of time. Viewed on a stro-
boscopic map, these manifolds are fractal curves, winding in
a complicated manner. By looking at different snapshots of
these curves we can observe that they move periodically with
the period T of the flow. Their fractal dimension D o (1
< D 0 < 2 ) is, however, independent of the snapshot. [The
stable and unstable manifolds have identical fractal dimen-
sion due to the tracer dynamics' time reversal invariance, and

dd1)

The unstable manifold plays a special role since it is the
only manifold which can be directly observed in an experi-
ment. Let us consider a droplet (ensemble) of a large number
of particles which initially overlaps with the stable manifold.
As the droplet is advected into the mixing region its shape is
strongly deformed, but the ensemble comes closer and closer
to the chaotic saddle as time goes on. Since, however, only a
small portion of particles can fall very close to the stable
manifold, the majority do not reach the saddle and start flow-
ing away from it along the unstable manifold. Therefore we
conclude that in open flows droplets of particles trace out
the unstable manifold of the chaotic saddle after a suffi-
ciently long time of observation. This implies that classical
flow visualization techniques based on dye evaporation or
streaklines trace out fractal curves (unstable manifolds)
which are different from streamlines or any other character-
istics of the Eulerian velocity field (for several flow visual-
ization photographs of this type, see Ref. 35).

A classical result, valid for any transient chaotic motion,
relates the dynamical quantities to the fractality of the
manifolds.36'34'37 Applied to our particular problem, it im-
plies that the information dimension Dt of the manifold is
uniquely related to the average Lyapunov exponent X around
the chaotic saddle and the escape rate K:
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K

X '
(4)

This formula says that the unstable manifold's dimension is
smaller than the plane's dimension by an amount given by
the ratio K/\ of two dynamical rates, or two characteristic
times. Since the fractal dimension Do of the manifold is
typically very close (from above) to Dx, Eq. (4) also pro-
vides a fairly good estimate of Do.

The derivation of Eq. (4) is based on the observation that
if we cover the unstable manifold in a given region with
boxes of linear size e and color the covered area A, the
colored area A' staying inside the preselected region after
some time r will be smaller by a factor of exp(—KT) due to
escape. Simultaneously, the covering will be narrower due to
the convergence along the stable direction towards the un-
stable manifold. Therefore we write that the new box size is
e' = eexp(—XT) where —X is the average negative
Lyapunov exponent. By this we are considering boxes which
are typical with respect to the natural measure34 on the
saddle and so their number N(e) scales as e~DK This expo-
nent D j is somewhat smaller than the fractal dimension de-
termining the scaling of all the covering boxes. Since, how-
ever, our boxes are typical, the total covered area is A
~e2~D> and A' ~e'2~Dl up to corrections which are negli-
gible in the small e limit. By inserting the relation between
the box sizes and the areas, we find that Eq. (4) holds irre-
spective of T.

It is worth emphasizing the usefulness of a further, inde-
pendent characteristic, the topological entropy KQ of the cha-
otic saddle. It can be interpreted25'11'38 as the growth rate of
the length L(t) of material lines or of the droplet perimeters
in a fixed region of observation as a function of time t:

L(t)' (5)

for asymptotically long times. In spite of the very natural
measurability of these lengths in passive advection, the use
of topological entropy is not yet widespread. The quantity Ko

provides an upper bound to the metric entropy Kx which
turns out to be the difference between the Lyapunov expo-
nent and the escape rate:36'34

K03ZK1 = \ - K . (6)

The average Lyapunov exponent can also be expressed as the
average growth rate of In L{t) around the chaotic saddle. The
difference between Ko and X is due to the difference be-
tween the logarithm of an average and the average of a loga-
rithm.

Next, as a paradigm of two-dimensional viscous flows
around obstacles, we consider the case of the particle motion
around a cylinder. We work in a range of parameters where
a von Karman vortex street exists, and vortices are detaching
from the upper and lower halves of the cylinder with a period
T. Experiments carried out in this flow proved the existence
of unstable periodic orbits and of a fractal unstable
manifold.39 This problem has also been investigated numeri-
cally in great detail.21"25 For simplicity we take an analytical
model for the streamfunction introduced in Ref. 24. It de-
scribes the flow when only two vortices are present in the

wake of the cylinder at any instant of time and these vortices
alternate when separating from the cylinder. The form of the
analytical model is motivated by the results of a direct nu-
merical simulation of the Navier-Stokes equations at Rey-
nolds number 250, reported in Ref. 23. The dynamical and
geometrical parameters \,K,K0, and Do are functions of the
Reynolds number. The wake of the cylinder plays the role of
the mixing region.

It is worth emphasizing that relations (4) and (6) are
valid for hyperbolic chaotic saddles only. The chaotic
saddles in advection problems typically also contain nonhy-
perbolic components. One source of them can be KAM tori
generated by the Hamiltonian problem (1) and
(2) 10-12,14,15,26 I n the w a k e o f t h e c y l i n d e r > however, they

can hardly be observed.24'39 The applied resolutions suggest
that they are certainly not present on dimensionless length
scales above 10~4. Another, independent source is the sur-
face of the cylinder. It acts as a union of parabolic orbits, and
hence as a smooth torus, which is also sticky. Close to the
surface, i.e., in the boundary layer, this stickiness leads to an
immediate power law decay,24 but further out in the wake
exponential decay can be observed over more than 15 peri-
ods. Thus, the advection problem in the wake can faithfully
be described over a long time span as if the saddle was fully
hyperbolic. Thus, (4) and (6) can safely be used in this con-
text.

Figure 1 displays the unstable manifold of the chaotic
saddle taken at different snapshots within one period. The
radius R of the cylinder and the period T of the flow are
taken as the length and time units. The construction is based
on the mathematical definition of the unstable manifolds,
therefore what we see are infinitesimally thin lines. As a
comparison, Fig. 2 illustrates the droplet dynamics men-
tioned above. It shows the shape of an originally compact
droplet as time goes on. We can observe that after a suffi-
ciently long time the droplet traces out the unstable mani-
fold. Due to the finite number of particles, however, the cha-
otic saddle cannot be reached exactly, and the number of
particles in the wake tends to zero in the long time limit.
Permanent fractal patterns can only be observed if there is a
continuous inflow of tracers in front of the cylinder.

II. DIFFUSION AND RANDOM FLOWS

The effect of molecular diffusion on passive advection
can be taken into account by considering, instead of Eqs. (1)
and (2), their stochastic counterparts augmented by Langevin

terms:
.3,17

dy dx
(7)

Here i-z, £,y represent, in the simplest case, uncorrelated,
Gaussian noises with white autocorrelation functions:

t'), (8)

y y t'), (9)

where D is the molecular diffusion coefficient and is as-
sumed to be isotropic in the plane.
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FIG. 1. Snapshots taken on the unstable manifold of the chaotic saddle at times t=0,5,5, i n t h e w a k e °f t n e cylinder. This fractal pattern is time
periodic with the period of the flow. t=0 is the instant when a vortex is bom close to the first quadrant of the cylinder surface. The length is measured in units
of cylinder radius R.

In the case of time-periodic flows this leads to a noisy
stroboscopic map taken with the period T of the flow

(^»+i .3 '»+ i )=^^» .y B ) + (&.».f,.«). do)

where the noise terms ^ > n , | y > n obey similar characteristics
as their continuous counterparts. The autonomous property
of the map is broken due to the appearance of additive noise:
the full map depends on the snapshot taken, i.e., on n. Fur-
thermore, it is no longer exactly area preserving.

Let us now qualitatively formulate how molecular diffu-
sion modifies the behavior around the filaments of the un-
stable manifold, assuming the case of weak diffusion. One
then expects to see diffusive effects on small scales only.
This implies that the convergence of a droplet towards the
unstable manifold can be observed similarly as without dif-
fusion, but not up to infinite accuracy. If a filament is locally
covered by particles in a sufficiently narrow band of width 8,
this width can change in time due to two competing effects.
It tends to broaden because of diffusion, but also shrinks
because of the contraction along the stable direction, i.e.,
perpendicular to the filament. These effects result in a certain
time dependence of 8 which leads to a steady state in which
the two effects exactly compensate each other.

To see this qualitatively, let us follow the evolution of
the filament width Sn over a time interval T. It increases to
(82

n + 2DT)m according to the usual spreading due to diffu-
sion, multiplied by the typical shrinking factor exp(—\T). SO
all together the new width is

8n + l = {82
n + 2Dr)me-^. (11)

This equation has obvious steady solutions. By requiring that
S' = 8=8* we find

8* =
2DT

(12)

corresponding to a limit cycle behavior repeating itself after
time intervals T. The flow in the wake of the cylinder is time
periodic with T but, since it is reflection symmetric with
respect to the x-axis after a time shift of 772, we expect a
steady solution for the diffusive case with T=T/2.

The solution is simpler if X T< 1, formally correspond-
ing to the limit T,T—>0, since then

m

. (13)

The asymptotic solution is then strictly constant in time, and
appears to be a fixed point of the ^-dynamics. This formula
can be used as a first guess for the filament width even for
finite values of T since Eq. (12) can be written as -jD/\
multiplied by a dimensionless function of X.T. Both cases
illustrate that the coverage of the manifold's filaments fol-
lows a dissipative ^-dynamics, in spite of the Hamiltonian
character of the original passive advection problem [Eqs. (1)
and (2)]. This dynamics can also be expressed in terms of a
differential equation in the limit r—>0:

o
(14)

This describes a solution in which the coverage of the fila-
ments by tracers is changing in time in a periodic fashion

which has (13) as its steady-state solution. Irrespective of the
form of the advection dynamics, we conclude that in the
presence of diffusion, the fractal scaling of the asymptotic
tracer distribution remains valid beyond the crossover dis-
tance 8* with the same dimensions Do or Dj as without
diffusion, but below 8* the distribution is smoothed out.

One can also estimate the time td needed to see the effect
of diffusion. Starting with a droplet of linear size of order
unity, the typical width of its filaments decreases as
exp(—\t). At td it reaches the size of ^Dl\ which yields
td~l/XlnD, i.e., the diffusion time depends logarithmically
on the magnitude of the diffusion coefficient.

Note that, although 8 converges to a steady state, the
material content does not. There is a permanent dilution in
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FIG. 2. The evolution of a droplet of passively advected tracers is shown at the time instances t=0,j,j,l,j,j,2, and 4. The initial droplet is a rectangle of
linear size 0.1X0.2, in x and y directions, respectively, and it is centered around x= — 2.5 andy = 0. It contains 20 000 particles. Note that the pattern traced
out after a short transient is similar to the corresponding patterns of Fig. 1. The coverage of the unstable manifold by the tracers is not perfect due to the finite
number of particles.

the covered region due to diffusion, and since the number of
colored particles decreases in the fixed region of observation
as exp(—Kt), their concentration also decreases with this rate
asymptotically.

Next, it is worth contrasting the case of diffusion with
that of nondiffusive passive advection in a random flow. By
random we mean that the flow parameters fi entering the
streamfunction t// are not constant in the course of time but
fluctuate around their mean /x, i.e., fi(t) = (i+ S/n(t), where
Sfji(t) is the fluctuation. In our particular example of the
flow around a cylinder, this can be realized either by letting
the cylinder fluctuate randomly but slowly around its original
center with some small amplitude, or, more naturally, by
going to higher Reynolds numbers where the detachment of
vortices is no longer strictly periodic, but rather modulated
with a nonperiodic, chaotic component. Thus, the case of
flows where the velocity field is changing chaotically in time
can also be considered as a random flow. In any case the
instantaneous streamlines are smooth, i.e., the flow is far
from turbulent.

By considering snapshots of the passively advected par-

ticles with some sampling time r (which can be completely
independently chosen from the original period T of the flow)
one finds a map MM which connects the particle positions

(xn>yn) a n d (*K + i ,yn+i) o n t w 0 subsequent snapshots in
the form of

(15)

Map (15) is area preserving. It further differs from (10) not
only in the nonadditive character of the noise, but more im-
portantly in the fact that all advected particles feel the same
realization of the flow at a given instant of time, while the
additive noise in (10) is considered to be independent for any
particle. More generally, map (15) expresses the randomness
of the velocity fields, i.e., randomness in the Eulerian pic-
ture, while map (10) describes stochasticity in the advection
process, i.e., in the Lagrangian picture for exactly periodic
flows. They are both extensions of map (3) for different
types of random perturbations.

If the fluctuations of the parameters can be considered to
be taken with a stationary probability distribution, i.e., if the
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probability P(S/x) of the parameter fluctuations is time-(n)-
independent, then map M^ is called a random map. Note
that the particular form of the distribution P(S/JL) (e.g.,
Gaussianity) does not need to be specified. The stationarity
can be insured if the flow has some structural stability and if
the observational time is sufficiently long. These criteria are
met by the examples mentioned above.

The theory of random maps has been originally worked
out in the context of dissipative systems,40 and applied to
flows in closed containers.41 This approach has recently been
extended to advection in open flows42'43 which implies the
use of open area-preserving random maps. We note, in pass-
ing, that if the condition of stationarity is not fulfilled, i.e.,
either structural stability of the flow, or long observational
times are not available, the theory of random maps is not
applicable. In such cases the advection dynamics is not cha-
otic, and hence beyond the scope of the present article; how-
ever, concepts of dynamical systems can usefully be applied
to characterize such advection.44

The motion of individual particles in random maps is as
"random looking" as that of diffusive particles. By consid-
ering however ensembles of particles which are in this case
subjected to the same realization of the random flow, one can
uniquely define chaos characteristics (like X, K, and Ko),
which are to be treated as averages over all realizations (or
over sufficiently long times). Perhaps even more surpris-
ingly, tracer patterns converge towards fractal objects, and
the analogs of the chaotic saddle, as well as of its manifolds
can be defined. Moreover, for the information dimension D x

of the analog of the unstable manifold Eq. (4) turns out to
remain valid.42'43 Thus, for ensembles of nondiffusive trac-
ers, the behavior is very similar to that in time periodic
flows, and, in spite of the randomness, an exact fractal scal-
ing holds without any lower cutoff due to noise. [Note that
for ensembles of diffusive tracers described by map (10) the
fractality of droplet patterns is washed out below the cutoff
scales (12) or (13).] It is worth mentioning that advection by
random flows, especially by chaotically moving point
vortices,43 is reminiscent to advection by two-dimensional
turbulence,45 at least on finite time scales.

III. CHEMICAL ACTIVITY

We showed in the previous sections that the fractal un-
stable manifold is the avenue of long-time propagation and
transport of passive tracers in open flows. It is natural to
expect that this object also plays a central role if the tracers
are chemically active and can react with other tracers or with
the background flow. The problem of chemical reactions in
imperfectly mixed flows attracts ongoing interest46'47 and has
important applications to environmental chemistry.48

For our discussion let us assume that the activity of the
advected particles is some kind of "infection" leading to a
change of properties if particles come close enough to each
other. Particles with new properties are the products. For
nondiffusive tracers, an enhancement of activity can be ob-
served around the chaotic saddle and its unstable manifold
since it is there where the active tracers spend the longest
time close to each other. Then, as the products are passively

advected, they trace out the unstable manifold. (The en-
hancement of activity is meant in comparison with noncha-
otic, i.e., stationary flows.)

To be specific, we consider a simple kinetic model49

where two passively advected particles of different kind un-
dergo a reaction if and only if they come within a distance a.
The distance er is called the reaction range, and, as we see
later, can also be considered as a diffusion distance. We
study (cf. Refs. 50 and 51) an auto-catalytic process A + B
—>2B in which component A is the background material cov-
ering the majority of the entire fluid surface. For computa-
tional simplicity we assume that the reactions are instanta-
neous and take place at integer multiples of a time lag r.
Thus, a and r are the two new parameters characterizing the
chemical process.

Figure 3 displays the results of a numerical simulation
showing the spreading of a small droplet of B (black) in the
course of time. The background is considered to be covered
by A (white). Note the rapid increase of the B area and the
formation of a filamental structure. After about four periods,
the chemical reaction takes on the period of the flow and
reaches a steady state. In this steady state, the reaction prod-
ucts are apparently distributed in strips of finite width along
the unstable manifold, and the B particles trace out a station-
ary pattern on a stroboscopic map taken with the period T of
the flow. On linear scales larger than an average width e* the
B distribution is a fractal of the same dimension Do or Dy as
the unstable manifold of the reaction-free flow.

Next we present a simple theory, a slightly extended
version of the one given in Refs. 50 and 51 (where the un-
stable manifold was assumed to be a monofractal with Do

= DX). The basic observation is that after a sufficiently long
time, the filaments of the unstable manifold will be covered
in narrow strips by material B due to its autocatalytic pro-
duction. The product is distributed on a fattened-up unstable
manifold. Let en denote the average width of these strips
right before reaction takes place. The effect of the reaction is
then a broadening of the width by an amount proportional to
the reaction range cr: sn^>sn + ccr. Here c is a dimension-
less number expressing geometrical effects. It turns out to be
slightly time dependent, but for simplicity we consider it to
be constant in what follows. In the next period of length T
there is no reaction, just contraction towards the unstable
manifold. Therefore, the width sn+l right before the next
reaction can be given as

(16)

This is a recursive map, for the actual width of the B-strips
on snapshots taken with multiples of the time lag r. Its so-
lution converges to the fixed point

(17)
eX7 - \

In the time-continuous limit r—>0, a—>0, but keeping a IT
= vr constant, one obtains the differential equation:

= CVr— (18)
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FIG. 3. Time evolution of autocatalytic tracers is shown at the time instances t=O,j,^,l,j, j , 2 , and 10. The initial droplet is the same as in Fig. 2. The pattern
traced out after reaching the stationary state is a fattened-up copy of the unstable manifold, which is the skeleton of activity. The chemical model parameters
are <r=0.005 and T = 0 . 2 . The simulation was performed on a rectangular grid of size 0.005.

Here vr can be interpreted as a reaction velocity. The reac-
tion is tending to broaden the width, while convergence to-
wards the unstable manifold produces shrinking. These two
effects are competing, and when compensating each other,
they lead to the steady solution

cvr (19)

At this point, it is worth making a comparison to the
effect of diffusion in reaction-free flows. Both reaction and
diffusion lead to a broadening, expressed in the similarity
between Eqs. (11) and (16), (14) and (18), and also between
the steady state results (12) and (17), (13) and (19). The
latter suggest the correspondence D<->cr2/r in the discrete
time version, and D<-»i;2/X in the continuous time limit.
This implies that the reaction range or reaction velocity plays
a similar role as diffusion in reaction free flows. Note, how-
ever, that in contrast to the latter case, there is no dilution in
the chemical model due to the reaction.

An important consequence of the s-dynamics is the time
evolution of the area AB occupied by particles 5 in a fixed
region of observation. This area scales as AB**e2~Dl with

D] as the information dimension of the unstable manifold
[cf. the derivation of (4)] for any box size e not shorter than
the width e of the 5-strips. We can thus choose e=e
« s ^ 1 / ( 2 ~ D l ) , and rewrite (18) so that it represents an equa-
tion for the area:

AB=-KAB

KVr _,
AB1-

A

Here

(20)

(21)

is a nontrivial exponent. Since the manifold's dimension lies
between 1 and 2, and # i > 0 , the exponent /3 is typically
positive. For D0=Dl = l the differential equation (20) de-
scribes a classical surface reaction along a line with front
velocity vr in the presence of escape. For K D j < 2 it rep-
resents a novel form of reaction equations containing also a
negative power of concentration due to the fractality of the
unstable manifold. Such processes are generalizations of
classical surface reactions.33 The enhancing reaction term
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with a negative power of the area occupied by B is due to the
fractality of the unstable manifold. The less B material is
present, the more effective the reaction is, because the re-
solved perimeter is larger. Thus the manifold effectively in-
creases the free surface area where the reaction takes place
and thus acts as a catalyst.

Let us finally sketch how the effect of molecular diffu-
sion would modify the results. In such a case one expects the
combination of (14) and (18) to hold, i.e., the differential
equation

D
cvr-\ \s

E

(22)

for the width of the B-strip covering the unstable manifold.
Here D is the molecular diffusion coefficient. This equation
also possesses a steady-state solution with a constant s*.
Around this state the solution is similar to that of (18) with
an effective reaction velocity

D
Vr,ett=Vr+ - •

ce*
(23)

Thus close to the steady state, the inclusion of diffusion only
renormalizes the effect of the reaction velocity.

Alternatively, one can also consider the stochastic ver-
sion of (18) by adding a Gaussian white noise term £ with
autocorrelation strength 2D to the right-hand side. The same
derivation which led to (20) then yields (see also Ref. 51)

AB=-KAB+-AB
l3(cvr+£), (24)

which is a nonlinear Langevin-type equation with multipli-
cative noise. This indicates that on the macroscopic level, for
the total area of B, the noise appears in a nontrivial fashion,
and its effect is enhanced by fractality via the prefactor

IV. BIOLOGICAL ACTIVITY

Our discussion on chemical reaction in open flows can
be naturally extended to population dynamics models pro-
vided the species' advection can be approximated with the
passive tracer model. In such cases, we expect that different
species accumulate along the unstable manifold of the pas-
sive advection problem. Here we consider a particular prob-
lem of several different species competing for the same re-
source. According to the classical theory, the number of
coexisting species can at most be equal to the number of
independent resources, if the environment is well stirred and
homogeneous.52 It is well known that in plankton communi-
ties the number of coexisting species can be much larger
than that of the resources. In the wake of an obstacle we
expect that several species can coexist in spite of competing
for a single resource. This would be again a deviation from
classical results due to the fractality of the unstable manifold.
In fact, our model53 may also shed some new light on this
apparent contradiction between empirical and theoretical
studies, sometimes called the "plankton paradox."52

Our competition dynamics for a single background ma-
terial A is a simple model of replication and competition with

point like particles (species) of type B and C. There is a
constant inflow of material A into the system on the entire
surface of the flow. Species B (C) catalyzed by material A
reproduce instantaneously at time intervals r only if their
centers come within a distance crB (ac) to particles of type
A. Due to the open character of the flow, the particles will be
drifted downstream, therefore leaving the mixing region of
the wake with escape rate K. In addition, there is a sponta-
neous decay of individuals to A with mortality rates SB and
Sc. Two autocatalytic processesA+B-> r«2B, B-*SBA and

A + C—> yc2 C, C—> ScA describe thus replication and compe-
tition. Material A is the common limiting resource for both
species B and C.

In our numerical experiment, we place two droplets of
organisms from species B and C into the flow in front of the
cylinder. We find that both species B and C are pulled onto
the unstable manifold of the chaotic set, as their initial posi-
tions overlap with its stable manifold. Thus, both species B
and C are trapped in the wake, and are accumulated along the
filaments of the fractal unstable manifold. This leads to an
enhancement of their activity, with both of them having in-
creased access to the background A for which they compete.
Along the fractal unstable manifold, B and C can be sepa-
rated quite efficiently by filaments of A. Due to the imperfect
mixing, the competition is reduced by spatial separation and
the survival is catalyzed by increased access to material A.
This leads to the coexistence of the competing species for a
wide range of parameter values.

Figure 4 shows a series of snapshots of the organisms in
the region of observation from the insertion of the droplets at
time ; = 0 to time f=20. The filamental structure shown in
Fig. 4 is reminiscent of the patterns found in mesoscale
plankton models.54"58

Note that in the asymptotic state species B covers the
surface of the cylinder, while species C occupies mainly the
wake. This shows that the actual number of individuals does
not only depend on the parameters but also on the initial
conditions. The mere fact of coexistence is, however, inde-
pendent of these in a broad range.

V. CONCLUDING REMARKS

Finally we summarize those features of the chemical and
biological activity which we believe are generally valid in
typical open flows.

(i) Active processes take place around the unstable mani-
fold of the passive advection's saddle. If the passive
advection is chaotic, the manifold is a fractal and con-
sequently active processes also lead to fractal pat-
terns.

(ii) Although the fractal manifold is of measure zero, due
to the chemical reaction (or population dynamics) the
amount of active tracers covering this manifold is fi-
nite. This implies that the fractality can be observed
on length scales larger than the average width of the
fattened-up manifold.

(iii) On one hand, the fractal skeleton results in an in-
crease of the active surface and acts as a catalyst for
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FIG. 4. (Color) Time evolution of two competing species is shown at time instances t = O,j, J ,1 ,J , J,2, and 20. The initial position of species B (green) and
C (red) is a square of linear size 0.1 centered around x= — 2.5, y = — 0.05 and y = 0.05, respectively. The initially small droplets of species B and C are
eventually pulled along the unstable manifold. The stationary state is reached after a short time: the last two snapshots (taken a u = 2 and ;=20) are almost
the same. Species C (red) occupies also the boundary layer around the cylinder, while B (green) is trapped mainly on the chaotic set in the wake. The model
parameters are <rB= fjQ, u c = JQQ, 5g=0.5, <5c=0.0001, and r= j . The simulation was performed on a rectangular grid of size 0.001.

the growth process. On the other hand, different spe-
cies are separated efficiently along the fractal mani-
fold decreasing competition.

(iv) The derivation of reaction (or population dynamics)
equations is similar to that of the macroscopic trans-
port equations from microscopic molecular dynamics.
The presence of the ever-refining fractal structures
generates new terms in the macroscopic equations,
leading to interesting new effects like singular source
term in the reaction equation.

(v) The macroscopic equations describing the active pro-
cess typically reach a steady state synchronized with
the background flow's temporal behavior. If more
than one species is present, coexistence is typical in
the steady state for a wide range of parameter values.

We emphasize that our method of studying activity in
open flows is based on a fully deterministic approach of pas-
sive advection. It is described by means of ordinary differ-
ential equations. Nevertheless, we are able to study complex

spatial patterns which is due to the fact that the phase space
of Eqs. (1) and (2) coincides with the geometrical space (the
only example of this sort to our knowledge). In order to see
these spatial patterns we use ensembles of particles, corre-
sponding to droplets in the hydrodynamical context. As
pointed out here, even effects similar to that of diffusion can
be described by the inclusion of an interaction range or re-
action velocity. In this approach Lagrangian characteristics,
like Lyapunov exponents, entropies, and dimensions seem to
be natural parameters of the processes. It is of interest to see
how this approach is related to the more traditional one
based on partial differential equations describing reaction-
advection-diffusion effects, and carrying Eulerian parameters
like shears or diffusion (see e.g., Refs. 46, 48, and 56-59).
This problem clearly needs further investigation.
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