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Outline

1. Passive Reaction Advection Diffusion (PRAD)
2. Active Reaction Advection Diffusion (ARAD)

Equations

OT +u-VT — kAT = Lg(T)n
Om+u-Vn—An=—1g(T)n
x thermal diffusivity, Le Lewis number. Le =
1 is special: n 4+ T conserved.

1
Ty+u-V T — kAT =~ f(T)

f(T)=9(T)1-T)
The velocity

u = u(x,t)

is either given ( = PRAD), or it is coupled (=
ARAD) via Boussinesq:

ou—+u-Vu—vAu+ Vp = gaesT
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e How do different flows affect bulk front speed
in PRAD?

e Which flows quench PRAD?

e What is the effect of active coupling on bulk
front speed in ARAD 7

e What is the effect of active coupling on sta-
bility of fronts in ARAD?



Bulk Burning Speed
The domain: D = [0, L] X (—00, 00).
Tt+u-VT—/<;AT:if(T)

T is normalized 0 < T'(z, 2,t) < 1.
T(x,—o0,t) =1, T(xr,00,t)=0.

T satisfies Neumann lateral boundary condi-

tions. Reaction of KPP type: f(T) = T(1 —
T'). Reaction of ignition type f(T) = 0, T €
0,680], f(1)=0.Advection by incompressible
ambient fluid:

V- -u=0.

Fisher (1937) and Kolmogorov, Petrovsky and
Piskunov (1937)for v = 0. Traveling fronts,
with minimal speed vy.



vy — laminar front speed,

ug — rms turbulent velocity,

ur — effective turbulent front speed

Ap, Ap — turbulent and laminar front areas

ur Ar
Vo AL '

Ur = ur/vy, U = ug/vy. Physical predictions:
Shchelkin (1943): Up = (14 BU?)Y/?
Clavin-Williams (1979): U < 1, Up =1 + U?
Kerstein-Ashurst (1992): U < 1, random, then
Ur=1+U"?
Yakhot (1988): Ur = exp(U?/U%) from G equa-
tion:

Gi+u- VG = 1| VG|.
Pocheau (1994): Up = (1 + BUY)Y for scale-

invariant flows

Shy, Ronney, Buckley, Yakhot (1992), Abel, Celani,
Cencini, Vergni, Vulpiani (2001):
Ur = exp(U/Ur) for an array of vortices.



Homogenization approach.
Freidlin (1979-85): kK = € — 0. In the limit - ef-
fective Hamilton-Jacobi equation for the front.
Majda, Souganidis (1994): u allowed to depend
on K =€: U =V + V%, 5), 0 <a<l.
Implicit predictions: for shear flows perpendic-
ular to the front, the added speed is roughly of
the order of the speed of advection.

Traveling waves.
Traveling waves for u # 0.
Berestycki, Nirenberg (1992): traveling waves
U(x — ct,y) for shear flows.
Berestycki, Larrouturou, Roquejoffre (1992): study
of stability.
Xin (1992-93): in periodic flows, U(x — ct, x, y)
periodic in the second coordinate, but for dif-
ferent (not KPP) reaction term.
No estimates on the velocity. Berestycki, Hamel
(99): Pulsating flows.



Bulk Burning Speed

T
P, 2 O dad
143 rdz
Note, from PDE:
V(t) = - [ f(T(a, 2, t))ded
= TLD €T. 2 raz

Note also: if T'(z,2,t) = P(x,z — ct) then
V(t)=c



Theorem 1 (CKR, 99) Arbitrary initial data,
KPP nonlinearity. The bulk burning speed
satisfies:

V(t) > Cu (1 — 6_%> .

Lemma 1 (CKR, 99) Assume T (x, z,t) sat-
1sfies
0<T <1,

T(x,—oc0,t) =1, T(r,00,t) =0 for any x € [0, L].

Then there exists a constant C' > 0 depend-
ing only on f, such that

Q’ f(T) dxdz) (g VT2 dxdz) > CL*

10



Idea of proof

zgf(T)dmdz <00, VT dzdz < .
Jdx € [0, L] such that

[ f(T(e, 2 0)dz < & [ f(T)dudz
R A
and also
JIVT(, 20 de < 5 9T dud

hold. Let € > 0 and let C' be a positive constant
determined by the condition

! inf f(0)=C

€ e,1—¢

Because of the boundary conditions on 1" and
continuity, 3z, zp such that T'(x, z,t) € [e, 1—
€|, Vz € [21, 29| and

T (2, 29,t) — T(x,21,t)| > 1 —€.
From the construction of C' we get:

f(T(z,2,t)) > Ce

11



for all z € [21, z9]. Integrating in z:
3
Celz1 — 2| < — [ f(T)dxdz. (%)
Lp

The gradient is bounded below:

20T (x, z,1) 2107
< _ il
L{ 3, dz| < |z Zgl\lz4 3 dz
and so
1—¢€? 3
|(Zl _22| </ IVT|* dzdz.  (x%)

Multiplying () and (*x*) we get the lower bound.

12



2. Time independent shear
flows

Let

Theorem 2 Let us consider a partition of
the interval |0, L] into subintervals I; = |c; —
hj,c; + h;] on which u(x) does not change
sign. Denote D_, D the unions of intervals

I; where u(x) > 0 and u(x) < 0 respectively.
Let

D D

o , m = .
D[+ |Dy] [D_|+[D.|

Then there exist a constant C7; > 0, inde-
pendent of the partition, of u(x), and of the
initial data Ty(x,y), so that for any

t > t) = max |,
UO ?}0

we have
(V) >

13



C s 1y _1/‘fﬂ'+@j| ()|
m —= U\ )| ——
e U egh3) el L
5 \—1 hs
K Cit dx
+m A L A “l
(P T o Tzl

3. Time dependent shear flows.

Take a time scale 7y. Given t, choose D, and
D_, unions of intervals in [0, H]. Set

J(t,To,U) =
2 \~1 t+7 h;

K 1 trtmo 0 dx
my, > |[1+——=| — [ dt[7 7 ulz,t)——
" 1.éh, vghs) T t/ /Cj—hTJ (@) L

2 \~1 t+7 h;
K 1ttt dx
m_ > |[1+——=| — [ dt|”7 2 ulz,t)—.
]jCD_ 'U(Q)h? 70 t/ /Cj—hTJ ( > L

Theorem 3 For any t, 79 we have the esti-
mate

4k H
227 .9
Uy Up

1
1 + —max
T0

<V>t+70 >

) <J<t,7'0,’LL)>t.

14



4. Percolating flows

Coordinate p along the streamlines, 6 is the
orthogonal coordinate.

Eidp® + E3df* = ds*.

Assumptions:

1. (LOC&D wl(ﬂ? 9) — E—l(pa 9)? wQ(pa 9) — %(,0, (9)
Should have:

C
wilp,O)] < C, [Veilp,0)] < -

2. (Global) The widths of the streams do not
oscillate too much.

Theorem 4 For any t > 1) = max (ﬁ —)
Yo

15



K2\ 7! o dp
L+ 17 . 0)| Eu(p, )|

m—_ >

]jCD_

Cellular flows

Berestycki-Pomeau, heuristic argument:

V ~ Al

Kiselev-Ryzhik, rigorous
V> CA%.

16



Quenching
Nonlinearity of ignition type: f(T) = 0if0 <
T < 6y. Velocity: time independent shear u =
u(z)e,, €} u(xr) = 0. Initial data: compactly
supported, above ignition. Width of support

(in z) of the order h. Physical domain: strip
(x,z) € D =0, L] x R. BC:periodic in .

0T + Au(z)T, — kAT = ~ F(T)
T

Laminar front width

2
§="" = wr
vo
Laminar front speed vy
T = 4Ky, 2
Definitions
e u € () (quenching): Vh, Ay, VA > Ay
tll)rgoT(a:,z,t) =0

uniformly.

euc H(J)if Vo € J3k, u¥)(z) #0.

17



Theorem 5 If u € H(|0, L)) then u € Q.

Theorem 6 da > 0, of J = [0, L)\ I, |I| <
ad, uw € H(J), and u; = c constant, then

u € Q.

Theorem 7 The set of quenching profiles u
contains an open dense subset of C([0, L]).

The three results above apply to systems:

T, + Au(x)T. = kAT + Lg(T)n
ny + Au(z)n, = £-An — Lg(T)n

Theorem 8 If |I| > b0 and u; = ¢ constant
then uw ¢ Q. More precisely, 3C, so that
if Ty > 6y on a region [0, L] X |zg, 20 + R,
with h > C9, then limy_T(x,2,t) = 1,
VA > 0,Vz € [0,L],Vz € R, uniformly on
compacts.

18



H implies quenching

Suffices dty > 0, such that
T(ZE‘, Z,to) < (90, \V/<33, Z> cD.

Indeed, by the maximum principle,

T < 907 Vi > tO)

and thus

T: + Au(z)T, = rkAT.
Note:

R(T)<T

SO t

T(x,z,t) < Oz, z,t)er
with

O, + Au(x)P, = KAD

with initial datum ®(x, z,0) = Ty(x, 2), peri-

odic in z.
oo

O(x,z,t) = | G(z— )V (z, ¢, t)dC

—00

19



where | ,
G(z,t) = ~dnt
(2,1) 47mt6

and
U, + Au(z)V, = kU,

with initial datum ¥(z,2,0) = Ty(x, z) and
periodic in z. (Fourier in z). Note:
[PCs - Bl oo draz) < NPEs - )] oo (deaz)

We assumed: v € H(|0, L]). The Lie algebra
generated by the vector fields 0, and 0;+u(x)0,
spans R? This implies (Hormander, Ichihara
and Kunita) that there exists a continuous tran-
sition probability density pa(x, &, z — (, t) such
that

Uz, 2, 1) j I pae, & 2= OTo(6, Q)dedC

Rescaling

1 z
pA(CU, 57 <, t) — Zp1<x7 57 Za t)

20



where pq is the transition probability density for

A =1. Thus
1
[ 5 )] oo (dadz) < C(t>Z||T0HL1(da:dz)

where
C<t> — Suppl(a:, 2 t)

Obtained: If 0 < Ty < 1issupported in [0, L] x
20 — 2, 20 + 2], then

T(z,z,t) < Per < eTC(t)[;{h.
Pick
A > C( )Lh.
0o
Fix t = 7. Then
Lh

T(x,z,7) < eC(T )A < 6.

21



Stability and genericity

We assume v € H(J) and [0, L] \ J is a small

interval (compared to d). Same construction as
before. We wish to show

0
U(z,z,7) < .
e

Let us split
TO('CE? Z) < XO(CC) + @Do(% Z)

where 0 < xo < 1is supported in a small inter-
val, containing the interval of constancy of wu,
but not more than twice its length |I|. We take
0 < ¢g(x,2) < 1 to vanish whenever x is in a
neighborhood of the interval of constancy of u.
It follows that

\Ij<x7 2 t) < X(ﬂ?, t) + ¢($7 25 t)
where x(z,t) and ¥ (z, z,t) are solutions of
(O + Au(z)0, — KOpz) Y =0

with the indicated initial data. Because y does
not depend on z, it is simply a solution of the

22



heat equation,

Xt — KXzx = 0
with L periodic boundary conditions in x:

(QWZ]:E 477'2/{]275)
X(z,1) = > Xo(J)e L2

jeZ
Note that, for all 7 € Z,
7]

0 < plol <27

Then

- C L
X(@, 1) = xol0) < FlIxollran 75

Choosing t = 7 we get

C 2 0o
- gy < =+ = < —
HX<7T>”L (d:c)—| ‘(5 —|‘L> =10
provided
o L) 10

has been prearranged. Now we bound ). Let us
pick a point xy € I so that [ C [xg—ad /2, xo+
ad /2], and arrange that yg(z, z) = 0 for z €

23



[z — 2a0, g + 2ad]. If x € [xg — ad, xy + ad]
then

Pz, t) < [ [ palz, &z — ¢ 1)dgdC

00 [§—x0[>2a6

< P{V2k|W(t)| > ad} < fg

where W (t) is one dimensional Brownian mo-
tion and ¢t < t; < 7 is chosen small enough.
Indeed, consider the SDE system

dX(t) = 2rdW (t), X(0) = ,
{ dZ(t) = Au(X (t))dt, z(0) = z.
Thus

Z(t) =z+ Ao/tu(:z: +V26W (s))ds

and the solution of (0; + Au(x)0, — KOy, = 0
with initial datum v is given by

(@, 2,t) = By . (Yo(X(1), Z(1)))

For x ¢ |xy — ad, xy + ad] we use the condi-
tion u € H(J). There exists a function u(x)
which coincides identically with u outside [z¢ —

24



ad /2,y + ad /2] such that « € H([0, L]). We
consider the processes X, Z associated to @ in a
similar manner. Consider the stopping time ;.
the first passage time when X|(t) enters [xg —
ad /2,y + ad/2]. Note that X(¢) is just one
dimensional Brownian motion with diffusivity
k starting from x, so the stopping time is well
understood. We have

Y(x, z,t) < P{(X(t),Z(t)) € suppi} =
P{(X(t), Z(t)) € suppy [t; > t}P(t; > )+
P{(X(t), Z(1)) € suppyy |tr <t} P(tr < 1)
P{(X(t), Z(t)) € suppyy |t; > t}P(t; > t)+
P{(X(t), Z(t)) € suppyo |t; < t}P(t; <t) <

P{(X(t), Z(t)) € suppyo}+
P(t; <t).
The Brownian motion needs to travel a distance

of at least ad/2 to enter, so we may choose t <
ty <ty small enough for

0o
Plt; <t) < —.
(tr <t) >0

25



On the other hand, the function

P{(X(t), Z(t)) € suppyo} = P(x, 2, 1)

satisfies the PDE with © and initial data the
characteristic function 14,y We may take A
large enough to have

bz, z,t) < 38

at t = t5. So
0o
T, 2,t) < —
w( Y Y ) — 10
at t = t9, and by maximum principle, for t > 2.
This implies that

v
Uz, z,7) <

and concludes the proof of stability.

The set of functions v € H([0, L]) is dense
in C([0, L]). Moreover, if & € H(|0,L]), then
there exits v > 0 so that if |u — @|| < v, then

u € Q.

26



Indeed: for u € H(|0, L]) there exists a con-
stant C' such that U(x, z,7) < 2 holds for all
initial data supported in a box [0, L] x [z —
H, zy+ H] provided H < C'A. Take now initial
data supported in a box |0, L] X [z — h, 2o+ h]
for the equation with Au with

~

heSa
2

Now
Z(t) = 2z + A [ ulx + V26W (s))ds

and thus )
Z(t) - Z(t) < Aut

holds almost surely. Choose v such that
C
T = —.
2
Then
V(x,z,7) < P{Z(t) € [20 — h, 20 + h]}
<P{Z(t)€l2—H,zn+H|} =
U(z, 2, 7)

27



where W corresponds to advection Aw, initial
data Lo, 1) x[20— H,29+H] and

H="h+Arv < CA.
Thus

. 0
U(x,z,7) < U(x,2,7) < 18

28



Reactive Boussinesq fronts

Reactive Boussinesq equations:

g:;Jrv-VerVp—l/Av:gAT@zv
V"U:O,
oL 0. VT —kVT = Lf(T).

The Boussinesq system has flat traveling wave
solutions

Ty =m(z —ct), v = 0.

The momentum equation holds because the pres-
sure can balance a temperature that depends
on z and t alone. The speed c takes all values
c > vy in the KPP case, and is unique in the
bistable and ignition case. The profile 7(z) is
monotonically decreasing in all three cases, and
obeys

1

k' + e’ + —f(m) =0,
T

dm

dz

where 1 =

29



Dimensional units: Space:

O = /KT

time
T.
m(z) = P(z/9)
with P obeying
P"+2¢P" + f(P) = 0.

Using these units, rescaling, using x = (x, 2) =
(xnewa Znew) — (xold/da Zold/5> and t = bnew =
tod/ T, and dropping tildes, we derive the non-
linear equations

Ow—+v-Vw—cAw = opd, T
OT +v-VT — AT = £(T)
where v = (u, w), with
Ow Ow
Au=——, Aw=
" 820 =7 on

30



Nondimensional parameters: Prandtl

number
v
o= —
K
Rayleigh number (across a laminar front width)
gAS?
P = :
KV

Boundary conditions

T(z,z,t) — 1as z — —o0,
T(x,z,t) — 0 as z — 400,
v(x,z,t) — 0, as |z| — oo.
w(zx,z,t) — 0 as |z| — 0.

The boundary conditions in z are periodic

T(x+ Nz t)="T(x,2,1t),

v(x+ A\ z,t) =v(x, 2, 1),

w(x+ M\ z,t)=w(x,z,1t)
with period

L
A=
5

31



General bounds
D =10,)\ xR.
1
lgllz2 = 5 [ lg(e, 2)|"dxdz
D

Bulk burning speed*
ol (x, z,1)

t dxd
Vi =5 | T v
From PDE:
_/D t))dxdz.
== gfotV s)ds

Consider the average quantities

/0 |w(-, )| pods

and

1
N(t) = [y IVT(,9)72ds

32



Theorem 9 (CKR 2002) Solutions with front-
like initial data obey

K, K
N(t)§01p2A5+Cz+(\/%+ tZ),

K; K
13+4

R

W (t) < C3p?X° 4 CypAP? +

and
lim sup V() < 2+ C5p*A\° + CepA’/?
t—00

with C; depending only on the nonlinearity
f, C and with Ky, Ky, K3, K, depending on
the witial data .

33



Lemma 2 Assume that there exists a con-
stant o € R so that the front-like initial data
To(x, z) obeys

Ty(x,z) < exp (a — z)

and

(1 —=Tp(z,2)) <expl(a+ z).
Then the solution obeys the bounds
T(x,z,t) <exp [oz — 2+ 2t + /Ot |w(-, S)HLOOCZS]
and
(1-T(x,z,t)) < exp [Cn +2z+1— /Ot |w(-, s)HLoodS]
for allt > 0.

Lemma 3 Consider front-like initial data. Then

the solutions obey
y

Vi) <W(it)+2+ n

for all t > 0 with v depending on the initial
data.

W (t) bounded below by N(t):

34



Lemma 4 Consider front-like initial data. Then
the solutions obey

[’
N(t) < 01W(t) + Cy + ?

with C; depending only on f and with I' de-
pending on the initial data.

The next step consists of bounding the quan-
tity W (t) in terms of N(t), using the vorticity
equation.

Lemma 5 There exists an absolute constant

C' depending on the nonlinearity f only, so
that for all t > 0 one has

W(t) < O {pAN(H + ol )

where wy(x, z) is the initial data for w(x, z,1).
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Ideas for proofs

For the bound of T" we seek a supersolution of
the form:

0.(z,t) =exp|—az+ /Ot |w(-, $)||eds + 2t + a].

For the bound of 1 — T we seek a subsolution
for T of the form

0_(2,t) = 1l—exp [z — [, |w(-,8)||=ds +t + a

and, using the fact that f > 0 on [0, 1], the
condition

00_
— 0_ — AO_ —
p +ov-V f(o-) <
follows. For the bound
V() S W(t)+2+

we write

/D (x,z,t) — To(x, 2)) ddz.

36



which we bound as

_/0 l/_o (1—=To(z,2)dz+ [, T(x z,t)dz],

using the fact that T'(¢, x, z) < 1. Now, denot-
ng
Bi(t) = a+ 2t + [ [|w(-, 8)|| p=ds

we have from the exponential upper bound ahead
of the front:

/B T(x,z,t)dz <1,
while, because T" < 1, we have
PO T (2, 2, t)dz < By ()

and this finishes the proof of the lemma. For
the lower bound

['
N(t) < 01W<t) + Oy + ;

we start by computing

d 1

T(1—
yr )\/ T)dxdz

37



_i/D(l — 2T (x, 2, ) f(T(x, z,t))dxdz =

2
_X/D VT (x, 2, t)|*dxdz.

Taking a time average we get
—/ (z,2,t)(1 — T(x, 2,t)) — To(x, 2)(1 — To(z, 2))) da

+V (t) > 2N (t).
We observe that
T (z,2,t)(1 = T(z, 2,t))dedz <
2 d—wf:f‘?“)@ T(x,z,t))dz

‘l‘fé\ d)\x fBlB(())le

+ 5w Tz, 2, t)dz,
where By(t) is given above and

By(t) = a+t+ [ |w(-,s)|L=ds.

We use

by

d
g —T(x,2,t)dz < 1,
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as follows from the bound at minus infinity.
Similarly,

I

The second term By (t )‘|‘BQ< ). Thus, returning
we have

2N(t) < V() +3+2W (L) + -

d
Ax/B t)dz <1

This finishes the lower bound proof. The up-
per bound of W in terms of v/ N is done using
energy estimates. We introduce

- d
T(2,t) = /(ﬁT(x,z,w%

and obtain

= —op [ 22 (T(z, 2, t) — T2, 1)) 2,

Using Young’s inequality together with the in-
equality

o dxdz o dxdz

A

In|T(x, z,t) — T(z,1)] <\ In |V (z, 2,t)]

39



we deduce

Y4 w(w, 2, 1) |22

o ip |Vw(z, z, t)[242E

o Ow(x,2,t) 2 dudz
2§2 2 ID ’ Ox ‘ A +
A 2 dxd
= ip |V (x, z,t)|” =7

Integrating in time we deduce
o dxdz
A

Let us represent the function w in terms of its
Fourier series

1 1
s fp [Vl z,0)F S5 < PN+ el

w(z, z,t) = ¥ wi(z,t)e™
k€4 Z

and note that, in view of incompressibility, wq(z, t)
is independent of z, and hence the boundary
conditions at z £ oo imply that

wy(z,t) = 0.
In view of the embedding inequality
lw(-, )]z < NP2V (-, 1) 2
the last lemma follows.
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Nonlinear stability of planar fronts
in narrow domains

Narrow domain: small aspect ratio A. The non-
linearity f is of either one of the three types:
KPP, ignition or bistable.

Theorem 10 (CKR 2002). There exist con-
stants C7 > 0 and Cy > 0 such that if X <
C1, and p < Cy/\?, then the only solutions
of traveling front type T = T(x,z — ct),v =
v(x,z — ct), are planar fronts of the form
T=P(z—ct),v=0.

The second result in this section is about ar-
bitrary solutions. We show that all solutions
of the Boussinesq system in a narrow domain
eventually become planar:

Theorem 11 (CKR 2002). There exist con-
stants C7 > 0 and Cy > 0 so that if A < C}
and p < Cy/X\?, then

lw(, )2+ || Te(-,t)|| ;2 — 0 ast — +o0.
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Moreover, the front speed is uniformly bounded:

limsup V(1) < 2.

t——+00

Linear instability

Linear instability of planar fronts with respect
to large wavelength perturbations. Galilean trans-
formation: z — z — vyt following the flat front.
We write T'(x, z,t) = w(z — vt) + O(x, z —
vot,t), and v(x, z,t) = v(x, 2z — vot, t). We lin-
earize:

00 00 / _ !
Frie 25 — A0 — f(P(2)0 = —wP'(2)

wd e 8 00
W W
97 AW = oo
ot 0 YT %Py
Infinite Prandtl number:
00
AW = o
W p@x’

which implies

w = —p(0,)2(—A) %
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We express 6(x, z,t) in terms of its Fourier
serles:
Oz, 2,t) = ¥ gu(z, t)e'™™.
k€4 Z
The linearized temperature equation transforms
Into

=22 (K = 0..) g — [ (P)gr, = pQK gy

with k& = 127”, iQZTW, ..., the operator K de-
fined by the Fourier transform
Kg=k (K —0..) g

and
Q(z) = —P'(z) > 0.
We take a positive wave number

2T
="
A

The operator K is given explicitly by a convo-
lution with a positive function

(Kg)(z) = 7 %14 klz — e Hlg()dc.
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It is well known that the profile P is decreasing
in the case of KPP, bistable and ignition non-
linearities so that the function () is positive.

Moreover
Q(z) > ae "

holds for all z, with @ > 0 and b > 0 absolute
numbers that depend only on the nonlinearity

f(T). Let us consider a function ¢(z) which
has the properties

okl < P(z) < eIl

with C' > 1 and
¢/ (2)| < Cke ™l |9 (2)] < Ck2e A
We obtain the ordinary differential inequality
S10(2)gr(z)dz >
(fescitean — ve) 1 6(2)gu(2)
with
v < 20(1 + k + k2),

and thus || gk || 1(r) grows exponentially in time.
Therefore we have the following theorem for the
infinite Prandt] number case:
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Theorem 12 (CKR 2002). Let P(z — 2t),
u = 0 be a planar, r-independent traveling
front solution of the infinite Prandtl number
Boussinesq system

i§+wVT—AT:ﬂﬂ

—Av+Vp=ple,, V- -u=0,

with front boundary conditions for T at z =
+00, vanishing velocity at z = £oo and pe-
riodic boundary conditions in x of period .
There exists a positive constant 3 > 0 such
that, if

pA > 3,

then the solution P 1is linearly unstable. This
means that there exist infinitesimal perturba-
tions which grow exponentially, when viewed
in a Galilean frame of reference mouving with
the traveling front. Their exponential growth
rate is proportional to pA.

Similar in porous media (Darcy’s law).
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Finite Prandtl number Take a function
¢(z) with properties above, multiply by ¢ and
Integrate.

= [ ¢(2)gr(z, t)dz.

Consider also
Z(t) _ €2k(ak+2)ty(t>.

We can prove

dz ’
ot BZ > oy Z(s)ds

with
B =C31 4 k+ k) — 2k(ck +2)

and

a = Cyopk.
Equations always have at least one exponen-
tially growing solution because o > 0 (irre-
spective of the sign of 3). We get exponential

growth for Z(t). This will imply exponential
growth for Y (t) if

p>C< +k)(1+k+k2).

o

46



Theorem 13 (CKR 2002). Planar reactive

Boussinesq fronts are linearly unstable to large
wavelength perturbations whenever the local

Rayleigh number p based on the laminar front

thickness s large compared to the inverse of

the Prandtl number,

2C
p> .
o

Perturbations with wave numbers k satisfy-
ing the constraint above grow exponentially
i a frame of reference moving with the pla-
nar front. The growth rate s proportional to

Jook.

Remark. The exponential growth rate pro-
portional to the square root of the wave number
is a signature of the Rayleigh-Taylor instabil-
ity, operating here only at large scales. When
the wavelength of the initial perturbation is de-
creased to a length comparable to the thickness
of the planar front, the perturbation decays in
time.
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Summary

Passive advection reaction systems have enhanced
bulk burning speed. The enhancement is linear
in the amplitude of the fluid’s velocity, if the
flow is percolating. Lower bounds of a lower
power exist is the flow is cellular.

Passive advection reaction systems can be
quenched by flows that are nondegenerate in the
sense of condition H, and small perturbations
thereof. Quenching is a robust property, unlike
hypoellipticity.

Active reactive Boussinesq system in a strip
have bounded bulk burning speed. Asymptotic
front acceleration does not occur in this system.
For small aspect ratios and for small Rayleigh
numbers, the only traveling modes are planar,
and all front-like solutions become planar. For
large enough Rayleigh numbers, if the aspect
ratio is large, then the planar fronts lose stabil-
ity to longwave perturbations. The instability
is of Rayleigh-Taylor type.
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