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Outline

1. Passive Reaction Advection Diffusion (PRAD)
2. Active Reaction Advection Diffusion (ARAD)

Equations


∂tT + u · ∇T − κ∆T = 1

τg(T )n
∂tn + u · ∇n− κ

Le∆n = −1
τg(T )n

κ thermal diffusivity, Le Lewis number. Le =
1 is special: n + T conserved.

Tt + u · ∇ T − κ∆T =
1

τ
f (T )

f (T ) = g(T )(1− T )

The velocity

u = u(x, t)

is either given ( = PRAD), or it is coupled (=
ARAD) via Boussinesq:

∂tu + u · ∇u− ν∆u +∇p = gαe3T
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• How do different flows affect bulk front speed
in PRAD?

•Which flows quench PRAD?

•What is the effect of active coupling on bulk
front speed in ARAD ?

•What is the effect of active coupling on sta-
bility of fronts in ARAD?
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Bulk Burning Speed

The domain: D = [0, L]× (−∞,∞).

Tt + u · ∇T − κ∆T =
1

τ
f (T )

T is normalized 0 ≤ T (x, z, t) ≤ 1.

T (x,−∞, t) = 1, T (x,∞, t) = 0.

T satisfies Neumann lateral boundary condi-
tions. Reaction of KPP type: f (T ) = T (1 −
T ). Reaction of ignition type f (T ) = 0, T ∈
[0, θ0], f (1) = 0. Advection by incompressible
ambient fluid:

∇ · u = 0.

Fisher (1937) and Kolmogorov, Petrovsky and
Piskunov (1937)for u = 0. Traveling fronts,
with minimal speed v0.
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v0 – laminar front speed,
u0 – rms turbulent velocity,
uT – effective turbulent front speed
AT , AL – turbulent and laminar front areas

uT
v0

=
AT

AL
.

UT = uT/v0, U = u0/v0. Physical predictions:
Shchelkin (1943): UT = (1 + βU 2)1/2

Clavin-Williams (1979): U � 1, UT = 1 + U 2

Kerstein-Ashurst (1992): U � 1, random, then
UT = 1 + U 4/3

Yakhot (1988): UT = exp(U 2/U 2
T ) fromG equa-

tion:
Gt + u · ∇G = v0|∇G|.

Pocheau (1994): UT = (1 + βUα)1/α for scale-
invariant flows
Shy, Ronney, Buckley, Yakhot (1992), Abel, Celani,
Cencini, Vergni, Vulpiani (2001):
UT = exp(U/UT ) for an array of vortices.
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Homogenization approach.
Freidlin (1979-85): κ = ε→ 0. In the limit - ef-
fective Hamilton-Jacobi equation for the front.
Majda, Souganidis (1994): u allowed to depend
on κ = ε : uε = v1 + v2( xεα ,

t
εα), 0 ≤ α ≤ 1.

Implicit predictions: for shear flows perpendic-
ular to the front, the added speed is roughly of
the order of the speed of advection.

Traveling waves.
Traveling waves for u 6= 0.
Berestycki, Nirenberg (1992): traveling waves
U(x− ct, y) for shear flows.
Berestycki, Larrouturou, Roquejoffre (1992): study
of stability.
Xin (1992-93): in periodic flows, U(x−ct, x, y)
periodic in the second coordinate, but for dif-
ferent (not KPP) reaction term.
No estimates on the velocity. Berestycki, Hamel
(99): Pulsating flows.
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Bulk Burning Speed

V (t) =
1

L

∫
D

∂T

∂t
(x, z, t)dxdz

Note, from PDE:

V (t) =
1

τL

∫
D
f (T (x, z, t))dxdz

Note also: if T (x, z, t) = P (x, z − ct) then
V (t) = c
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Theorem 1 (CKR, 99) Arbitrary initial data,
KPP nonlinearity. The bulk burning speed
satisfies:

V (t) ≥ Cv0

(
1− e−

t
2τ

)
.

Lemma 1 (CKR, 99) Assume T (x, z, t) sat-
isfies

0 ≤ T ≤ 1,

T (x,−∞, t) = 1, T (x,∞, t) = 0 for any x ∈ [0, L].

Then there exists a constant C > 0 depend-
ing only on f, such that∫

D
f (T ) dxdz


∫
D
|∇T |2 dxdz

 ≥ CL2.
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Idea of proof
∫
D
f (T )dxdz <∞, ∫

D
|∇T |2 dxdz <∞.

∃x ∈ [0, L] such that

∞∫
−∞

f (T (x, z, t))dz ≤ 3

L

∫
D
f (T )dxdz

and also
∞∫
∞
|∇T (x, z, t)|2 dz ≤ 3

L

∫
|∇T |2 dxdz

hold. Let ε > 0 and let C be a positive constant
determined by the condition

1

ε
inf

[ε,1−ε]
f (θ) = C

Because of the boundary conditions on T and
continuity, ∃z1, z2 such that T (x, z, t) ∈ [ε, 1−
ε], ∀z ∈ [z1, z2] and

|T (x, z2, t)− T (x, z1, t)| ≥ 1− ε.

From the construction of C we get:

f (T (x, z, t)) ≥ Cε
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for all z ∈ [z1, z2]. Integrating in z:

Cε|z1 − z2| ≤
3

L

∫
D
f (T )dxdz. (∗)

The gradient is bounded below:
∣∣∣∣∣∣∣∣
z2∫
z1

∂T (x, z, t)

∂z
dz

∣∣∣∣∣∣∣∣ ≤
√
|z1 − z2|

√√√√√√√
z2∫
z1

∣∣∣∣∣∣∣
∂T

∂z

∣∣∣∣∣∣∣
2

dz

and so

(1− ε)2

|z1 − z2|
≤ 3

L

∫
|∇T |2 dxdz. (∗∗)

Multiplying (∗) and (∗∗) we get the lower bound.
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2. Time independent shear
flows

Let

〈V 〉t =
1

t

t∫
0
V (s) ds.

Theorem 2 Let us consider a partition of
the interval [0, L] into subintervals Ij = [cj−
hj, cj + hj] on which u(x) does not change
sign. Denote D−, D+ the unions of intervals
Ij where u(x) > 0 and u(x) < 0 respectively.
Let

m+ =
|D+|

|D−| + |D+|
, m− =

|D−|
|D−| + |D+|

.

Then there exist a constant C1 > 0, inde-
pendent of the partition, of u(x), and of the
initial data T0(x, y), so that for any

t ≥ t0 = max

 κ
v2

0

,
L

v0


we have

〈V 〉t ≥

13



C1

m+
∑

Ij⊂D+

1 +
κ2

v2
0h

2
j


−1 ∫ cj+hj

2

cj−
hj
2

|u(x)|dx
L

+

+m−
∑

Ij⊂D−

1 +
κ2

v2
0h

2
j


−1 ∫ cj+hj

2

cj−
hj
2

|u(z)|dx
L

 .

3. Time dependent shear flows.

Take a time scale τ0. Given t, choose D+ and
D−, unions of intervals in [0, H ]. Set

J(t, τ0, u) =

m+
∑

Ij⊂D+

1 +
κ2

v2
0h

2
j


−1

1

τ0

t+τ0∫
t
dt

∫ cj+hj
2

cj−
hj
2

u(x, t)
dx

L
−

m−
∑

Ij⊂D−

1 +
κ2

v2
0h

2
j


−1

1

τ0

t+τ0∫
t
dt

∫ cj+hj
2

cj−
hj
2

u(x, t)
dx

L
.

Theorem 3 For any t, τ0 we have the esti-
mate

〈V 〉t+τ0 ≥
1 +

1

τ0
max

4κv2
0

,
H̃

v2
0



−1

〈J(t, τ0, u)〉t.
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4. Percolating flows

Coordinate ρ along the streamlines, θ is the
orthogonal coordinate.

E2
1dρ

2 + E2
2dθ

2 = ds2.

Assumptions:

1. (Local) ω1(ρ, θ) = E1
E2

(ρ, θ), ω2(ρ, θ) = E2
E1

(ρ, θ).
Should have:

|ωi(ρ, θ)| ≤ C, |∇ωi(ρ, θ)| ≤ C

h
.

2. (Global) The widths of the streams do not
oscillate too much.

Theorem 4 For any t ≥ τ0 = max
 κ
v2

0
, Lv0


〈V 〉t ≥

C

m+
∑

Ij⊂D+

1 +
κ2

v2
0h

2
j


−1 ∫ cj+hj

2

cj−
hj
2

u(ρ, θ)E1(ρ, θ)
dρ

H
+
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m−
∑

Ij⊂D−

1 +
κ2

v2
0h

2
j


−1 ∫ cj+hj

2

cj−
hj
2

|u(ρ, θ)|E1(ρ, θ)
dρ

H

 .

Cellular flows

Berestycki-Pomeau, heuristic argument:

V ∼ A
1
4

Kiselev-Ryzhik, rigorous

V ≥ cA
1
5 .
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Quenching

Nonlinearity of ignition type: f (T ) = 0 if 0 ≤
T ≤ θ0. Velocity: time independent shear u =
u(x)ez, ∈L0 u(x) = 0. Initial data: compactly
supported, above ignition. Width of support
(in z) of the order h. Physical domain: strip
(x, z) ∈ D = [0, L]×R. BC:periodic in x.

∂tT + Au(x)Tz − κ∆T =
1

τ
f (T )

Laminar front width

δ =
2κ

v0
=
√
κτ

Laminar front speed v0

τ = 4κv−2
0

Definitions

• u ∈ Q (quenching): ∀h, ∃A0, ∀A ≥ A0

lim
t→∞

T (x, z, t) = 0

uniformly.

• u ∈ H(J) if ∀x ∈ J ∃k, u(k)(x) 6= 0.
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Theorem 5 If u ∈ H([0, L]) then u ∈ Q.

Theorem 6 ∃a > 0, if J = [0, L] \ I, |I| ≤
aδ, u ∈ H(J), and u|I = c constant, then
u ∈ Q.

Theorem 7 The set of quenching profiles u
contains an open dense subset of C([0, L]).

The three results above apply to systems:


Tt + Au(x)Tz = κ∆T + 1

τg(T )n
nt + Au(x)nz = κ

Le∆n−
1
τg(T )n

Theorem 8 If |I| ≥ bδ and u|I = c constant
then u /∈ Q. More precisely, ∃C, so that
if T0 ≥ θ0 on a region [0, L] × [z0, z0 + h],
with h ≥ Cδ, then limt→∞ T (x, z, t) = 1,
∀A ≥ 0, ∀x ∈ [0, L],∀z ∈ R, uniformly on
compacts.
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H implies quenching

Suffices ∃t0 > 0, such that

T (x, z, t0) ≤ θ0, ∀(x, z) ∈ D.

Indeed, by the maximum principle,

T ≤ θ0, ∀t ≥ t0,

and thus

Tt + Au(x)Tz = κ∆T.

Note:
R(T ) ≤ T

so
T (x, z, t) ≤ Φ(x, z, t)e

t
τ

with
Φt + Au(x)Φz = κ∆Φ

with initial datum Φ(x, z, 0) = T0(x, z), peri-
odic in x.

Φ(x, z, t) =
∞∫
−∞

G(z − ζ, t)Ψ(x, ζ, t)dζ
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where

G(z, t) =
1

4πκt
e−

z2
4κt

and
Ψt + Au(x)Ψz = κΨxx

with initial datum Ψ(x, z, 0) = T0(x, z) and
periodic in x. (Fourier in z). Note:

‖Φ(·, ·, t)‖L∞(dxdz) ≤ ‖Ψ(·, ·, t)‖L∞(dxdz)

We assumed: u ∈ H([0, L]). The Lie algebra
generated by the vector fields ∂x and ∂t+u(x)∂z
spans R2. This implies (Hormander, Ichihara
and Kunita) that there exists a continuous tran-
sition probability density pA(x, ξ, z− ζ, t) such
that

Ψ(x, z, t) =
L∫
0

∞∫
−∞

pA(x, ξ, z−ζ, t)T0(ξ, ζ)dξdζ.

Rescaling

pA(x, ξ, z, t) =
1

A
p1(x, ξ,

z

A
, t)

20



where p1 is the transition probability density for
A = 1. Thus

‖Ψ(·, ·, t)‖L∞(dxdz) ≤ C(t)
1

A
‖T0‖L1(dxdz)

where
C(t) = sup

x,z
p1(x, z, t).

Obtained: If 0 ≤ T0 ≤ 1 is supported in [0, L]×
[z0 − h

2 , z0 + h
2 ], then

T (x, z, t) ≤ Φe
t
τ ≤ e

t
τC(t)

Lh

A
.

Pick
A ≥ e

θ0
C(τ )Lh.

Fix t = τ . Then

T (x, z, τ ) ≤ eC(τ )
Lh

A
≤ θ0.
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Stability and genericity

We assume u ∈ H(J) and [0, L] \ J is a small
interval (compared to δ). Same construction as
before. We wish to show

Ψ(x, z, τ ) ≤ θ0

e
.

Let us split

T0(x, z) ≤ χ0(x) + ψ0(x, z)

where 0 ≤ χ0 ≤ 1 is supported in a small inter-
val, containing the interval of constancy of u,
but not more than twice its length |I|. We take
0 ≤ ψ0(x, z) ≤ 1 to vanish whenever x is in a
neighborhood of the interval of constancy of u.
It follows that

Ψ(x, z, t) ≤ χ(x, t) + ψ(x, z, t)

where χ(x, t) and ψ(x, z, t) are solutions of

(∂t + Au(x)∂z − κ∂xx)ψ = 0

with the indicated initial data. Because χ0 does
not depend on z, it is simply a solution of the

22



heat equation,

χt − κχxx = 0

with L periodic boundary conditions in x:

χ(x, t) =
∑
j∈Z

χ̂0(j)e
(2π
L ijx−

4π2κj2t
L2 )

.

Note that, for all j ∈ Z,

|χ̂0(j)| ≤ 1

L
‖χ0‖L1(dx) ≤ 2

|I|
L
.

Then

|χ(x, t)− χ̂0(0)| ≤ C

L
‖χ0‖L1(dx)

L√
κt

Choosing t = τ we get

‖χ(·, τ )‖L∞(dx) ≤ |I|
C
δ

+
2

L

 ≤ θ0

10

provided

|I|
C
δ

+
2

L

 ≤ θ

10
has been prearranged. Now we bound ψ. Let us
pick a point x0 ∈ I so that I ⊂ [x0−aδ/2, x0+
aδ/2], and arrange that ψ0(x, z) = 0 for x ∈
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[x0 − 2aδ, x0 + 2aδ]. If x ∈ [x0 − aδ, x0 + aδ]
then

ψ(x, z, t) ≤
∞∫
−∞

∫
|ξ−x0|≥2aδ

pA(x, ξ, z − ζ, t)dξdζ

≤ P
{√

2κ|W (t)| ≥ aδ
}
≤ θ0

10
where W (t) is one dimensional Brownian mo-
tion and t ≤ t1 ≤ τ is chosen small enough.
Indeed, consider the SDE system

dX(t) =
√

2κdW (t), X(0) = x,
dZ(t) = Au(X(t))dt, z(0) = z.

Thus

Z(t) = z + A
t∫

0
u(x +

√
2κW (s))ds

and the solution of (∂t +Au(x)∂z− κ∂xxψ = 0
with initial datum ψ0 is given by

ψ(x, z, t) = Ex,z(ψ0(X(t), Z(t)))

For x /∈ [x0 − aδ, x0 + aδ] we use the condi-
tion u ∈ H(J). There exists a function ũ(x)
which coincides identically with u outside [x0−
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aδ/2, x0 + aδ/2] such that ũ ∈ H([0, L]). We
consider the processes X̃, Z̃ associated to ũ in a
similar manner. Consider the stopping time tI ,
the first passage time when X(t) enters [x0 −
aδ/2, x0 + aδ/2]. Note that X(t) is just one
dimensional Brownian motion with diffusivity
κ starting from x, so the stopping time is well
understood. We have

ψ(x, z, t) ≤ P{(X(t), Z(t)) ∈ suppψ0} =

P{(X(t), Z(t)) ∈ suppψ0 |tI > t}P (tI > t)+

P{(X(t), Z(t)) ∈ suppψ0 |tI ≤ t}P (tI ≤ t) =

P{(X̃(t), Z̃(t)) ∈ suppψ0 |tI > t}P (tI > t)+

P{(X(t), Z(t)) ∈ suppψ0 |tI ≤ t}P (tI ≤ t) ≤
P{(X̃(t), Z̃(t)) ∈ suppψ0}+

P (tI ≤ t).

The Brownian motion needs to travel a distance
of at least aδ/2 to enter, so we may choose t ≤
t2 ≤ t1 small enough for

P (tI ≤ t) ≤ θ0

20
.
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On the other hand, the function

P{(X̃(t), Z̃(t)) ∈ suppψ0} = ψ̃(x, z, t)

satisfies the PDE with ũ and initial data the
characteristic function 1suppψ0. We may take A
large enough to have

ψ̃(x, z, t) ≤ θ0

20

at t = t2. So

ψ(x, z, t) ≤ θ0

10

at t = t2, and by maximum principle, for t ≥ t2.
This implies that

Ψ(x, z, τ ) ≤ θ0

5

and concludes the proof of stability.

The set of functions u ∈ H([0, L]) is dense
in C([0, L]). Moreover, if ũ ∈ H([0, L]), then
there exits υ > 0 so that if ‖u− ũ‖ ≤ υ, then
u ∈ Q.

26



Indeed: for ũ ∈ H([0, L]) there exists a con-
stant C̃ such that Ψ̃(x, z, τ ) ≤ θ

10 holds for all
initial data supported in a box [0, L] × [z0 −
H, z0 +H ] provided H ≤ C̃A. Take now initial
data supported in a box [0, L]× [z0−h, z0 +h]
for the equation with Au with

h ≤ C̃

2
A.

Now

Z(t) = z + A
∫ t
0 u(x +

√
2κW (s))ds

and thus ∣∣∣∣∣Z(t)− Z̃(t)
∣∣∣∣∣ ≤ Aυt

holds almost surely. Choose υ such that

υτ =
C̃

2
.

Then

Ψ(x, z, τ ) ≤ P{Z(t) ∈ [z0 − h, z0 + h]}

≤ P{Z̃(τ ) ∈ [z0 −H, z0 + H ]} =

Ψ̃(x, z, τ )

27



where Ψ̃ corresponds to advection Aũ, initial
data 1[0,L]×[z0−H,z0+H], and

H = h + Aτυ ≤ C̃A.

Thus

Ψ(x, z, τ ) ≤ Ψ̃(x, z, τ ) ≤ θ0

10

28



Reactive Boussinesq fronts

Reactive Boussinesq equations:


∂v
∂t + v · ∇v +∇p− ν∆v = gATez,

∇ · v = 0,
∂T
∂t + v · ∇T − κ∇T = 1

τf (T ).

The Boussinesq system has flat traveling wave
solutions

Tfr = π(z − ct), vfr = 0.

The momentum equation holds because the pres-
sure can balance a temperature that depends
on z and t alone. The speed c takes all values
c ≥ v0 in the KPP case, and is unique in the
bistable and ignition case. The profile π(z) is
monotonically decreasing in all three cases, and
obeys

κπ′′ + cπ′ +
1

τ
f (π) = 0,

where π′ =
dπ

dz
.
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Dimensional units: Space:

δ =
√
κτ

time
τ.

π(z) = P (z/δ)

with P obeying

P ′′ + 2c̄P ′ + f (P ) = 0.

v(x, t) =
δ

τ
ṽ
x
δ
,
t

τ



θ(x, t) = θ̃
x
δ
,
t

τ

 .
Using these units, rescaling, using x = (x, z) =
(xnew, znew) = (xold/δ, zold/δ) and t = tnew =
told/τ , and dropping tildes, we derive the non-
linear equations

∂tω + v · ∇ω − σ∆ω = σρ∂xT
∂tT + v · ∇T −∆T = f (T )

where v = (u,w), with

∆u = −∂ω
∂z
, ∆w =

∂ω

∂x
30



Nondimensional parameters: Prandtl
number

σ =
ν

κ
Rayleigh number (across a laminar front width)

ρ =
gAδ3

κν
.

Boundary conditions


T (x, z, t)→ 1 as z → −∞,
T (x, z, t)→ 0 as z → +∞,
v(x, z, t)→ 0, as |z| → ∞.
ω(x, z, t)→ 0 as |z| → ∞.

The boundary conditions in x are periodic

T (x + λ, z, t) = T (x, z, t),
v(x + λ, z, t) = v(x, z, t),
ω(x + λ, z, t) = ω(x, z, t)

with period

λ =
L

δ
.
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General bounds

D = [0, λ]×R.

‖g‖2
L2 =

1

λ

∫
D
|g(x, z)|2dxdz

Bulk burning speed:

V (t) =
1

λ

∫
D

∂T (x, z, t)

∂t
dxdz

From PDE:

V (t) =
1

λ

∫
D f (T (x, z, t))dxdz.

V (t) =
1

t

∫ t
0 V (s)ds.

Consider the average quantities

W (t) =
1

t

∫ t
0 ‖w(·, s)‖L∞ds

and

N(t) =
1

t

∫ t
0 ‖∇T (·, s)‖2

L2ds
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Theorem 9 (CKR 2002) Solutions with front-
like initial data obey

N(t) ≤ C1ρ
2λ5 + C2 + (

K1√
t

+
K2

t
),

W (t) ≤ C3ρ
2λ5 + C4ρλ

5/2 +
K3

t
1
4

+
K4

t
1
2

and

lim sup
t→∞

V (t) ≤ 2 + C5ρ
2λ5 + C6ρλ

5/2

with Cj depending only on the nonlinearity
f , C and with K1, K2, K3, K4 depending on
the initial data .
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Lemma 2 Assume that there exists a con-
stant α ∈ R so that the front-like initial data
T0(x, z) obeys

T0(x, z) ≤ exp (α− z)

and

(1− T0(x, z)) ≤ exp (α + z).

Then the solution obeys the bounds

T (x, z, t) ≤ exp
[
α− z + 2t +

∫ t
0 ‖w(·, s)‖L∞ds

]

and

(1−T (x, z, t)) ≤ exp
[
α + z + t−

∫ t
0 ‖w(·, s)‖L∞ds

]

for all t ≥ 0.

Lemma 3 Consider front-like initial data. Then
the solutions obey

V (t) ≤ W (t) + 2 +
γ

t
for all t ≥ 0 with γ depending on the initial
data.

W (t) bounded below by N(t):
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Lemma 4 Consider front-like initial data. Then
the solutions obey

N(t) ≤ C1W (t) + C2 +
Γ

t

with Cj depending only on f and with Γ de-
pending on the initial data.

The next step consists of bounding the quan-
tity W (t) in terms of N(t), using the vorticity
equation.

Lemma 5 There exists an absolute constant
C depending on the nonlinearity f only, so
that for all t > 0 one has

W (t) ≤ Cλ3/2
ρλ

√
N(t) +

1√
σt
‖ω0‖L2


where ω0(x, z) is the initial data for ω(x, z, t).
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Ideas for proofs

For the bound of T we seek a supersolution of
the form:

θ+(z, t) = exp [−az +
∫ t
0 ‖w(·, s)‖L∞ds + 2t + α].

∂θ+

∂t
+ v · ∇θ+ −∆θ+ − f (θ+) ≥ 0.

For the bound of 1 − T we seek a subsolution
for T of the form

θ−(z, t) = 1−exp [z −
∫ t
0 ‖w(·, s)‖L∞ds + t + α]

and, using the fact that f ≥ 0 on [0, 1], the
condition

∂θ−
∂t

+ v · ∇θ− −∆θ− − f (θ−) ≤ 0

follows. For the bound

V (t) ≤ W (t) + 2 +
γ

t

we write

V (t) =
1

λt

∫
D (T (x, z, t)− T0(x, z)) dxdz.
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which we bound as

V (t) ≤ 1

λt

∫ λ
0 dx

[∫ 0
−∞ (1− T0(x, z)) dz +

∫ ∞
0 T (x, z, t)dz

]
,

using the fact that T (t, x, z) ≤ 1. Now, denot-
ing

B1(t) = α + 2t +
∫ t
0 ‖w(·, s)‖L∞ds

we have from the exponential upper bound ahead
of the front:

∫ ∞
B1(t) T (x, z, t)dz ≤ 1,

while, because T ≤ 1, we have
∫ B1(t)
0 T (x, z, t)dz ≤ B1(t)

and this finishes the proof of the lemma. For
the lower bound

N(t) ≤ C1W (t) + C2 +
Γ

t

we start by computing

d

dt

1

λ

∫
D
T (1− T )dxdz
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−1

λ

∫
D(1− 2T (x, z, t))f (T (x, z, t))dxdz =

−2

λ

∫
D |∇T (x, z, t)|2dxdz.

Taking a time average we get

1

λt

∫
D

(T (x, z, t)(1− T (x, z, t))− T0(x, z)(1− T0(x, z))) dxdz

+V (t) ≥ 2N(t).

We observe that
1
λ
∫
D T (x, z, t)(1− T (x, z, t))dxdz ≤∫λ

0
dx
λ

∫−B2(t)
−∞ (1− T (x, z, t))dz

+
∫λ
0
dx
λ

∫B1(t)
−B2(t) 1dz

+
∫λ
0
dx
λ

∫∞
B1(t) T (x, z, t)dz,

where B1(t) is given above and

B2(t) = α + t +
∫ t
0 ‖w(·, s)‖L∞ds.

We use
∫ λ
0

dx

λ

∫ −B2(t)
−∞ (1− T (x, z, t))dz ≤ 1,
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as follows from the bound at minus infinity.
Similarly,

∫ λ
0

dx

λ

∫ ∞
B1(t) T (x, z, t)dz ≤ 1

The second term B1(t)+B2(t). Thus, returning
we have

2N(t) ≤ V (t) + 3 + 2W (t) +
c

t
.

This finishes the lower bound proof. The up-
per bound of W in terms of

√
N is done using

energy estimates. We introduce

T (z, t) :=
∫ λ
0 T (x, z, t)

dx

λ
and obtain

1
2
d
dt

∫
D
|ω(x, z, t)|2dxdzλ +

σ
∫
D
|∇ω(x, z, t)|2dxdzλ

= −σρ ∫
D

∂ω(x,z,t)
∂x (T (x, z, t)− T (z, t)) dxdzλ .

Using Young’s inequality together with the in-
equality
∫
D |T (x, z, t)− T (z, t)|2 dxdz

λ
≤ λ2

∫
D |∇T (x, z, t)|2 dxdz

λ
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we deduce
1
2
d
dt

∫
D |ω(x, z, t)|2dxdzλ +

σ
∫
D |∇ω(x, z, t)|2dxdzλ
≤ σ

2
∫
D

∣∣∣∣∣∂ω(x,z,t)
∂x

∣∣∣∣∣2 dxdzλ +
σρ2λ2

2
∫
D |∇T (x, z, t)|2 dxdzλ .

Integrating in time we deduce

1

t

∫ t
0 ds

∫
D |∇ω(x, z, s)|2 dxdz

λ
≤ ρ2λ2N(t)+

1

σt
‖ω0‖2

L2.

Let us represent the function w in terms of its
Fourier series

w(x, z, t) =
∑

k∈2π
λ Z
wk(z, t)e

ikx

and note that, in view of incompressibility, w0(z, t)
is independent of z, and hence the boundary
conditions at z ±∞ imply that

w0(z, t) = 0.

In view of the embedding inequality

‖w(·, t)‖L∞ ≤ Cλ3/2‖∇ω(·, t)‖L2

the last lemma follows.

40



Nonlinear stability of planar fronts
in narrow domains

Narrow domain: small aspect ratio λ. The non-
linearity f is of either one of the three types:
KPP, ignition or bistable.

Theorem 10 (CKR 2002). There exist con-
stants C1 > 0 and C2 > 0 such that if λ <
C1, and ρ < C2/λ

3, then the only solutions
of traveling front type T = T (x, z − ct), v =
v(x, z − ct), are planar fronts of the form
T = P (z − ct), v = 0.

The second result in this section is about ar-
bitrary solutions. We show that all solutions
of the Boussinesq system in a narrow domain
eventually become planar:

Theorem 11 (CKR 2002). There exist con-
stants C1 > 0 and C2 > 0 so that if λ < C1

and ρ < C2/λ
3, then

‖ω(·, t)‖L2 + ‖Tx(·, t)‖L2 → 0 as t→ +∞.
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Moreover, the front speed is uniformly bounded:

lim sup
t→+∞

V̄ (t) ≤ 2.

Linear instability

Linear instability of planar fronts with respect
to large wavelength perturbations. Galilean trans-
formation: z 7→ z− v0t following the flat front.
We write T (x, z, t) = π(z − v0t) + θ(x, z −
v0t, t), and v(x, z, t) = v(x, z− v0t, t). We lin-
earize:

∂θ

∂t
− 2

∂θ

∂z
−∆θ − f ′(P (z))θ = −wP ′(z)

and
∂ω

∂t
− 2

∂ω

∂z
− σ∆ω = σρ

∂θ

∂x
Infinite Prandtl number:

−∆ω = ρ
∂θ

∂x
,

which implies

w = −ρ(∂x)
2(−∆)−2θ
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We express θ(x, z, t) in terms of its Fourier
series:

θ(x, z, t) =
∑

k∈2π
λ Z
gk(z, t)e

ikx.

The linearized temperature equation transforms
into

∂gk
∂t
−2

∂gk
∂z

+
(
k2 − ∂zz

)
gk−f ′(P )gk = ρQKgk

with k = ±2π
λ ,±22π

λ , . . ., the operator K de-
fined by the Fourier transform

Kg = k2
(
k2 − ∂zz

)−2
g

and
Q(z) = −P ′(z) > 0.

We take a positive wave number

k =
2πn

λ

The operator K is given explicitly by a convo-
lution with a positive function

(Kg)(z) =
1

4k

∫ ∞
−∞(1 +k|z− ζ|)e−k|z−ζ|g(ζ)dζ.
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It is well known that the profile P is decreasing
in the case of KPP, bistable and ignition non-
linearities so that the function Q is positive.
Moreover

Q(z) ≥ ae−b|z|

holds for all z, with a > 0 and b > 0 absolute
numbers that depend only on the nonlinearity
f (T ). Let us consider a function φ(z) which
has the properties

e−k|z| ≤ φ(z) ≤ Ce−k|z|

with C > 1 and

|φ′(z)| ≤ Cke−k|z|, |φ′′(z)| ≤ Ck2e−k|z|.

We obtain the ordinary differential inequality
d
dt

∫
φ(z)gk(z)dz ≥(

ρ
4k

a
2C(b+2k) − νk

) ∫
φ(z)gk(z)dz,

with
νk ≤ 2C(1 + k + k2),

and thus ‖gk‖L1(R) grows exponentially in time.
Therefore we have the following theorem for the
infinite Prandtl number case:
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Theorem 12 (CKR 2002). Let P (z − 2t),
u = 0 be a planar, x-independent traveling
front solution of the infinite Prandtl number
Boussinesq system

∂T

∂t
+ v · ∇T −∆T = f (T )

−∆v +∇p = ρTez, ∇ · u = 0,

with front boundary conditions for T at z =
±∞, vanishing velocity at z = ±∞ and pe-
riodic boundary conditions in x of period λ.
There exists a positive constant β > 0 such
that, if

ρλ > β,

then the solution P is linearly unstable. This
means that there exist infinitesimal perturba-
tions which grow exponentially, when viewed
in a Galilean frame of reference moving with
the traveling front. Their exponential growth
rate is proportional to ρλ.

Similar in porous media (Darcy’s law).
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Finite Prandtl number Take a function
φ(z) with properties above, multiply by φ and
integrate.

Y (t) =
∫
φ(z)gk(z, t)dz.

Consider also

Z(t) = e2k(σk+2)tY (t).

We can prove

dZ

dt
+ βZ ≥ α

∫ t
0 Z(s)ds

with

β = C3(1 + k + k2)− 2k(σk + 2)

and
α = C4σρk.

Equations always have at least one exponen-
tially growing solution because α > 0 (irre-
spective of the sign of β). We get exponential
growth for Z(t). This will imply exponential
growth for Y (t) if

ρ > C
2

σ
+ k

 (
1 + k + k2

)
.
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Theorem 13 (CKR 2002). Planar reactive
Boussinesq fronts are linearly unstable to large
wavelength perturbations whenever the local
Rayleigh number ρ based on the laminar front
thickness is large compared to the inverse of
the Prandtl number,

ρ >
2C

σ
.

Perturbations with wave numbers k satisfy-
ing the constraint above grow exponentially
in a frame of reference moving with the pla-
nar front. The growth rate is proportional to√
σρk.

Remark. The exponential growth rate pro-
portional to the square root of the wave number
is a signature of the Rayleigh-Taylor instabil-
ity, operating here only at large scales. When
the wavelength of the initial perturbation is de-
creased to a length comparable to the thickness
of the planar front, the perturbation decays in
time.
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Summary

Passive advection reaction systems have enhanced
bulk burning speed. The enhancement is linear
in the amplitude of the fluid’s velocity, if the
flow is percolating. Lower bounds of a lower
power exist is the flow is cellular.

Passive advection reaction systems can be
quenched by flows that are nondegenerate in the
sense of condition H , and small perturbations
thereof. Quenching is a robust property, unlike
hypoellipticity.

Active reactive Boussinesq system in a strip
have bounded bulk burning speed. Asymptotic
front acceleration does not occur in this system.
For small aspect ratios and for small Rayleigh
numbers, the only traveling modes are planar,
and all front-like solutions become planar. For
large enough Rayleigh numbers, if the aspect
ratio is large, then the planar fronts lose stabil-
ity to longwave perturbations. The instability
is of Rayleigh-Taylor type.
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