Stellar dynamics for LISA: Stars captured by a massive black hole

Marc Freitag

ARI, Heidelberg freitag@ari.uni-heidelberg.de http://obswww.unige.ch/~freitag

SFB 439: "Galaxies in young universe"A5: "Formation and growth of black holes in galactic nuclei"

LISA sources: Compact stars orbiting MBHs

- Dark compact objects are present at the centre of galaxies
- $1 10^4 M_{\odot}(?)$ spiralling into $10^5 10^7 M_{\odot}$ MBH
 - Only compact stars; MS stars disrupted early
 - $\bullet\,$ Stellar BH detectable to few 100s Mpc, IMBHs to few Gpc!!
 - Only 3 MBH known in this range!
- "Geo" desic map of central object space-time ($\Rightarrow M \& a \text{ if MBH}$)
- Theoretical difficulties:
 - ◆ Rate of captures? (literature: from 10⁻⁸ to 10⁻⁴ yr⁻¹ per galaxy) Hils & Bender 95; Sigurdsson & Rees 97; Freitag 01, 03; Ivanov 02; Sigurdsson 03 (review)
 Stellar dynamical problem Stars must be sent onto e ≈ 1 orbits through 2-body relaxation (and other processes...
 - Orbital evolution / waveforms computations (but extreme mass-ratio allows perturbative computations; full GR not required) Glampedakis & Kennefick 02; Glampedakis, Hughes & Kennefick 02
 - ◆ **Data analysis** (Complicated waveforms)

Setting the stage...

Galactic nucleus simulation

- Goal: simulate a 10^{7-9} -star cluster over 10^{9-10} yrs
- Rich physics (✓: incl. in the code, ✓: to be added, ★: impossible(?))
 - ► Self-gravity ✓
 - ► 2-body relaxation ✓
 - \succ Stellar mass spectrum \checkmark
 - ▶ Anisotropic \vec{V} -distribution \checkmark
 - ► BH growth ✓
 - ► Collisions ✔
 - ➤ Tidal disruptions

- ➤ Stellar evolution (Giants ✓, remnants ✓)
- ★-captures through emission of grav. radiation ✓
- ▶ Inter. with outer galaxy
- Others (Binaries ?, Rotation X, BH wandering ?, Inter. with disk ?, SF ?...)
- Need for a "fast" algorithm (very large parameter space)
 - Direct N-body too slow $T_{\rm CPU} \propto N^{2-3}$
 - Monte Carlo method: $T_{\rm CPU} \propto N \ln(N)$ 10¹⁰ yrs evol. with 10⁶ part: few CPU-hours/days on PC
 - Continuous methods (direct FP, gas) faster but cannot handle "special events" (collisions, captures...)

MONTE CARLO Code Internals

(Freitag & Benz 2001, A&A 375, 711; 2002, A&A 395, 345)

• Basics

- \bullet Based on Hénon's scheme: Monte Carlo resolution of FP equation
- Main assumptions: Spherical symmetry & Dynamical equil.
- Cluster \equiv set of particles with $N_{\text{part}} \leq N_*$ 1 particle \equiv spherical shell of stars with same E, J, M_* Shells create smooth, steady potential
- *R*-variable time steps: $\delta t(R)^{-1} \propto \left(T_{\text{relax}}^{-1} + T_{\text{coll}}^{-1}\right)$
- Particles evolved in pairs; selection probability: $P_{\text{selec}} \propto \delta t^{-1}$
- Orbit sampling: random position with $dP/dR \propto V_{rad}(R)^{-1}$
- Physics
 - **Diffusive 2-body relaxation**: "super-encounter" between neighb. particles with $\theta_{\rm SE} = \sqrt{\langle \theta^2 \rangle_{\delta t}} = \sqrt{\delta t / T_{\rm rel}^{(1,2)}}$
 - Loss cone: random walk of \vec{V} tip, $N_{\text{steps}} = P_{\text{orb}}/\delta t$
 - Collisions: detection through $P_{\text{coll}} = \delta t / T_{\text{coll}}^{(1,2)}$. Outcome from 4-D grid of SPH simulations.

Captures by emission of grav. radiation

- Inclusion in MC code: Rough and ready!
 - No-return capture of star if $T_{\rm GW}(e,a) < T_{\rm relax}^{(\rm peri)} \ (\ll T_{\rm relax})$ $T_{\rm GW} \simeq \frac{2^{1/2}24}{85} \frac{c^5}{G^3 M_{\rm BH}^2 M_*} (1-e)^{7/2} a^4$ $\simeq 3.2 \times 10^6 \, {\rm yrs} \cdot \left(\frac{M_{\rm BH}}{10^6 \, M_{\odot}}\right)^2 \left(\frac{M_*}{1 \, M_{\odot}}\right)^{-1} \left(\frac{R_{\rm p}}{10 \, R_{\rm S}}\right)^4 \left(\frac{1-e}{10^{-5}}\right)^{-1/2}$
 - Instantaneous swallowing
- Monte Carlo simulation provides list of capture events Stellar type, M_* , e_0 , a_0
- Orb. evol. for each event computed "off-line" (Glampedakis et al 02)
- Radiation emitted at frequencies $\omega_n = n\sqrt{GM_{\rm BH}a^{-3}}, n \ge 1$ with amplitudes

$$h_n = \gamma(n,e) \frac{1}{D} \frac{G^2 M_{\rm BH} M_*}{c^4 a} \simeq 2 \times 10^{-27} \gamma \left(\frac{D}{1\,{\rm Mpc}}\right)^{-1} \left(\frac{a}{1\,{\rm pc}}\right)^{-1} \left(\frac{M_{\rm BH}}{10^6\,M_{\odot}}\right) \left(\frac{M_*}{1\,M_{\odot}}\right)$$

Amplitude of GW harmonics

Cf. Peters & Mathews 63

Capture rates in Sgr A* model

Capture parameters in Sgr A* model

Typical capture events

Typical capture events

Captures: Results of simulations

• K models (Freitag 2001, Class. Quant. Grav., 18, 4033) Evolved population. Seed BH, $0.5 - 2 \times 10^6$ part.

- $\dot{N}_{\text{capt}} \approx 10^{-7.6,5} \,\text{yr}^{-1}$ (*-BHs) for $N_* = 3.6 \times 10^{7.8,9}$ at $t \simeq 10^{10} \,\text{yrs}$ Whether or not *LISA*-detectable
- ~80, 60, 40% of stellar BHs swallowed (depends on T_{relax})
- SgrA* models (Freitag 2003, ApJ 583, L21 astro-ph/0211209, astro-ph/0306064) Evolved population. $2.6 \times 10^6 M_{\odot}$ BH. No initial M_* segr. (!), $2 6 \times 10^6$ part.

	rates (yr^{-1})	time in $LISA$ band (yrs)	# with S/N ≥ 10
MS	few 10^{-6}	$\sim 10^{6}$	$1\!-\!5$
WD	few 10^{-7}	few 10^5	0.3 - 1
NS, *BH	few $10^{-8} - 10^{-7}$	few $10^4, 10^3$	~ 0.01

- BHs dominate innermost 0.1 pc after few Gyrs, MS stars expelled.
- MS stars with $M_* \sim 0.05 0.1 M_*$ most resilient Role of IMF? Role of tidal interactions?

Beware: low statistics for compact objects

Capture by/of IMBHs??

- IMBHs detectable to 1 Gpc at least!
- A possible scenario: IMBH formed by run-away collisions of stars in dense cluster.
 Cluster sinks to galactic centre by dynamical friction.

 Portegies Zwart & McMillan 02
 Rasio, Freitag & Gürkan 03, astro-ph/0304038
 Gürkan, Freitag & Rasio 03, astro-ph/0308449
 Ebisuzaki et al. 01, Hansen & Milosavljević 03
 Portegies Zwart et al. 03

Rate: every few Myrs?

Conclusions and open questions

- Closest source: Low-mass MS stars orbiting Sgr A*
 - ~ 10^6 years before plunge \Rightarrow "weak" field
- Other sources: Compact stars in distant galaxies
 - Probably only stellar BHs
 - Last year of inspiral \Rightarrow strong field "geodesy"
 - Capture rates: $\sim 10^{-7} 10^{-6} \,\mathrm{yr}^{-1}$ for $M_{\rm BH} \le 10^7 \, M_{\odot}$
 - Range of $\sim 300 \,\mathrm{Mpc} \Rightarrow LISA$ detection rate: 0.1-few yr⁻¹
- Many uncertainties...
 - Stellar density, stellar population. How many stellar BHs?
 - Non spherical/stationary potential; Non-relaxational processes
 Nucleus rotation, galaxy mergers, MBH wandering, accretion disk, large angle scat...
 - Number of MBHs with $M_{\rm BH} \leq 10^7 M_{\odot}$ within range?
- IMBHs are very promising sources (if they exist...)