The Einstein Equations in Spherical Symmetry:
Scalar Field Accretion onto a Black Hole

Jonathan Thornburg

Maz Planck Institut fir Gravitationsphysik, Albert Einstein Institut,
Am Muhlenberg 1, D-14476 Golm, Germany.
(Dated: Id: eesf.tex,v 1.52 2003/09/10 22:21:46 jthorn Exp)

This document describes how to set up the Einstein equations using the 3 + 1
formalism in spherical symmetry. Our spacetime is asymptotically flat, and contains
a black hole at the origin (which is excised from the numerical grid), surrounded by
(typically) one or more shells of a self-gravitating scalar field. We use straightforward
2nd order finite differencing, with a method of lines scheme for the time integration.

You should have a basic familiarity with general relativity, the 3 + 1 formalism,
free versus constrained evolution schemes, basic finite differencing, and convergence
tests.

By working through the computer exercises here, you will gain practice with a num-
ber of important concepts in numerical relativity, including construction of initial
data, monitoring of the constraints, coordinate choice, black hole excision, radiation
boundary conditions, local and global mass functions, apparent horizons, matter
accretion onto a black hole, convergence tests, the method of lines integration of
time-dependent partial differential equations (PDEs), the Courant-Friedrichs-Lewy
(CFL) stability limit, one-sided and upwind finite differencing, and computer visu-
alization/animation of time-dependent results.

I. INTRODUCTION

In this course we will study a model problem in numerical general relativity: the Einstein
equations together with a self-gravitating massless scalar field, moving in the spacetime
surrounding a black hole. You will write (portions of) a computer program to take as input
a set of field variables describing the state of the system at some initial time, and evolve
this forward in time to determine the state of the system at later times.

To keep this writeup to a reasonable length, we have relgated the construction of suitable
initial data to a separate writeup. We have supplied a sample program to construct the
initial data, and you can study it later if you’re interested.

You can work in any of C, Fortran 77, or Fortran 90. We have supplied several sample
programs in each of these languages, each broken down into a main driver routine and a
set of relatively-independent subroutines. The computer exercises will have you write
your own versions of the various subroutines to replace the sample ones. You will probably
only have time to do this for a few of the subroutines, but by following the interface of the
sample subroutines, you can combine ones you’ve rewritten with the sample ones, to obtain
complete running programs. There are also more ambitious problems (for which we have
not supplied sample solutions) if you want to explore further on your own.

II. CONTINUUM PHYSICS

Our formulation of the problem, and our presentation here, are adapted from [1]. Another
key reference in this area is [2].

A. Notation

We use indices abc for spacetime (4-)tensors, and indices ijkl for 3-tensors defined solely
within a slice. We use the Penrose abstract-index notation, so (for example) g, and g;;
mean the 4-metric tensor and 3-metric tensor respectively, not individual components. We
use indices rf¢ for components. Spacetime tensors are marked by a) prefix; all other
tensors are 3-tensors defined within a slice.

B. 3+ 1 Einstein Equations

We use the usual 3 + 1 formalism ([3]), with spacetime coordinates z¢ = (t,z*), and a
line element

Wds? = W gy, da® dab = —(a? — Bi87) di* + 26; dt da' + g;j da’ da? (1)

where « is the 3+ 1 lapse function, 8’ the 3 + 1 shift vector, and g;; the 3-metric. We
use g;; to raise and lower 3-tensor indices.

Given g;;, we define the usual 3-covariant derivative operator V; and (3-) Ricci tensor
and scalar R;; and R = R;*. Taking n® to be the future pointing timelike unit normal to

the slices, we define the usual (3-) extrinsic curvature K;; = %£ngz~j = —Vin,.
We decompose the spacetime stress-energy tensor Ty, = (4).Tab into the 3 4 1 variables
the energy density p = n*n®T,;, the momentum density j° = —n,7*, and the stress

tensor Tj; = T, = WT;; (that is, the 3-tensor T}, is equal to the spatial components of
the 4-tensor Typ).

In terms of these 3 4+ 1 variables, the 10 Einstein equations G4, = 87Ty, split up into 4
constraint equations which don’t contain any time derivatives

C= (R — KiK' + K2> - (167rp) ~0 (2)
Ci = (V]-K"f - V’K) . (&rji)) (2b)
and 6 evolution equations giving the time dependence of the field variables,
Orgi; = —2akK;; + £39; (3a)
8tKij = — VZ‘VJ'CM + o (RZ] — QQkIKikKjl + KKZ]) + £/3Kij
+4ma (T — p)gij — 2T;5) (3b)

where the Lie derivative terms are given by

L£s9;; = ViBj + VB
= B*0kgi; + 9ir0; 8" + g;10: 8"
LK = VK + Ky V5" + K, Vi* (4c
= B*O,Kij + Ki0; 8" + K;1,0;8 (4d

(We keep the Lie derivative terms in the evolution separate because we’ll need to treat them
specially in the finite differencing; this is discussed in section III C.)

C. Free versus Constrained Evolutions

Notice that the combined system of the evolution equations (3) and the constraints (2)
are overdetermined: assuming that the lapse function o and shift vector 8¢ are somehow
chosen, there are more equations (16) than there are variables (the 12 g;; and Kj;). This is
not a problem mathematically, because the constraints are consistent with the evolution
equations: the Bianchi identities imply that if the constraints (2) are satisfied on the initial
slice, they will be satisfied on all future slices.

However, in constructing a computational algorithm things are not so simple: because
there are more equations than variables, we must somehow choose a subset of the equations
to update the variables as we step forward from one time slice to the next. Different choices
here may have very different computational properties. In particular, there are two basic
approaches:

free evolution
The simplest scheme is to use only the evolution equations (3) to update the field
variables during the evolution, using the constraints (2) only as diagnostics of the
evolution’s accuracy. This is the approach we take here.

constrained evolution

Another possibility is to use some or all (say N.), of the 4 constraint equations (2),
together with 12 — N, of the evolution equations (3), to update the field variables
during the evolution, using the remaining constraint and evolution equations only as
diagnostics of the evolution’s accuracy. Note that since the constraint equations (2)
are elliptic PDEs, whereas the evolution equations (3) are “hyperbolic” (they have
hyperbolic-like causality properties, even if they’re not actually hyperbolic in the strict
mathematical sense), a constrained evolution scheme requires quite different boundary
conditions from a free evolution scheme. We will see the importance of this later when
we discuss black hole excision in section IIH.

In an actual numerical evolution, numerical errors will cause the constraints (2) to not be
exactly satisfied; we can monitor their (nonzero) values to get an indication of the evolution’s
accuracy. This immediately raises the question, how small should we expect these nonzero
values to be? To determine a scale, observe that the left hand sides in (2) are each the
sums of several terms, which should cancel to give zero sums. This suggests that a suitable
scale is given by the sizes of the individual left-hand-side terms, so we define the relative
constraints (also known as the normalized constraints)

R - K;;K" + K? — 167p
|R| + |K;; K9 | + |K?2| + [167p|
. V;K7—-V'K —8rj’

T VK| + VK| + (8]

C'rel =

These should be < 1 everywhere in spacetime.

D. Scalar Field

We take the scalar field ¢ to satisfy the (4-)scalar wave equation (¢ = V,V%p = 0, and
to have the usual stress-energy tensor

AnToy = (0a0)(0s0) — 59a5(0c8) (0°0) (6)

For numerical purposes it’s convenient to work instead with the 3 + 1 field variables

P, = V¢ (7a)
Q = 2 (00 Vi) (7)

so that
O = aQ + B P, (8)

If ¢ itself is needed it’s easy to recover it from P; and) by time-integrating (8).
Straightforward but tedious calculations then give the scalar field evolution equations as

0P, = Vi (aQ + B*P) (9a)
0Q = V;(aP') + aKQ + B'V,Q (9b)
and the 3 4 1 scalar field variables as
drp = L (PP*+ Q%)
dmj; = —BQ
4nTy; = PiPj+ 3gi; (—PeP* + Q%)
AT = —1P.PF 4 3Q?
p and j" are volume densities, but in practice it’s often more convenient to integrate over

the angular dimensions, using the radial densities 47w ggyp and 4mgyyj” as matter diagnostics.
(This also gets rid of a number of 47 factors in the equations.)

E. Spherical Symmetry

We now assume that spacetime is spherically symmetric, and that the spatial coordinates
are ' = (r,0, ¢), with the usual polar spherical topology. We parameterize the various 3+ 1

tensors as follows:"

9ij

i
rel

[A 0 0
0 B 0

| 0 0 Bsin®46

[X 0 0
0 Y 0

| 0 0 Ysin’4

(80 0]

[P 0 O]

= [Cry 0 0]

(11a)

(11b)

(11c)
(11d)
(11e)

With these assumptions it’s then straightforward, though tedious, to express all the other

3 + 1 variables and equations in terms of the state variables A, B, X, Y, P, and Q:

The individual terms in the constraints (2) and (5) become

B 2
S
KK = if_jﬂgz
K = §+2%
o
SO B B2 1
=35
Arj" = _ITTQ

2
B

(12a)
(12b)
(12c)
(12d)
(12e)

(12f)

(12g)

! Notice that for historical reasons, we do not factor out the flat-space 7> dependence from ggg = B. Tt

might well be that factoring out this 72 factor (i.e. using ggg/r? as our field variable for finite differencing)

would give more accurate results. The interested student is invited to try this. ..

The evolution equations (3) become

OA = — 20X + £5A
8,;B = — QCVY + £ﬂB

T

8, A
X = — 0o+ i(0,0) =

2
B, (@B) 4 1,@A0B) |

B
+ £gX — QOAPZ
0,B
A

B AB

8tY = — l(aroz)

2

, OB

+ £3Y
0P = (0,0)Q + ad,Q
+ £3P
P | 0,AP
0,Q = (Gra)z—ia 1 Z—l—a B A—|—a i
X Y
+ aZQ + 2a—=Q

B
+ £,3Q

where the Lie derivative terms (4) are given by

£5A = BO,A+2(0,8)A

£3B = BO,B
£,X = B0, X +2(0,8)X
£5Y = 0,Y

£3P = B0,P + (9,8)P
£5Q = p0,Q

F. Diagnostics

1. Light Cones

1 (aTA)(aTB) XY
204 A +ZOJ A2 +a+a7

o,B P o P

(13a)
(13b)

(13c)

(13d)

(13e)

It’s useful to compute the light cones in terms of our field variables. In particular, it’s
useful to know, at a given event, which infinitesimal displacements (dr,dt) are timelike.
From the line element (1) and our definitions for the 3-metric, lapse, and shift-vector, it’s

easy to see that this is given by

timelike & c_.=-0-— <

NE
B

<-B+

(15)

Il
o
+

Sk

2. FEwvent Horizons

Problem 1 (Event Horizons)

Suppose we have an evolution covering all of our (spherically symmetric) spacetime. Given
the light-cone information (15) (again assume here that this is available everywhere in space-
time), how would you go about finding the event horizon? How could you find a good ap-
proximation to this given only an evolution covering a finite region of spacetime? This topic
is discussed in [4-6].

3. Misner-Sharp Mass Function

As first shown by Misner and Sharp ([7]), in spherical symmetry we can define a global
mass function giving the mass contained within a given radius, and which obeys a work-
energy conservation law (the first law of thermodynamics).? In terms of our field variables,
this can be written as as

o,B)? Y?
mus = VB (1—i(AB) +§> (16)

Unfortunately, the definition (16) turns out to be quite sensitive to small numerical errors
at large 7.3 As shown by [9], the Misner-Sharp mass can be rewritten in an alternate form
as the volume integral of a (positive definite) local mass density pu:

my, = / pdiz (17)
or (since we excise a black hole at the origin of our numerical grid)

my(r) = mus(Tmin) + /’“ 4mBVA pdr (18a)

Tmin

where the local mass density p can be written as

_. 9B VA
F=2 28"~ /B

Another useful quantity is the total mass within the outer grid boundary, which we call
the slice mass mg)jc.. This is bounded above by the total mass of the slice, the Arnowitt-
Deser-Misner (ADM) mass mapwm, but mgice < mapw if any scalar field has propagated
off the outer boundary of the grid.

YT (18b)

2 Unfortunately, the Misner-Sharp definition works only in spherical symmetry, and can’t be extended to
more general spacetimes. See [8,section 23.5] for a good discussion of this, and of the Misner-Sharp mass

function in general.
3 Since B = ggg = O(r?) at large r, the leading term in (16) is O(r) for large r. For our slices mys is always

O(1), so the remaining terms in (16) (must) nearly cancel the leading term. This cancellation causes the

numerical sensitivity.

4. Apparent Horizons

We assume that each slice contains a black hole at the origin. Given a reasonable slicing,
this implies the existence of one or more apparent horizons in each slice. In terms of the
3 + 1 variables, a marginally trapped surface (MTS) is defined by the condition ([10])

where we take n’ to be the outward-pointing unit 3-normal to the horizon. An apparent
horizon (AH) is then an MTS which is not contained inside any other MTS. In practice, we
follow the usual (sloppy) convention in numerical relativity and blur the distinction between
MTSs and AHs: we refer to any MTS as an AH.

In general, solving the apparent horizon equation (19) is quite difficult, but in spherical
symmetry it’s much easier: the apparent horizon equation becomes

0.B 2Y
VAB B
and it suffices to just look for zero crossings of © = O(r).

For our coordinates an apparent horizon at a radius ragx always has an apparent horizon

mass (the Misner-Sharp mass function mys interpolated to the apparent horizon radius)
given by mayg = %mAH.

e = =0 (20)

G. Coordinate Choice

So far we have left the coordinate choice — specified in the 3 4+ 1 formalism by the lapse
function o and the shift vector 3* — arbitrary.

To choose our slicing, we impose the Eddington-Finkelstein condition ([8,box 31.2]) that
t+r be an ingoing null coordinate. A straightforward calculation shows that this is equivalent

to the condition o

VA

To choose our spatial coordinates, we maintain the areas of constant-r surfaces (coordi-
nate spheres) temporally constant during the evolution, i.e. 0;ggp = 0 or

+8=1 (21)

By virtue of the evolution equation (13b) and Lie derivative (14b), this condition is equivalent
to
—2aY + $6,B =0 (23)

Notice that since the spatial coordinate condition gives 0,B = 0, we could omit the
time evolution of B, leaving it at its initial value throughout an evolution. However, in
practice evolving B through the full evolution equation (13b) (as we do here) adds little
extra complexity, and makes the code more modular and easier to generalize to other possible
coordinate conditions.

Note that although our spatial coordinates are chosen to maintain the areas of constant-r
surfaces (coordinate spheres) temporally constant during the evolution, there’s no require-
ment or assumption that that area be 4772, i.e. that r be an areal radial coordinate. Rather,
this is determined by the coordinates on the initial slice.

H. Black Hole Excision; Inner Boundary Conditions

To avoid having to deal with the r = 0 coordinate singularity of our (r,0,¢) polar
spherical spatial coordinates, and to add to the physical interest, we assume that there is
a black hole at the origin, and we excise it from the numerical grid. That is, we use a
numerical grid which only covers the portion 7 € [Fmin, "max] Of €ach slice, where ry, > 0 is
chosen to be inside the black hole, but safely away from r = 0.

Because there are no elliptic equations in our evolution system, only “hyperbolic” ones
(cf. our discussion of free versus constrained evolution systems in section IIC), so long as
the light cones point only inward at r = ryy, i.e. so long as we have dr/dt < 0 for any null
or timelike motion there, we don’t need any additional boundary conditions on the excision
boundary 7 = rp;, to keep the evolution well-posed (causal). Given our definitions (15), this
inner-boundary causality condition becomes

Cy <0 (24)

The statement that no additional boundary conditions are needed at the inner boundary
is true for the continuum PDEs, but numerically things are a bit more complicated. We
discuss numerical inner boundary conditions in section III B.

I. Outer Boundary Conditions

Since our numerical grid only extends out to a finite outer radius r = 7.y, we need
outer boundary conditions there to make our system of equations well-posed. Our goal
here is to choose “outgoing radiation” boundary conditions such that the dynamics of our
finite-domain system reasonably approximate those of the corresponding region of an infinite-
domain isolated system. That is, we would like there to be no incoming signals at r = 7.y,
and we would like any outgoing signals at r» = ry,, to propagate smoothly outwards off the
edge of the grid. Due to the nonlinearity of the Einstein equations this can’t be done exactly
at any finite .., but there are several possibilities for how to approximate it:

1. Static Boundary Conditions

One very simple outer boundary condition would be to just keep the state vector static
(time-independent) there, i.e. all its time derivatives to zero:

Owu=0 for each state-vector variable u (25)

If B is being kept constant (i.e. if it’s being evolved by (22)), then the boundary con-
dition (25) is fine for it. Otherwise, or for any of the other field variables, this boundary
condition has two serious problems:

e If the fields near the outer boundary have any time dependence, this will reflect off
of the outer boundary, causing spurious signals to propagate back in towards smaller
radia.

e This reflection will almost certainly violate the constraints, so a wave of constraint
violation will propagate inwards from the outer boundary at (roughly) the speed of
light. Once the constraints are significantly violated, we no longer have a good ap-
proximation to the Einstein equations.

2. Flat-Space Outgoing Radiation Boundary Conditions

A rough approximation to outgoing-radiation conditions is to apply a flat-space outgoing
radiation (Sommerfeld) condition to each component of the state vector. That is, we require
(assume) that each field variable v must be of the form f,(r — ¢, t) near the boundary, so
that 0,u = —c, 0,u there. This gives the outgoing-radiation boundary conditions

Oyu = —c Opu for each state-vector variable u (except possibly B) (26)

3. Background Subtraction

There are many possible improvements to the outgoing-radiation boundary condi-
tions (26). Here we consider several improvements:

background subtraction
One easy improvement is to apply the boundary conditions only to the deviations of
the field variables from their values in some (time-independent) background spacetime,
for example Schwarzschild spacetime.

choice of background

Our derivation below assumes that the background is time-independent. However, our
slices actually have time-dependent masses (decreasing as scalar field leaves the grid
at the outer boundary), so no single Schwarzschild spacetime is a good choice for the
background throughout an entire evolution. Instead, it’s preferable to, for each slice
(say with slice mass mgjice), use as a background a Schwarzschild slice of mass mgjce.
(This violates our assumption of a time-dependent background, but in practice the
variable background works better than the fixed one so long as mg;ce varies relatively
slowly.)

1/r™ falloffs
Because of the spherical topology, we expect the dynamic variations in the field vari-
ables to have amplitudes which fall off as various analytically-calculable powers of r
along outgoing null cones.

Combining both these improvements, we assume that each state-vector field variable (except
possibly B) satisfies

u—Upg _ f(r —cyt)

i p (27)
at the outer boundary, where uy, is the (time-independent) value of u (at the same radius)
in the background spacetime, and m and n are suitable parameters (which may be vary from
one field variable to another). This gives the outgoing-radiation boundary condition

n—m

Or(u — Ung) = —c4 [0r (U — upg) + (u — upg) (28)

Field Variable

m
0
2
0
0
0
0

S Ve S o
— = N W = NS

TABLE I: This table gives the parameters m and n used for the evolution outer boundary condi-
tion (28).

To determine suitable m and n we need to know the actual large-r falloff behavior of pertur-
bations in the field variables. This can either be calculated analytically (via perturbations
around a background solution), or found by numerical tests (using an outer boundary so far
out that it doesn’t influence the results). Table I gives a set of parameters m and n for our
state-vector variables which seem to work fairly well.

Problem 2 (Experiment with Different Falloff Conditions)

You could try experimenting with different values of m and n to see if you can get bet-
ter boundary conditions (less reflection of outgoing signals off the boundary, and/or less
constraint violations generated at the outer boundary and propagating back inwards).

J. Summary

At the continuum level, our computational problem is thus as follows:

e The state of our system at any time ¢ is given by the fields A, B, X, Y, P, and @, all
of which are functions of the radius r in the range 7 € [Fmin, Tmax|-

e The input to our problem will be the state fields at some initial time %;;;.

e Our goal will be to evolve the fields forward in time to compute them for some time
interval t € [tinit; tﬁna]].

e Given the values of all the fields at a given time, we can compute the lapse function «
and shift vector 8 by solving the two linear equations (21) and (23) at each point.

e We can then evolve the fields using the evolution equations (13) and (14), and the
outer boundary conditions (28).

e To monitor the evolution’s accuracy, we can compute the relative constraints C' and
C" using (5) and (12).

e To help understand the physics, we can compute the local energy and momentum
densities 47 Bp and 47 Bj" using (12f) and (12g), the Misner-Sharp mass function
using (16) and the positions of the apparent horizon(s) by zero-finding on © computed
by (20).

III. NUMERICAL METHODS

Because many of our equations are nonlinear, it’s not practical to solve them analytically,
so we use numerical methods instead. In particular, we use 2nd order finite differencing and
the method of lines (MOL) to time-integrate the evolution equations (13) and (14) and the
outer boundary conditions (28). Appendix B gives a brief introduction to MOL.

A. Spatial Grid and Centered Finite Differencing

We begin by discretizing the spatial coordinate 7: we choose a (fixed) inner boundary
position r;, > 0 and a (fixed and uniform) grid spacing Ar, and introduce a finite grid
of N +1 points ry, = rmin + kAr, k=0, 1, 2, ..., N, spanning the range from the inner
boundary 7 = rmi, to the outer boundary 7 = rmax = 7min + N Ar.* We use the usual
notation uy = u(r = ry) for any grid function w.

We approximate all spatial derivatives by finite difference operators. Notably, we will use
the usual centered 2nd order finite difference approximations

(Oru)e = ==+ 0((Ar)?) (292)
(Orpu)p = B _(ZT:.];;— o + O((Ar)2) (29b)

for most spatial derivatives.

B. Boundary Conditions

Clearly the centered finite difference approximations (29) can’t be used as is at either
the innermost or the outermost grid point (k = 0 or k = N respectively), since this would
require values of the grid function at the nonexistent grid points ¥k = —1 or k = N + 1
respectively. There are two plausible ways to solve this problem:

e We could use one-sided finite difference approximations such as

—3ug + dup 1 — Upyo
2 Ar

(B, = +0((Ar)?) (30a)

(which is usable at the innermost grid point £ = 0), and/or

ug — dug 1 + U2
2 Ar

(Bru) = +0((Ar)?) (30b)

(which is usable at the outermost grid point k = N).5

4 Tt would be preferable (more accurate results per unit of computation) to use a nonuniformly spaced grid,
but this complicates the programming, so we only cover the uniformly-space case here. See problem 4 for

a brief discussion of how you might extend the sample program to use a nonuniform grid.
5 Similar one-sided approximations to d,,u also exist (though they’re less accurate), but it turns out we

won’t need them here.

e Alternatively, we could actually have “ghost zone” grid points k = —1 and k = N+1,
determining the field variables at these points by exztrapolation from the nominal grid:

u_1 = 3up — 3us + uz + O((Ar)?) (31a)
UNy1 = 3U,N — 3UN,1 + UN_2 + O((A?”)?)) (31b)

Both approaches work fairly well. In fact, they’re equivalent: convolving the centered
finite difference approximations (29) with the extrapolation operators (31) gives precisely the
one-sided finite difference approximations (30). Notice, however, that for 2nd derivatives the
combination of the extrapolation operators (31) with the centered 2nd order finite difference
approximation (29b) is only 1st order accurate.

In practice, though, it’s probably more convenient to use the extrapolation technique,
because this way the code for the Einstein equations can be written without making the
boundary points a special case. This will become clearer in the numerical exercises below.

We refer to the grid points 0 < k£ < N as the nominal grid, the grid points 1 < k < N—1
(i.e. all the nominal grid points except the boundary points ¥ = 0 and k¥ = N) as the interior
grid, and the grid points —1 < & < N+1 as the ghosted grid. We consider the grid functions
A, B, X, Y, P, and (Q on the nominal grid to be the state vector; we take any other grid
functions, and any values in the ghost zones, to be only temporary values, not part of the
state vector. Also, unless otherwise stated, all the subroutines in the numerical exercises
should use only the nominal-grid parts of their inputs, and need compute their outputs only
on the nominal grid.

C. Upwind Finite Differencing

It turns out that if we use the centered finite difference approximations (29) for all the
terms in the evolution equations in the interior grid, the time evolution is highly unstable. In
particular, the problem lies in our use of the centered finite difference approximation (29a)
for the first derivatives (0,) in the Lie derivatives (14). Moreover, it turns out that we
can solve the problem — and obtain stable evolutions — by using a different finite difference
approximation for these derivatives, depending on the sign of the shift vector g at each grid
point:

B > 0 = use the one-sided approximation (30a)
f# = 0 = use the centered approximation (29a) (32)

B < 0 = use the one-sided approximation (30b)
The shift vector § acts rather like a fluid velocity, and we speak of the Lie derivative
terms as advection terms since they adjust the equations for the fluid motion. In this

model, the one-sided approximations are called upwind derivatives, since they’re one-sided
in the “upwind” direction of the fluid flow.

IV. COMPUTER EXERCISES

In order to do convergence tests, when you do the computer exercises you should try
running the resulting programs for several different resolutions; it’s convenient if these are

in a 1:2:4 ratio of resolutions. A good set of grid parameters to start with is 7y, = 1.5
and rmax = 101.5, with resolutions Ar = 0.04 (N = 2500), Ar = 0.02 (N = 5000), and
Ar = 0.01 (N = 10000). For good 2nd order convergence you may also need Ar = 0.005
(N = 20000).

Computer Exercise 1 (Initial Data)
This exercise has two parts:

Schwarzschild initial data
Using the supplied template file Schwarzschild.{c,f77,£90}, write a subroutine
Schwarzschild to set the state vector (on the nominal grid) to the Schwarzschild
analytic values (Al).

Using the appropriate test driver file setup_Schwarzschild.{c,f77,£f90}, together
with your Schwarzschild subroutine, generate initial data files for a unit-mass
Schwarzschild slice.

Scalar-Field Initial Data Use the sample initial data solver program to construct initial
data files containing a black hole surrounded by a scalar field shell. Use a unit-mass
Schwarzschild slice for the initial slice, and construct initial data (for each resolution)
for two choices of perturbations:

e A Gaussian perturbation in P, with center r;,;; = 20, standard deviation oj,;; = 5,
and amplitude A = 0.5. This will produce a relatively thick and moderate-mass
scalar field shell. For historical reasons (following the naming conventions of
[1, 11]), we call this the pqw5 initial data family.

e a Gaussian perturbation in P, with center 7;,;; = 20, standard deviation oj,;; = 1,
and amplitude A = 0.1. This will produce a much thinner and more massive
scalar field shell. We call this the pqw1 initial data family.

Computer Exercise 2 (Basic Infrastructure)
This exercise has several parts, which can be done in any order:

check that the Metric is Positive Definite
Using the supplied template file check_metric.{c,f77,£f90}, write a subroutine
check_metric which takes the state vector (defined for the nominal grid) as an input,
and checks that the metric is positive definite, i.e. that A > 0 and B > 0 everywhere
in the grid. If so, your subroutine should do nothing (i.e. just return), if not, your
subroutine should print a suitable error message and halt execution.

compute algebraic functions of the state vector
Using the supplied template file trace_K.{c,f77,£90}, write a subroutine trace_K
which takes the state vector (defined for the nominal grid) as an input, and computes
K as defined by (12¢) (at the nominal grid points) as an output.

Using the supplied template file energy_momentum_density.{c,f77,£90}, write a
subroutine energy_momentum_density which takes the state vector (defined for the
nominal grid) as an input, and computes 47p and 47j" as defined by (12f) and (12g),
and also the more-useful-in-practice diagnostics 47 Bp and 47 BJ", (all at the nominal
grid points) as outputs.

extrapolate to define ghost-zone values
Using the supplied template file extrapolate.{c,f77,£90}, write a subroutine
extrapolate which takes a grid function (defined on the nominal grid) as input,
and sets the grid function’s ghost-zone values ¥ = —1 and £ = N + 1 using the
extrapolation operators (31), so the grid function is now defined on the ghosted grid.

finite differencing

Using the supplied template file derivatives.{c,f77,f90}, write subroutines
dr_centered, drr_centered, dr_1sided_plus, and dr_1sided_minus, each of which
should take as input a grid function defined on the ghosted grid, and compute
an approximation to the appropriate derivative (defined on the nominal grid for
dr_centered and drr_centered, defined for 0 < £ < N — 1 for dr_1sided_plus,
and defined for 1 < k < N for dr_1sided_minus) as output, using the finite differ-
ence approximations (29a), (29b), (30a), and (30b) respectively.

Computer Exercise 3 (Diagnostics)
This exercise has several parts, which should be done in sequence:

compute the Ricci scalar
Using the supplied template file Ricci.{c,£77,£90}, write a subroutine Ricci which
takes as an input the state vector and its derivatives, and computes the Ricci scalar R
as defined by (12a).

compute the constraints
Using the supplied template file constraints.{c,f77,f90}, write a subroutine
constraints which takes the state vector, its derivatives, and K, 4mwp, 475", and
R, and computes the relative constraint grid functions Cye and C],; on the nominal
grid as outputs, using the definitions (5) and (12). Use the extrapolation operators (31)
and the centered finite difference approximations (29).

compute the mass function
Using the supplied template template file mass_function.{c,f77,£90}, write a sub-
routine mass_function which takes the state vector and its derivatives as inputs, and
computes as output the “geometry-form” Misner-Sharp mass function mys defined
by (16), and the slice mass mgjce.

find the apparent horizon(s)

Using the supplied template file apparent_horizons.{c,£77,£90}, write a subroutine
apparent_horizons which takes the state vector and its derivatives as inputs, and
computes as output the left hand side © of the apparent horizon equation (20) and
the positions of the apparent horizon(s). Once you’ve computed O, find the apparent
horizon(s) by looking for grid cells [k, k + 1] where © changes sign, then linearly
interpolating between r; and ri,1 to find the » where © = 0. Also have your horizon
finder compute the mass contained within this radius (“the mass of the black hole”)
by linearly interpolating the Misner-Sharp mass function myg to this same horizon
position.

compute all the diagnostics
Using the supplied template file diagnostics.{c,f77,£90}, write a subroutine

diagnostics which takes as input the state vector on the nominal grid, and calls
all the other subroutines you’ve written so far to compute all the diagnostics.

convergence tests on Schwarzschild initial data
Using the appropriate test driver file test_diagnostics.{c,£77,£90}, together with
your diagnostics subroutine and the other subroutines you've written, compute all
the diagnostics for Schwarzschild initial data.

Check that the values you compute show proper convergence: both C' and C" should
show show 2nd order convergence to zero everywhere in the interior of the grid, but
you shouldn’t expect good convergence within a grid point or two of the boundaries.

mys should show 2nd order convergence to the (spatially-constant) mass of the
Schwarzschild spacetime, and you should find a single apparent horizon, whose posi-
tion should by very close to r = 2m = 2.0. (You won’t see exact 2nd order convergence
here, because at the highest resolution r» = 2.0 exactly coincides with a grid point,
while at the two lower resolutions it falls between grid points.)

convergence tests on scalar-field—shell initial data
Repeat the above convergence tests for both of the scalar-field initial data families you
constructed in exercise 1.

Problem 3 (More Diagnostics)

Some other diagnostics you could compute include the volume-integral form of the Misner-
Sharp mass function (18), the 4-Ricci scalar 'R = 87(p — T) (a 4-invariant diagnostics
for the scalar field density), and the Kretschmann scalar, the 4-Riemann curvature in-
variant (MR 5.q DR (detailed equations for this are given in [11,appendix B]). (The first
two of these are easy, the last is conceptually straightforward but the equations are quite
complicated.)

Computer Exercise 4 (Coordinates)
This exercise has two parts, which should be done in sequence:

compute the lapse function and shift vector
Using the supplied template file coordinates.{c,f77,£f90}, write a subroutine
coordinates which takes the state vector and its derivatives (defined on the nominal
grid) as inputs, and computes the lapse function « and shift vector § on the nominal
grid as outputs, by solving the two simultaneous linear equations (21) and (23) at each
grid point.

compute the light cones
Using the supplied template file 1ight_cones.{c,f77,£90}, write a subroutine
light_cones which takes the relevant metric components and the lapse function and
shift vector as inputs, and computes the light cone speeds c_ and c; as defined by
equation (15).

check the inner boundary causality
Using the supplied template file check_inner_boundary.{c,f77,£f90}, write a sub-
routine check_inner_boundary which takes the light cone speeds as inputs, and checks
that the inner-boundary causality condition (24) is satisfied. This subroutine should

work in the same way as your check_metric subroutine from exercise 2: if every-
thing is ok your subroutine should do nothing (i.e. just return), if not, your subroutine
should print a suitable error message and halt execution.

convergence tests on Schwarzschild initial data
Using the appropriate test driver test_coordinates.{c,f77,£f90}, together with
your coordinates and light_cones subroutines and the other subroutines you’ve
written, do a convergence test to check that a, (3, cy, and c_ all show 2nd order
convergence to the correct values for the Schwarzschild initial data files.

Computer Exercise 5 (Evolution Equations)
This exercise has several parts, which should be done in sequence:

compute the interior evolution equations

Using the supplied template file evolution_interior.{c,f77,£f90}, write a subrou-
tine evolution_interior which takes the state vector and its derivatives as inputs,
and computes the right-hand-side of the evolution equations, i.e. d; of the state vec-
tor, at the grid points 0 < k < N — 1 (i.e. everywhere in the nominal grid ezcept the
outer-boundary grid point £ = N), using the evolution equations (13), (14), and (22).
As discussed in sections IIT A and III C, use the upwind finite differencing approxima-
tions (32) for all the (1st) spatial partial derivatives in the Lie derivatives (14), and
use the centered finite differencing approximations (29a) for all other spatial partial
derivatives appearing in the equations.

compute the radiation outer boundary conditions
Using the supplied template file outer_boundary.{c,f77,£90}, write a subroutine
outer_boundary which takes as inputs a (state-vector) grid function, its derivative,
and the slice mass mg)jce, and computes 0; of the grid function at the outer-boundary
grid point £ = N as an output, using the outgoing-radiation outer boundary condi-
tion (28).

assemble the right-hand-side subroutine
Using the supplied template file RHS.{c,£77,£90}, write a subroutine RHS which takes
as input the state vector defined on the nominal grid, and the right-hand-side of the
evolution equations, i.e. 0; of the state vector, everywhere on the nominal grid, by
calling the other subroutines you’ve already written.

Using the appropriate test driver test_RHS.{c,f77,£90}, together with your RHS
subroutine and the other subroutines you’ve written, do a convergence test on 0, of the
state vector for the Schwarzschild initial data files. 0,P, and 0;() should be identically
zero everywhere (this is a vacuum slice, with P and @ both identically zero). 0; of the
other 4 field variables should show 2nd order convergence to zero at all the interior
grid points, and at the outer-boundary grid point £k = N. At the inner-boundary grid
point £ = 0, 0;A and 0;B should show 2nd order convergence to zero, but because of
the 2nd spatial derivatives in the X and Y evolution equations (13c) and (13d), 0, X
and 8,Y should only show 1st order convergence to zero.®

6 Recall from section IIIB that the combination of the extrapolation operator (31) and the centered
2nd derivative approximation (29b) is only 1st order accurate.

Computer Exercise 6 (Time Stepping)

Write a subroutine time_step to take as input the state vector at time ¢, and update this to
give as output the state vector at time ¢+ At, using the 2nd order Runge-Kutta scheme (B9).
Your time_step subroutine should call the RHS subroutine twice.

Problem 4 (Nonuniform Spatial Gridding)

You could make the code much more efficient (comparably-accurate results with much less
computation) by switching to a nonuniform spatial grid. There are two reasonably simple
ways to do this:

e You could keep the tensor basis using (r,0, ¢) coordinates, but use a grid which is
uniform in some other radial coordinate w = w(r), with w a suitably-chosen nonlinear
function of . Then

0
By = Jla—z (33a)
0%u ou
&TU = fw + JQ% (33b)
where we define
ow
- 2= 4
Ji ar (34a)
0w
Jo = 52 (34b)

so you can rewrite the finite differencing routines from exercise 2 to still compute r
derivatives even though the grid is uniform in w. w(r) = log(r) is a common choice
for nonuniform grids, but for our purposes it tends to result in inadequate resolution
(too large a grid spacing) in the outer parts of the grid. w(r) = /r works better. The
code described in [1, 11] uses this approach, though with a more complicated choice
for the w(r) function.

e You could use (w, , ¢) as a tensor basis for the 3+ 1 equations. This is similar to the
previous approach, avoids the requirement to transform the derivatives via the J; and
Jo coefficients. On the other hand, it requires tensor-transforming the initial data,
and any other quantities you input or output which aren’t 3-scalars.

Problem 5 (4th order Finite Differencing)

You could make the code much more accurate by switching to 4th order finite differencing in
both space and time. [1] discusses numerical methods for this in detail. Briefly, you would
use ghost zones 2 grid points wide, 5-point extrapolation operators to determine the ghost-
zone values, 4th order (5-point) centered and off-centered finite difference approximations
for the spatial and a 4th order time integrator such as the Runge-Kutta method (B10).

Computer Exercise 7 (Time Evolution of Schwarzschild Initial Data)

Use the sample evolve driver program, together with your time_step, RHS, and
diagnostics subroutines and the other subroutines they call, to try time-evolving the
Schwarzschild initial data to ¢ = 50, and check the convergence of the results to the correct
values (which should be the same as the initial data).

Look at a movie of the relative energy constraint Cy as a function of space and time.
You’'ll see some small errors propagating in from the outer boundary, and the values well
away from the outer boundary will grow rapidly, but if you look at the scale of the plots
you’ll see that the constraints are overall still preserved to high accuracy.

Computer Exercise 8 (Accretion of a Thick Scalar Field Shell onto the Black Hole)
Repeat exercise 7, this time using the pqwb initial data slices you constructed in exercise 1.

The initial data has zero momentum (j" = 0), so the initial scalar field shell is actually the
superposition of an ingoing and an outgoing shell. If you look at a movie of 47 Bp, 47 Bj",
and m™5, you should see the shell split into these two shells right away. The ingoing shell
(which has negative j") will fall into the black hole at around ¢ = 20, while the outgoing shell
(with positive j") will propagate out away from the black hole until it reaches the outer grid
boundary. You should also see each propagating shell leave a “tail” behind; this is caused by
the scalar field scattering off the background spacetime curvature. Figure 1 (taken from [1])
shows the general type of results you should get.

If you look at the time evolution of the apparent horizon mass and/or radius, you should
see this increase as the scalar field falls into the black hole. Figure 2 (taken from [1]) shows
an example of this.

Look at a movie of the relative energy constraint Cy as a function of space and time.
Unfortunately, you'll see a very large wave of constraint violation which starts at the outer
boundary and travels in at the speed of light. This constraint violation is a continuum effect
from our outer boundary conditions (28), so it doesn’t converge away as you increase the
resolution. (Check this!) However, if you zoom in on r < 50 (i.e. on a part of the grid which
isn’t causally connected to the outer boundary for the length of time of this evolution), then
you should see that the constraints are small, and show 2nd order convergence to zero.

Problem 6 (Longer Evolutions; “Tails”)

Another interesting thing to look at for this data set is the “tails” formed by the scattering
of the scalar field shells from the spacetime curvature near the black hole. You would see
these as several further outgoing shells of scalar field at late times, the first being roughly
r = 50 inside the outermost outgoing scalar field shell. To see these clearly you would need
quite long evolutions (at least ¢ > 200 would be desirable), which would in turn require
having the outer boundary quite far out to avoid having outer boundary errors corrupt the
tails. Thus these runs would take quite a while.

Computer Exercise 9 (Accretion of a Thin Scalar Field Shell onto the Black Hole)
Repeat exercise 8, this time using the pqw1 initial data slices you constructed in exercise 1.

This scalar field shell is thin and massive (it’s about 3 times as massive as the initial
black hole). If you look at a movie of 47w Bp, 47 Bj", and mys, you should be able to see the
ingoing and outgoing-going shells leaving “trails” behind. These are due to the scalar field
scattering off the spacetime curvature.

When the ingoing shell falls into the black hole, for a short time (around ¢ = 19 to ¢ = 20)
there are 3 apparent horizons present. Figure 3 shows this.” If you look at a movie of ©

" To get a high sampling rate in the interesting time range t € [19,20], while not having too-huge data
files, there were actually 3 separate runs of the evolve driver, one for ¢ € [0, 19] with output every 1, one
for t € [19, 20] with output every 0.02, and one for ¢ € [20, 50] with output every 1. The --append option

0.15 s t=0 left scale right scale

i i E‘z —— 4nBp —m
B - 4 BjT
rrrrrrrrrr 1BWR

0.10 |

FIG. 1: This figure shows the time evolution of a scalar field shell accreting onto the black hole.

of that driver was used to get all the data into a single set of files.

2.4 1.20
23 | 4 1.15
22 | 3 4 1.10
h ’ m(h)
21 F 4 1.05
20 | 4 1.00
1.9 0.95
0 10 20 30 40 50
t

FIG. 2: This figure shows the radius and mass of the black hole growing as the ingoing scalar
field shell falls into the black hole. h is the radius of the apparent horizon, and m(h) is the mass
contained within that radius, i.e. the black hole’s mass.

you should be able to see why the apparent horizons always appear and disappear in pairs.
(See [1,figure 8] if you can’t figure this out.)

APPENDIX A: SCHWARZSCHILD SPACETIME

As discussed in [11], with our choice of field variables and coordinates, an Eddington-
Finkelstein slice of Schwarzschild spacetime ([8,box 31.2]) looks like this:

1

0= —— (Ala)
1+ 2
2m 1
= Alb
p r 1+27m (A1b)
A=142m (Alc)
r
B = r? (A1d)
2m 1+ 7
XN = -t (Ale)
T2 [1+2_m
Y = Qm# (A1f)

AH radia for evolution of pqw1 initial data AH radia for evolution of pqw1 initial data

>0 ‘ ‘ T 5.0 : : Y Y
45 ¢t [. 45 T A
40 r g 40 r |
= g
= 357 g = 357 |
° o
T 30r | a0l]
< <
25+ | 5 | |
2.0 k j | 2.0 VTR UUUTTSE ST LI -
15 15 : . .)
0 10 20 30 40 50 19.0 19.2 194 196 19.8 20.0
time time

FIG. 3: This figure shows the apparent horizon radia for the pqwl evolution. Notice that for a
short time there are 3 distinct apparent horizons present.

Since Schwarzschild spacetime is vacuum, P = () = 0. As discussed in [12],

2(r — 2m)

_ A2
RN (42)

APPENDIX B: A BRIEF INTRODUCTION TO THE METHOD OF LINES

In this appendix we give a brief introduction to the method of lines (MOL) for
parabolic or hyperbolic PDEs. This technique has a number of desirable features, but
it’s not too widely known. For more information, two excellent introductory MOL refer-
ences are [13, 14]. Unfortunately, both of these are rather inaccessible. A more accessible
reference is [15].

1. Basic Concepts

The basic idea of MOL is simple: We initially finite difference® only the spatial derivatives
in the PDE, keeping the time derivatives continuous. This yields a set of ODEs — coupled via
the spatial finite differencing — for the time dependence of the field variables at the spatial
grid points. (In the terminology of relativity, these ODEs give the time dependence of the
field variables along the spatial-grid-point world lines.) A suitable ODE integrator is then
used to time-integrate these ODEs.

8 MOL can also be used with finite element or pseudospectral discretizations, but we won’t discuss that

here.

A simple example should help to clarify this: Consider the flat-space linear scalar advec-
tion equation written in 1st order form,

Oyu = —cOu (B1)

on the domain (¢,z) € [0,00) x [0,1), with the (smooth) coefficient function ¢ being every-
where positive (so that propagation is solely rightward), subject to the periodic boundary
condition

u(t, z=0) = u(t,z=1) (B2)

To treat this problem by MOL, we first discretize the spatial dimension with the uniform
grid zy = kAx for k=0, 1, 2, ..., K—1, where Az = 1/K for some integer K. (For the
moment we keep the time dimension continuous.) Introducing the usual notation uy = u(xy)
and ¢ = ¢(x), and approximating the spatial derivative in the evolution equation (B1) with
the usual centered 2nd order finite differencing molecule, we obtain the coupled system of

ODEs
Uk+1mod K — Uk—1mod K

2 Az
for the time dependence of the state variables {uy}. These ODEs can then be integrated
using any suitable ODE integration scheme.’

For example, if we were to use the leapfrog time integrator

Opug = —cg (fork=0,1,2,..., K-1) (B3)

u(t + At) = u(t — At) + 2 At (Gul],) + O((At)?) (B4)

(where u denotes the state vector {uy}) to time integrate the MOL ODEs (B3), it’s easy to
see that at each time level ¢,, = n At we would obtain the finite difference equations

upt - Uk +1mod K~ Yk—1mod K
Tk Tk m m fork=0,1,2,..., K—1 B5
2 A o 2 Az (for) (B
where we use the usual notation u} = u(t=t,, r=xy).

2. Comparison with “Space and Time Together” Methods

Despite its superficial differences, MOL is actually closely connected to the more com-
mon “space and time together” (SATT) finite difference methods for PDEs (where we finite
difference in both space and time together, directly obtaining a set of spacetime finite dif-
ference equations): Since all practical ODE integrators use finite differencing in the time
dimension, the overall result of applying such an integrator to a system of MOL ODEs, is
to (implicitly) construct and solve a (complicated) system of finite difference equations in
space and time.

9 In general, it’s usually best to integrate ODEs with modern adaptive codes like ODEPACK/LSODE
(http://www.netlib.org/odepack/), but for MOL these are an unnecessary complication. In particular,
in MOL there’s normally little point in making the time integration much more sophisticated than the
spatial finite differencing. So, if we use a straightforward 2nd order finite differencing scheme in space,
with a fixed number and distribution of grid points, it’s perfectly reasonable to use a correspondingly
simple 2nd order time integrator, with a fixed (time) step size.

For example, looking at the MOL finite difference equations (B5), it’s apparent that
these are precisely the equations for the standard 2nd order centered-in-time centered-in-
space leapfrog finite differencing scheme, applied to the original PDE (B1).

If MOL is “just” a special sort of SATT finite differencing scheme, why bother? There
are two key advantages to MOL:

e By decoupling the spatial finite differencing from the time integration, MOL makes
the resulting numerical scheme and computer code simpler and more modular.

e There is a well-developed stability theory, and many excellent numerical methods, for
the time integration of systems of ODEs; MOL can use these.

Corresponding to the equivalence of a MOL and SATT numerical schemes, the usual
Courant-Friedrichs-Lewy stability limit of an explicit SATT scheme has an exact analog in
MOL: When time integrating a system of MOL ODEs with an explicit ODE integrator, the
maximum time step will be limited by ODE-integration stability considerations, to precisely
the same value as the equivalent SATT scheme’s CFL limit. For example, the scalar-wave-
equation finite difference equations (B5) have the stability limit |c At| < Az, which may be
viewed either as the usual CFL limit for the CTCS leapfrog SATT scheme, or the ODE-
integration stability limit for the leapfrog time integrator (B4) applied to the system of
ODEs (B3).

3. Boundary Conditions, Runge-Kutta Methods

Now consider a variant form of our example problem, where we extend the spatial domain
from [0, 1) to [0, 1], and introduce the left boundary condition

u(t,z=0) = sint (B6)

(There is no right boundary condition: The system (B1) and (B6) is well-posed without
one, since no part of the problem domain causally depends on the right boundary.)

To treat this variant by MOL, we first extend the grid to include xx = 1. We then time-
differentiate the left boundary condition (B6) and combine it with the interior evolution
equation (B1) to obtain the combined evolution equations

cost (ifx =0)
= B
O { —cO0yu (if z > 0) (B7)

Finally, we spatially finite difference this in the same manner as before for the grid interior,
but using the off-centered finite difference approximation (30b) at the right boundary grid
point, to obtain the MOL ODEs

Oyug = cost (B8a)
Ug+1 — Ug—1
= —Cp————— f =1,2 vy, K—1 B
8tuk Ck 2 Az (or k () 3a)) (8b)
Ug—o —4ug_1 + 3u
dug = —cx—— 2§x1 £ (B8c)

which we denote in vector form as d;u = f(¢, u).

For this problem the leapfrog ODE integrator (B4) is not suitable — it’s unstable for any
choice of the time step At! In fact, leapfrog is unstable for “most” systems of equations. An
ODE integrator with much better stability properties (both for this and other problems)
is the 2nd order Runge-Kutta scheme, where we first compute an approximate “predicted”
state vector at the next time level,

u'tl = u" + Atf(t,u") (B9a)

pred —

then use this to make the final time step,

u™t = u" 4 L AL (F(¢,u") + (¢ + At uEL) (B9b)

pred

This is stable for most problems (for small enough time step). Another excellent time
integrator is the classical 4th order Runge-Kutta method,

kY = f(t,u,) (B10a)
k® = f(t+ L At,u, + L Atk®) (B10b)
k® = f(t+ L At,u, + 1 Atk®) (B10c)
K = £(t 4+ A, u, + Atk®) (B10d)
Wit = u, + A (2O 4+ 1K@ 4 1@ 4 1@) (B10e)

This is quite efficient, and has excellent stability properties.

[1] J. Thornburg (1999), gr-qc/9906022.

[2] R. Marsa and M. W. Choptuik, Phys Rev D 54, 4929 (1996).

[3] J. York, in Sources of Gravitational Radiation, edited by L. Smarr (Cambridge University
Press, Cambridge, England, 1979).

] E. Malec, Phys Rev D 49, 6475 (1994).

] J. Libson, J. Mass6, E. Seidel, W.-M. Suen, and P. Walker, Phys. Rev. D 53, 4335 (1996).

| P. Diener, submitted to Class. Quantum Grav. (2003), gr-qc/0305039, gr-qc/0305039.

]

]

=~

5

~N

C. W. Misner and D. H. Sharp, Physical Review B 136, 571 (1964).

C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman, San Francisco,

1973).

[9] J. Given and N. O. Murchadha, Physical Review D 52, 758 (1995).

[10] J. York, in Frontiers in Numerical Relativity, edited by C. Evans, L. Finn, and D. Hobill
(Cambridge University Press, Cambridge, England, 1989), pp. 89-109.

[11] J. Thornburg, Phys. Rev. D 59 (1999), gr-qc/9801087.

[12] J. Thornburg, Phys. Rev. D 54, 4899 (1996).

[13] J. M. Hyman, Tech. Rep. CO0O-3077-139, ERDA Mathematics and Computing Laboratory,
Courant Institute of Mathematical Sciences, New York University (1976).

[14] J. M. Hyman, in NATO Advanced Research Workshop on the Numerical Modeling of Nonlinear

Stellar Pulsations: Problems and Prospects, edited by J. R. Buchler (Kluwer, Dordrecht, 1989),

pp- 215237, ISBN 0-7923-0598-1, also available as Los Alamos National Laboratories Report

LA-UR 89-3136.

8

[15] W. E. Schiesser, The Numerical Method of Lines: Integration of Partial Differential Equations
(Academic Press, New York, 1991), ISBN 0-12-624130-9.

[16] J. W. York, Jr. and T. Piran, in Spacetime and Geometry: The Alfred Schild Lectures, edited
by R. A. Matzner and L. C. Shepley (University of Texas Press, Austin (Texas), 1982), pp.
147-176, ISBN 0-292-77567-9.

[17] J. York, in Gravitational Radiation, edited by N. Deruelle and T. Piran (North-Holland,
Amsterdam, 1983), pp. 175-201, ISBN 0-444-86560-8.

[18] J. York, in Essays in General Relativity: A Festschrift for Abraham Taub, edited by F. J.
Tipler (Academic Press, New York, 1980), pp. 39-58, ISBN 0-12-691380-3.

