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PART I : INTRODUCTION AND TOPOLOGIES




-~

3+1 DECOMPOSITION

Decomposition of space-time into space AND time.

Metric is given by :

ds® = — (N? — N'N;) dt® + 2N;dtdz’ + v;;dz’da’

e Lapse N : choice of time coordinate.
e Shift N : choice of spatial coordinates.
e Spatial projection of the metric ;.

Second fundamental form extrinsic curvature tensor :

1
Ki; = _§£n7ij-

o
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EINSTEIN’S EQUATIONS IN 3+1 (vacuum

case)
Type Einstein Maxwell
Hamiltonian R + K2 — K;; K" =0 V-E=0
Constraints
Momentum : DjKij —D'K =0 V-B=0
87¢j (9E 1 - —
— Lo = —2NK;, - (VXB)
ot NV J ot Eo MO
Evolution
atj — *C]\_’[Kzg = —DzD]N)—i— E = —-VXEFE

N (Rij — 2K K¥ 4+ KKj)

o

R;; Ricci tensor associated with ;.

D; is covariant derivative with respect to 7;;.

~
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INITIAL DATA PROBLEM

Solving the initial value problem is as hard as doing the evolution.

One has to give v;; (t = 0) and K;; (t = 0) verifying :

R—KYK;j +K*=0
D;[K"7 — K4 =0

But ...
e There exist a lot of solutions.

e How can we precise the physical content of such solutions ?

o
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CONFORMALLY FLAT SOLUTIONS

vig = U fi
Properties :
e cxact at 1 PN.
e small deviation for binary neutron stars (2%).
o false for extreme Kerr.

With maximum slicing (K = 0) :

1 A A
AV = —— U K, K"
8
D;K%Y =0

where K;; = U2K;; and K% = UOK",

o
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INITIALLY STATIC SOLUTIONS

Solutions with [A(Z-j =0
Only has to solve for the Hamiltonian constraint : AV = 0

Additional conditions :
e Signature of g,, implies that ¥ > 0.
e Asymptotical flatness : ¥ — 1 when r — oc

Several solutions, even for two black holes...

o
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BRILL-LINDQUIST TOPOLOGY

D.R. Brill and R.W. Lindquist, Phys. Rev. 131, 471 (1963).

U singular function at two points :

U =14+ _’061_) 1 _)042_*
|F=cl| |7 — ¢l

Three asymptotically flat regions : @ Masse m
e mass m = 2 (o + ag) when r — oo. = / @

\ / \ /

e mass mj; = 2a;7 (1 + %) when 7 — €.

e mass ms = 20 (1 + %) when 7 — .

T, > oo

with C19 = Hgl — 52‘ | Masse m,

The masses are defined by ¥ — 1+ . > co

Masse m;

o /




/ INVERSION-SYMMETRIC SOLUTION

Define two spheres centered on ¢; of radii a;.

Inversion with respect to a sphere is define by :

1

2
r

Choice of topology : the three metric is isometric with respect to both J;.

It is equivalent to imposing the following boundary condition on the spheres :

or 1
+ U =0

o

~
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/ MISNER-LINDQUIST SOLUTION

C.W. Misner, Ann. Phys. 24, 102 (1963).
R.W. Lindquist, J. Math. Phys. 4, 938 (1963).

The isometric ¥ is given by :

\Ile+icn
n=1

—

1
F—d, Fad,

where ¢,, and d,, depends explicitly on ¢; and a;.

~

0
e massm=4> ", ¢, when r — oo. >

Two asymptotically flat regions : @

° regions r — 51 and 7 — 82 CcOln- /
Gorge 1
cides (because of the inversion) and "=

have also the mass m

\ Gorge 2

r2 =a,

o
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PART II : CONFORMAL TT
DECOMPOSITIONS
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“FREELY” SPECIFIABLE VARIABLES

The 3-metric and the extrinsic curvature tensor are written as :

Yij = ‘I’4’7¢j

K — 0K — w10 [A 4 (D)) + %V”K
where (LX)"” = D'X7 + DIX? — 241 Dy X+
One can pick any choice for :
e the conformal metric 7;;.
e the trace K.

i
e the transverse traceless part A

The constraints give elliptic equations for ¥ and X.

o




/ BOWEN-YORK EXTRINSIC CURVATURE \
TENSOR

Assumptions :
e conformal flatness : 3;; = fi;.
e maximum slicing : K = 0.
e purely longitudinal K;; : AZTJT = 0.

Existence of analytical solution for Kj; :

N 3 .
K; (P) =53 [ij + Pjn; — (fi; — nin;) Pknk,] — global impulsion P

—

A - 3
K;; (S) = — [ekiZSlnknj — ekﬂSlnkni] — global momentum S
r

n is a radial unit vector field.

J.M. Bowen, Gen. Relativ. Gravit. 11, 227 (1979) ; J.M. Bowen and J.W. York,
Phys. Rev. D 21, 2047 (1980) ; A.D. Kulkarni, L.C. Shepley and J.M. York,

ths. Lett. A 96, 228 (1983). /




TWO BLACK HOLES

For two black holes, one can use a sum of the form :
f(ij = f(uj (131> + f(zz'j (ﬁQ) + f(uj (51) + f(mj (§2)
recall that D, K% = is linear.

As we are interested in circular orbits, we will choose ]31 + 132 = 0.

o
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THE PUNCTURE METHOD

Extension of Brill-Lindquist topology :
e Use directly the previous sum centered on two points.

e Impose singularities at those two points by imposing :

—1
p= | 2Ly 92 +u
|7 =cil] |7 = é

e then solve the Hamiltonian constraint for w, which is regular everywhere.

T.W. Baumgarte, Phys. Rev. D 62, 024018 (2000).
S. Brandt and B. Briigmann, Phys. Rev. Lett. 78, 3606 (1997).

o




CONFORMAL IMAGING APPROACH

Extension of the Misner-Lindquist topology :
e Use a symmetric version of the extrinsic curvature tensor.

e Solve the Hamiltonian constrain by imposing boundary conditions on the

two spheres.

e In this case the spheres are apparent horizons.

G.B. Cook, Phys. Rev. D 50, 5025 (1994).
H.P. Pfeiffer, S.A. Teukolsky and G.B. Cook, Phys. Rev. D 62, 104018 (2000).

\_




/ EFFECTIVE POTENTIAL METHOD

Mapm —m
[

Define a potential (binding energy) V =

Bare mass m is NOT well define in GR.

Utilization of Christodoulou formula :
Si
4Mir

where M;, is the irreducible mass :
A
Miy =\ ——
167

A being the area of the apparent horizon of the holes.
oV

P is ch that — = 0.
1S CNosen so a 3P

First law of BH thermodynamics, along a sequence

m; = Mir+

OM = QoJ

o

~

Remaining question : What value Ofﬁ should be used to get circular orbits ¢
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PROBLEMS
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oing the evolution...

Discrepancy with post-Newtonian results and no circular orbits found when

/
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THE SUSPECTS

Several questionable steps :

e conformal flatness
— certainly an issue.

— has long been held responsible.

e choice of the extrinsic curvature tensor : Bowen-York ansatz.

— likely to be the most important difference.

e Use of effective potential method
— ambiguous definition of the individual masses.
— use of Christodoulou formula
— unlikely because also used by PN.

— validity tested on some simple analytic cases.

o
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KERR-SCHILD INITIAL DATA

In Kerr-Schild coordinates it is easy to apply a Lorentz boost to the BH.

Idea : use a superposition of two boosted Kerr-Schild black holes for the freely
specifiable variables.

For example :
Yii = fij +2B1H1ly;lh; + 2By Holq;la;
where H,; and l_; are given by the Kerr-Schild coordinates, for one BH.

The functions B, are attenuation functions, that ensures that, near the holes the
geometry is identical to a single Kerr BH.

Solve for ¥ and X (conformal TT decomposition) to obtain a solution of the

constraints.

P. Marronetti, M.F. Huq, P. Laguna, L. Lehnerm, R.A. Matzner and D.
Shoemaker, Phys. Rev. D 62, 024017 (2000) ; P. Marronetti and R.A. Matzner,
Phys. Rev. Lett. 85, 5500 (2000) ; R.A. Matzner, M.F. Huq and D. Shoemaker,
Phys. Rev. D 59, 024015 (1999).

\_ /




/ TYPICAL CONFORMAL FACTOR \

-5 10

Not conformally flat and used in some evolutionary codes but no sequences

\published and no circular orbits found /
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\2003

W. Tichy, B.

“PN-BASED” INITIAL DATA

e Choose the “freely” specifiable variables by using their post-Newtonian
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expressions (not conformally flat)

e Use a version of the conformal TT decomposition to solve the constraints

In general, the agreement with PN, at the end of the procedure is bad
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r,/M .
Brigmann, M Campanelli and P. Diener, Phys. Rev. D 67, 064008

18 20

~
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PART II11I:
AN HELICAL KILLING VECTOR APPROACH
a.k.a.
THE THIN-SANDWICH DECOMPOSITION

a.k.a
THE MEUDON INITIAL DATA

E. Gourgoulhon, P. Grandclément and S. Bonazolla, Phys. Rev. D 65, 044020
(2002).

P. Grandclément, E. Gourgoulhon and S. Bonazolla, Phys. Rev. D 65, 044021
(2002).

\_ /
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o

Y / My

Y / My

10

AND THE NEUTRON STARS 7

Quasi-equilibrium sequences have been computed by several groups, in the

conformal flatness approximation.

The evolution of those configurations HAVE exhibited circular orbits.

t=1.02P,_,
= e ARRAREmEEEET s S

3 3 ; 3 M. Shibata and K. Uryu,
- 3 E 3 Prog. Theor. Phys. 107,
- ’ - ’ 265 (2002).

T R ST R R TS o

Why not apply similar techniques for binary black holes ?

~
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HELICAL KILLING VECTOR

Circular orbits = Helical Killing vector l.

Advance 0t in time <= Rotation of dp = 2dt.

o\ o\“
[“ = = Q| —
(@) +2(5)
Corotating coordinates :

o a “
e such as / —((%). p

e coordinate t is ignorable.

Inertial coordinates :

| | o\"
e corotating shift §* = N* 4+ Q <%> :

e functions IV and ~;; are the same.

o




/ ELLIPTIC EQUATIONS \

Additional hypothesis : K =0 and v;; = fi;.

We solve 5 of the 10 Einstein’s equations :

yo . .
e Hamiltonian constraint : AV = —KAUA”
. 1 - . _ . e _
e Momentum constraints : A" + gDszﬁj — 2AY (DjN —6ND;In \If)
0K 47 Rij oF = j
e Trace of 5 : AN = NV*A;;AY —2D;In VD' N

with Aij = \P_4Kij and Aij = UK,
. 1 y
Definition of K = A" = N (LB)"

(LB3)" is the conformal Killing operator : (L3)” = D3/ + Digt — 2Dy Bk fis

Set of 5 non-linear, highly-coupled, elliptic equations.

o /




/ THE THIN-SANDWICH FORMULATION \

Decomposition different from the conformal TT.

vij = ¥

Kl — g4

_ = in
2N 3

(£B)" — W] 1

“Freely” specifiable variables : K, K, @/ and o
e Maximum slicing K = 0.

e If we evolve the initial data with lapse N and shift B’ , then :
— Oy = i = G = 0.
— 0; KK = 0 = same equation for V.

e Conformal flatness : 4;; = fi;.

\T he solve for ¥ and B’ to verify the constraints = same equations than before./
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COMPARING THE TWO DECOMPOSITIONS

e Conformal TT : choose the momentum via fl?ijT — Hamiltonian

representation.
e Thin sandwich : choose velocity 0;7;; = Lagrangian representation.

The thin-sandwich formulation is better suited for quasi-equilibrium data.

H.P. Pfeiffer and J.W. York, Phys. Rev. D 67, 044022 (2003).

o /




/ CHOICE OF TOPOLOGY

Extension of Misner-Lindquist.

Boundary condition on the throats (isometry conditions) :

e Lapse : antisymmetric choice

Nlg=0

e Conformal factor

ovr v
4= —0
(37‘ 27“)5

e shift vector : COROTATION (rigidity theorem)

=0

\ The throats are Killing AND apparent horizons.
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ASYMPTOTIC FLATNESS

At infinity we recover Minkowski space-time :

N —1 when 7r— o0

vV —-1 when 7r— o0

B)HQQ when r — oo

D
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ISOMETRY AND REGULARITY

To have a regular K :

- (Lﬁ)ij y
2N — (LB)7| =0.
Nlg, = 0 >

One can show that to have RIGIDITY, REGULARITY and ISOMETRY

one must have :




/ REGULARIZATION OF THE SHIFT

One solves for 5, using Dirichlet-type boundary condition :

—

Bl =0

Si
At each iteration one modifies the shift vector by :
Buew = B+ Beor
B’m is chosen so that :
Brew
O Buow

S

Si

At the end of a calculation :
o if Bcor — 0 : exact solution.

o if B’m is small : approximate solution.

\ e clse not a solution !
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DETERMINATION OF

() only present in the boundary condition for B’ :
One can solve for ANY value of ) (example : ) = 0 = Misner-Lindquist).

SUPPLEMENTARY CONDITION : the O (r_l) part of the metric when
(r — o0) is identical to Schwarzschild.

M M
ADM 4 N~ 1 — MK
r r

A priori: VY~1+

One chooses the ONLY  such that : Mg = Mapy <= V2N ~ 1+ %
Justifications :

e cxact stationary asymptotical space-times.

e Newtonian limit = virial theorem.

e True for binary neutron stars.

o




LAPSE IN THE ORBITAL PLANE

ISCO configuration




/ ENCOURAGING RESULTS
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T. Damour, E. Gourgoulhon and P. Grandclément, Phys. Rev. D 66, 024007
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PART IV: WHAT IS NEXT ?
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THE REGULARIZATION FUNCTION

Relative error
H
o

|
oI
w
T T T T 1

Correction (21*17* 16)
Error on J (21*16*17)
@@ Correction (33*21*20)

I -8 Error on J(33*21*20)
-2 i

10 10

1 |
15 20
Separation parameter D/a

Joo — JS<:>gcor =0

25

30

~
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NEW BOUNDARY CONDITIONS ON THE
HOLES

Cook proposed to relax the symmetry boundary conditions and to replace them
by demanding that :

_ 1 /o -
e the throats are apparent horizons = 5*V, ln\If‘S = -7 <h” Vis; — \IJ2J>

S

e the remain apparent horizons (Killing vector tangent to the surfaces) =
Bi}s = N\I!_2§i’S (corotation).

No condition for the lapse.

If we choose spheres and N|; = 0 then we obtained the same equations than the
one used by the Meudon group.

The “new” boundary conditions are just more general and would admit N|g # 0
— no regularity problem.

G.B. Cook, Phys. Rev. D 65, 084003 (2002)

o /
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RESULTS

¥ CO: HKV

-0.015

-0.0175 —

-0.02 —

-0.0225 —

CO: Taylor 3PN
IR : Taylor 3PN
@ CO:EOB 3PN A
(O CO: MS- d(ay)/dr=0
o CO:MS-ayp=1/2
O CO: MS- d(ay)/dr = ay/2r
A 1R 1VP-conf
IR: IVP-punct
IR: EOB 3PN A
[] IR: MS- d(ay)/dr=0
O IREMS-ayp=1/2
o IR: MS-d(aw)/dr = ayy/2r

v -
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RELAXING THE EFFECTIVE POTENTIAL
METHOD

Proposition :

e Apply the standard puncture method with the conformal TT decomposition

e Determine a lapse by solving 0, K = 0.
e Determine a shift by solving 0:v;; = 0.

e Determination of (2 and puncture parameters via criterium similar to
Mapym = M.

Good test of the validity of the effective potential method to determine ().
W. Tichy, B. Briigmann and P. Laguna, gr-qc/0306020.
W. Tichy and B. Briigmann, gr-qc/0307627.

o /
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o
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“M. ) M
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Binding energy (M, ,,

VERY SMALL DIFFERENCE

—— Puncture with lapse and shift, irrot

. T T EOB 3PN, corot . T
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—— EOB 3PN, irrot -
----- IV P-conf, irrot —

y S o

! I ! I
005 0.1 0.15
Orbital velocity QM.

Effective potential method <—= Mapu = Mk

~
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REVISITING THE PUNCTURE

In order to combine the puncture method and the thin-sandwich formulation one
would need :

e quasi-stationary coordinates (stationary slicing).
e asymptotically flat regions near the puncture.
e Positive lapse everywhere N > 0.

Hannam et al. have shown that those conditions can NOT be verified, even for a
single Schwarzschild black hole.

The puncture method seems to lose its appeal in the thin-sandwich frame-work.

M.D. Hannam, C.R. Evans, G.B. Cook and T.W. Baumgarte, gr-qc/0306028.

o /
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CONCLUDING REMARKS

Conclusions :

e The main difference between initial data is the choice of extrinsic curvature

tensor.

e The thin-sandwich formulation is better suited for quasi-equilibrium

sequences.
e First good agreement between PN and numerical results.
Still to be done :
e Use apparent horizon boundary conditions.

e Remove conformal flatness, possibly making use of the other Einstein’s

equations.

e Assess the quality of the initial data by evolving them.

o /




