EQUILIBRIUM AND PULSATIONS OF DIFFERENTIALLY ROTATING NEUTRON STARS

NIKOLAOS STERGIOULAS

DEPARTMENT OF PHYSICS ARISTOTLE UNIVERSITY OF THESSALONIKI

THEOCHARIS APOSTOLATOS

DEPARTMENT OF PHYSICS UNIVERSITY OF ATHENS

JOSE-ANTONIO FONT

DEPARTMENT OF ASTRONOMY AND ASTROPHYSICS UNIVERSITY OF VALENCIA

Trieste 22/9/2003

DIFFERENTIALLY ROTATING NEUTRON STARS (I)

Birth of Neutron Stars

Stellar Core Collapse

Accretion-Induced Collapse of WD

Dimmelmeier, Font & Mueller 2002

Periodic GW emission due to excitation of I=0 and I=2 modes Why are the pulsations strongly damped?

DIFFERENTIALLY ROTATING NEUTRON STARS (II)

Binary Merger

Shibata & Uryu 2002

In many cases, a hypermassive differentially rotating star forms Part of the signal due to excitation of normal modes

CONSTRUCTION OF INITIAL DATA (I)

Metric:

$$ds^{2} = -e^{\gamma + \rho}dt^{2} + e^{\gamma - \rho}r^{2}\sin^{2}\theta(d\phi - \omega dt)^{2} + e^{2\alpha}(dr^{2} + r^{2})^{2}$$

Field Equations: in integral form

$$\begin{split} &\Delta[\rho e^{\gamma/2}] = S_{\rho}(r,\mu), \\ &\left(\Delta + \frac{1}{r}\frac{\partial}{\partial r} - \frac{1}{r^2}\mu\frac{\partial}{\partial\mu}\right)\gamma e^{\gamma/2} = S_{\gamma}(r,\mu), \\ &\left(\Delta + \frac{2}{r}\frac{\partial}{\partial r} - \frac{2}{r^2}\mu\frac{\partial}{\partial\mu}\right)\omega e^{(\gamma - 2\rho)/2} = S_{\omega}(r,\mu), \end{split}$$

$$\rho = -\frac{1}{4\pi} e^{-\gamma/2} \int_0^\infty dr' \int_{-1}^1 dr'$$

$$r\sin\theta\gamma = \frac{1}{2\pi} e^{-\gamma/2} \int_0^\infty dr' \int_0^{2\pi} d\theta' r$$

$$r\sin\theta\cos\phi\omega = -\frac{1}{4\pi}e^{(2\rho-\gamma)/2}\int_0^\infty dr'\int_0^\pi d\theta'\int_0^{2\pi} d\phi' r'^3$$

RNS code

Stergioulas & Friedman, 1995

Komatsu, Eriguchi & Hachisu method

Cook, Shapiro & Teukolsky compactified radial coordinate

$$\begin{aligned} \alpha_{\prime\mu} &= -v_{\prime\mu} - \{(1-\mu^2)(1+rB^{-1}B_{\prime r})^2 + [\mu-(1)^2]^2 + [\mu-(1)^2]^2 + [\mu-(1)^2]^2 + [\mu^2 - (1-\mu^2)B_{\prime \mu}]^2 + rB^{-1}\{r^2B_{\prime r} - [(1-\mu^2)B_{\prime \mu}]_{\prime \mu} - 2\mu B_{\prime \mu}\} + rB^{-1}B_{\prime r}[\frac{1}{2}\mu + \mu rB^{-1}B_{\prime r} + \frac{1}{2}(1-\mu^2)B_{\prime \mu}] + \frac{3}{2}B^{-1}B_{\prime \mu}[-\mu^2 + \mu(1-\mu^2)B^{-1}B_{\prime \mu}] - (1-\mu^2)B^{-1}B_{\prime \mu}] - (1-\mu^2)P_{\prime r}^2 + 2(1-\mu^2)P_{\prime r} + \mu(1-\mu^2)P_{\prime r}^2 + (1-\mu^2)P_{\prime r} + \mu(1-\mu^2)P_{\prime r}^2 + \frac{1}{2}(1-\mu^2)P_{\prime r}^2 + \frac{1}{2}(1-\mu^2)P_{\prime r}^2 + \frac{1}{4}\mu(1-\mu^2)P_{\prime r}^2 + \frac{1$$

 $^{2}d heta^{2}$

 $l\mu' \Big|_{0}^{2\pi} d\phi' r'^{2} S_{\rho}(r',\mu') \frac{1}{|\mathbf{r}-\mathbf{r}'|}.$ $r'^2 \sin \theta' S_{\nu}(r', \theta') \log |\mathbf{r} - \mathbf{r}'|,$ $^{3}\sin^{2}\theta'\cos\phi' S_{\omega}(r',\theta')\frac{1}{|\mathbf{r}-\mathbf{r}'|}$

 $(-\mu^2)B^{-1}B_{\prime\mu}]^2\}^{-1}$

 $-\mu + (1-\mu^2)B^{-1}B_{\prime\mu}$

 $^{-1}B_{\prime\mu}]$

 $(1 - \mu^{2}) rB^{-1}B_{\prime\mu\nu}(1 + rB^{-1}B_{\prime\nu})$ $\nu_{\prime\mu}^{2} - 2(1 - \mu^{2}) r^{2}B^{-1}B_{\prime\nu}$ $\nu_{\prime\mu}^{2} + (1 - \mu^{2})B^{2}e^{-4\nu}$ $-\mu^{2}) r^{2}\omega_{\prime\mu}^{2} + \frac{1}{2}(1 - \mu^{2})$ $\mu[r^{2}\omega_{\prime\nu}^{2} - (1 - \mu^{2})\omega_{\prime\mu}^{2}]\}],$

CONSTRUCTION OF INITIAL DATA (II)

For barotropic EOSs, specific angular momentum measured by proper time of matter is

$$j \equiv u^t u_\phi = j(\Omega)$$

Rotation Law:

$$\Omega = \Omega_C - \frac{(\Omega - \omega)r^2 \sin^2\theta \, e^{-2\rho}}{A^2 \left[1 - (\Omega - \omega)^2 r^2 \sin^2\theta \, e^{-2\rho}\right]} \left| \begin{array}{c} \mathsf{K} \mathsf{C} \\ \mathsf{K} \\ \mathsf{K} \mathsf{C} \\ \mathsf{K} \mathsf{C} \\ \mathsf{K} \\ \mathsf{K} \mathsf{C} \\ \mathsf{K} \\ \mathsf{K} \mathsf{C} \\ \mathsf{K} \\$$

Dimensionless constant:

 $\hat{A} = A/r_e$

law

Limits:

$$\hat{A}^{-1} \rightarrow \begin{cases} 0 & \text{uniform rotation} \\ \infty & j-\text{constant rotation} \end{cases}$$

Specific angular momentum conserved during homologous collapse:

$$\tilde{j} \equiv u_{\phi} \left(\frac{\varepsilon + P}{\rho_0} \right)$$

omatsu, Eriguchi, Hachisu

Shibata, Baumgarte, Shapiro

EQUILIBRIUM MODELS

yields $\Omega_e / \Omega_C \sim 1/3$ Choice of Â=1.0 in agreement with some core collapse and NS merger simulations 2,6 0 2,4 1,0 +2,2 0,8 +2,0 M (M_{\odot}) +0,6 ม[°] 0,4 1,8 1,6 0,2 1,4 0,0 1,2 0,4 0,6 0,8 1,0 0,2 0,0 $\mathbf{2}$ 1 0 x/r_{e}

HYDRODYNAMICAL SIMULATIONS

<u>2-D nonlinear evolutions</u> with 3rd order PPM method in Cowling approximation

Axisymmetric mode frequencies for uniform rotation

Font, Stergioulas, Kokkotas (2000)

Font, Dimmelmeier, Gupta, Stergioulas (2001)

FREQUENCIES FOR DIFFERENTIAL ROTATION

(Stergioulas, Apostolatos, Font 2003)

Fundamental frequencies depend mostly on central density

Differential rotation allows much smaller frequencies

In Cowling approximation fundamental F-mode is split by differential rotation

EXTRACTION OF EIGENFUNCTIONS (I)

δр

New Fourier Technique

Eigenfunctions are extracted by FFT at all points – magnitude of FFT correlates with shape of eigenfunction

EXTRACTION OF EIGENFUNCTIONS (II)

Splitting of Fundamental mode

Comparison of eigenfunctions reveals the very different shape of the two modes

EXTRACTION OF EIGENFUNCTIONS (III)

Effects of rapid rotation on nonradial eigenfunctions

Centrifugal force weakens restoring force near equatorial surface Nonradial modes become nonzero at center of star

MASS-SHEDDING-INDUCED DAMPING

Near Mass-Shedding limit pulsations are strongly damped

Fluid elements near surface are weakly bound

Radial component of pulsations causes mass-shedding in form of shocks

This could enhance strong damping in core-collapse oscillations and set a new saturation amplitude for unstable modes

CONCLUSIONS

- First computation of axisymmetric eigenfunctions for differentially rotating stars
- Splitting of fundamental mode in Cowling approximation
- Rapid rotation causes mass-shedding induced damping of pulsations, setting a saturation amplitude for unstable modes

In progress

- Conformally flat gravity (with H. Dimmelmeier)
- Extensive study of mass-shedding damping rate