Dynamical Instability of Differentially Rotating Polytropes

> Dept. of Earth Science & Astron., Grad. School of Arts & Sciences, Univ. of Tokyo S. Karino and Y. Eriguchi 22th. Sep.2003@Trieste

Plan of the Talk

- Introduction
- Equilibrium Configurations of Rotating Stars
- Linear Stability Analysis Method
- Dynamical Instability of Differentially Rotating Stars
- Summary and Concluding Remarks

Introduction

Rapidly Rotating Compact Stars

- Neutron stars (NS)
 - Constructed by type II SNe
 - Dense and Compact
 - Rapid rotation
 - High temperature → small viscous effects
 - Limit of rotation?
 - Non-axisymmetric deformation
 - Gravitational Wave (GW)

Rotational instability of fluid

- Rapidly rotating self-gravitating fluid

 Unstable against non-axsymmetric modes
- Growth of instability ~2 types of timescale
 - Secular instability
 - Dynamical instability
 - Unstable mode will grow rapidly in dynamical timescale
 - Catastrophe of the stellar configuration
 - Binary?
 - Spiral Arms?

Maclaurin Spheroid

- Bar-mode in Rigidly rotating fluid with uniform density (Maclaurin Spheroid)
 - Simple and well-studied
 - Secularly unstable when $T\!/|W|\!\!>\!\!0.14$
 - Dynamically unstable when $T\!/|W|\!\!>\!\!0.27$
 - T/|W| is a parameter describing the degree of rotation
 - T and W is a rotational kinetic energy and potential, respectively

Realistic Astrophysical Objects

- In simple models, instabilities can appear only in rapidly rotating objects
 - Collapse of massive stellar core (NS)
 - Self induced collapsed object (fizzler)
- Non-uniform density distribution
- Differential rotation driven from contraction
 - Applicability of the limit ?
 - Universal? (Ostriker & Bodenhiemer 1973)
 - T / |W| > 0.14 for secular instability?
 - T / |W| > 0.27 for dynamical instability?

Linear Stability Analysis

Linear Analysis

Linear Stability Analysis

• Equilibrium configurations

- Axisymmetric
- Newtonian gravity
- Polytropic EOS: $p = K \rho^{1+1/N}$
- Differential rotation
- Perturbed equations
 - Adiabatic perturbations
 - Expansion:

$$\delta f(r,\theta,\varphi,t) = \sum_{m} \exp[-i(\sigma t - m\varphi)]f_{m}(r,\theta)$$

Equilibrium model

• Basic eq.

$$\frac{1}{\rho}\nabla p = -\nabla\phi + r\sin\theta\,\Omega^2\mathbf{e}_R$$

• Poisson eq.

$$\Delta \phi = 4\pi \, G\rho$$

• EOS

$$p = K \rho^{1 + 1/N}$$

Rotation law

$$\Omega = \frac{\Omega_c A^2}{R^2 + A^2} \quad \text{or} \quad \Omega = \frac{\Omega_c A}{\sqrt{R^2 + A^2}}$$

Boudary condition

$$\frac{\partial \delta \rho_0}{\partial r} \delta u + \frac{1}{r} \frac{\partial \rho_0}{\partial \theta} \delta v + (m\Omega - \sigma) \delta \rho = 0$$

Linear Stability Analysis (continued)

- Under these conditions
 - Construct the system of perturbed fluid eqs.
 - Solve the system iteratively
 - Obtain the eigenvalue of the mode
- The eigenvalue corresponds to the eigenfrequency of the obtained mode

Dynamical Instability

Realistic Astrophysical Objects

- In simple models, $T\!/\!|W|\!=\!0.27$ is the limit of stability
- Recent non-linear simulations

 Examples of instability occur even
 if T/|W|<0.27 , when we consider strong dif. rot.
 eg. Pickett *et al.* 1996, Centrella *et al.* 2001, Liu & Lindblom 2001, Shibata *et al.* 2002,etc.

Linear Stability Analysis

Numerical Computations of Dynamical Instabilities

- Obtain the eigenvalues of modes numerically by the linear analysis method
- When the rot. rate gets higher, the first point where the eigenvalue has a finite imaginary part corresponds to the critical limit of dynamical instability

$$\delta f(r,\theta,\varphi,t) = \sum_{m} \exp\left[-i(\sigma t - m\varphi)\right] f_m(r,\theta)$$

Eigenvalue (imaginary part)

• The dynamical instability sets in at the point where the eigenvalue has complex part

Eigenvalue (real part)

 The dynamical instability sets in at the point where two modes merge

Numerical Result (Karino & Eriguchi 2003)

 Shifts of critical limits of dynamical instability as the degrees of differential rotation

Numerical Result (Karino & Eriguchi 2003)

• Critical limits of dynamical instability, (T/|W|)crit, as the functions of degrees of differential rotation

Numerical Results (continued)

- The critical limit of instability tends to decrease when we consider strong differential rotations
- This tendency depends only weakly on the stellar EOS

In differentially rotating stars, dynamical instabilities may occur more easily than ordinary cases

Result of non-linear simulation

• The results obtained by linear method match with results of non-linear simulations

Shibata, Karino & Eriguchi (2002)

GW

Deformation of the star by the non-linear growth of bar-mode

The wave form is quasi-periodic
 – Effective amplitude

Summary (of this talk)

- Maclaurin Spheroid
 - At T/|W| > 0.14, bar-mode will be unstable secularly
 - At T/|W|>0.27, bar-mode will be unstable dynamically
 Differential Rotation?
- Linear stability analysis
 - Obtain the eigenvalues of modes
- Numerical results

 Critical limits of dynamical instabilities depend on the effects of differential rotations Unknown Instability?
 Recently new (?) instability has been found in slowly (T/|W|~0.1) and differentially rotating stellar models

Unknown Instability?

- Such a new (?) instability can be found by linear method
- The parameter space can be divided into stable and unstable regions

Feature of the Instability?

- This instability appears at T/|W|~0.05, and disappears at T/|W|~0.2
- The growth rate is small
- Stars with stiff EOS are more unstable

