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Plan of the talk:

• Initial data, constraints and the 3+1 Split of the spacetime metric

• Overview about black hole puncture data

• Helical Killing vectors and quasi-equilibrium

• How to choose lapse and shift, such that standard puncture data allow
for an approximate helical Killing vector

• Summary
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Initial data, the 3+1 Split of spacetime, and constraints
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• Spacetime is foliated by t = const slices, which are described by the 12
quantities gij (intrinsic spatial metric) and Kij (extrinsic curvature)

• The initial data gij, Kij are subject to 4 constraints:

R[g] + K2 −KijKij = 0
[analog to ∂iEi = 0 in E&M]∇j(Kij −Kgij) = 0

⇒ There are 8 freely specifiable quantities

⇒ The 4 constraints alone do not tell us what we should choose as initial
data

• In order to get black hole (BH) initial data we need more information
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Binary black hole puncture data

• conformal flatness: gij = φ4δij

• conformal factor: φ = 1 + m1

2r1
+ m2

2r2
+ u

• maximal slicing: K = K i
i = 0

• Bowen-York curvature: Kij = φ−10L̄W ij, W i =
∑2

A=1

[
− 1

4rA

(
7P i

A + si
AsAjP

j
A

)]
⇒ • Momentum constraint is already satisfied

• Hamiltonian constraint becomes: ∇̄2u + 1
8
φ−7L̄W ijL̄Wij = 0 (H)

• we solve the elliptic Eq. (H) for u, subject to the boundary condition
that u → 0 for r →∞

⇒ we obtain binary black hole initial data that fulfill Einstein’s equations

Questions:

• How should we pick the puncture parameters mA, PA and D

• How realistic are these data?
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Toward realistic initial data for numerical relativity

In principle, we want initial data which represent a black hole (BH)
binary, that has slowly been inspiraling already for a long time, due to
the emission of gravitational waves.

Post-Newtonian (PN) calculations predict that the BHs are moving on quasi-
circular orbits with slowly shrinking radius, i.e. there are the two timescales

Torbit � Tinspiral

and in corotating coordinates the system is in quasi-equilibrium, i.e.

∂tgij ≈ ∂tKij ≈ 0.

• First approximation:
assume that Tinspiral →∞ and that the two BHs are in a circular orbit

⇒ a (corotating) coordinate system exists in
which

∂tgij = ∂tKij = 0

• there exists a Killing vector V a

• in corotating coordinates

V a =

(
∂

∂t

)a

= αna + βa

• V a is a helical Killing vector:
na = T a and βa = ΩΦa at spatial infinity
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• lapse α and shift βi are pure gauge, and determine the coordinates

⇒ choose α and βi, s.t. we have manifest time independence, i.e. V a =
(

∂
∂t

)a
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Are puncture data compatible with an approximate helical
Killing vector, i.e. with quasi-equilibrium?

• The momenta P i
A must be compatible with quasi-circular orbits:

We choose the center of mass to be at rest and let P i
1 and P i

2 be per-
pendicular to the line connecting the two BHs.

⇒ The momenta are characterized by 1 parameter P = |P i
1| = |P i

2|.

• If there is an exact helical Killing vector V a then the Komar integral

IK(V, S) = −
1

8π

∮
S

εabcd∇cV d

is related to the ADM mass as follows:

IK(αn, S∞) = MADM
∞ IK(αn, S1) = c1M

ADM
1 IK(αn, S2) = c2M

ADM
2 (∗)

where α is chosen such that limr→∞ α = 1 and limrA→0 α = −cA.

⇒ (∗) constitutes 3 equations for the 3 parameters P , c1, c2.

Idea:

Use standard puncture data, but try to find a lapse α and a momentum
parameter P such that the necessary conditions (∗) for a helical Killing vector
are satisfied. Otherwise the puncture data cannot be in quasi-equilibrium!

6



Choice of lapse

• We make the ansatz
αφ = 1−

(
c1m1

2r1
+

c2m2

2r2

)
+ v,

so that limr→∞ α = 1 and limrA→0 α = −cA.

• Since we are interested in quasi-equilibrium situations we choose a max-
imal slicing lapse α such that

∂tK = 0 ⇔ ∇̄2v =
7

8
(αφ)φ−8L̄WijL̄W ij.

• If P , c1, c2 are chosen such that the ADM and Komar integrals agree
at infinity and at both punctures (i.e. if (∗) is satisfied) the lapse is
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– lapse for an equal mass binary

– the BHs are at y = ±1.840M

– the lapse is c1 = c2 = −0.83 at
both punctures

– the lapse approaches 1 in the
far zone

• If the same procedure is applied to a single puncture we obtain the
Schwarzschild lapse of isotropic coordinates, which goes from −1 to 1.
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Choice of shift

• We choose the shift with the aim to minimize the time evolution of the
conformal metric ḡij

• We would like ∂tḡij
?
= 0. This however cannot be achieved by adjusting

the shift. Instead we use ¯̄∇j
∂tḡij = 0 to obtain

∇̄jL̄βij = ∇̄j

(
2αφ−6L̄W ij

)
,

• This is an elliptic equation for the shift, which we solve subject to the
boundary condition

lim
r→∞

βi = ΩΦi

• A puncture doesn’t have momentum when viewed from the asymptoti-
cally flat region near it. Hence we choose Ω such that βi

A = 0.
• Then the shift is
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– βx for an equal mass binary
– the BHs are at y = ±1.840M

– βi vanishes at each puncture
– Ω can be determined:

Ω = 0.1/M

– with this shift ∂tΓ̃i = 0 and
∂tgij is reduced
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Advantages of our choice of lapse and shift

• The ADM and Komar masses agree at infinity and at both punctures, as
they should if a helical Killing vector exists.

• The shift is zero at each puncture, which is a good choice as punctures
do not move, when viewed from the other asymptotic end.

• The angular velocity satisfies 2JADM
∞ Ω = MADM

∞ − IK(V, S1 ∪ S2),
which is another necessary condition for a helical Killing vector.

• The inferred Ω agrees well with results obtained using the effective po-
tential method.

• Since P and Ω can be determined for each separation D, we can easily
construct quasi-equilibrium sequences.
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Timescales on which metric components evolve
for Ω = 0.1/M :

orbital timescale Torbit ∼ 2π/Ω ∼ 60M

If the data are in quasi-equilibrium and if lapse and shift are chosen such that
( ∂

∂t
)a is an approximate helical Killing vector, φ, gij, K and Kij should evolve

on a timescale Tinspiral � Torbit

• Tφ ∼ 2π max
∣∣∣ φ
∂tφ

∣∣∣ ∼ 1200M

• Tgij
∼ 2π

(
1

max |∂tgij|

)
∼ 300M

• TK ∼ ∞, since ∂tK = 0

• TKij
∼ 2π

(
max |Kij|
max |∂tKij|

)
∼ 95M
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Summary

• We have found a gauge choice for BH puncture data, which fulfills several
necessary conditions for the existence of a helical Killing vector, such as
agreement between ADM and Komar masses.

• With our gauge choice the metric, conformal factor and trace of the
extrinsic curvature evolve on a timescale longer than the orbital timescale.

• The tracefree part of the extrinsic curvature still evolves on the orbital
timescale.

• Using the conditions for the existence of a helical Killing vector, we can
easily construct quasi-equilibrium sequences, for puncture data.
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