Gauge conditions for binary black hole puncture data based on an approximate helical Killing vector

> Wolfgang Tichy CGWP & CGPG, Penn State

Collaborators: Bernd Brügmann, Pablo Laguna

ICTP, Trieste 2003

Plan of the talk:

- Initial data, constraints and the 3+1 Split of the spacetime metric
- Overview about black hole puncture data
- Helical Killing vectors and quasi-equilibrium
- How to choose lapse and shift, such that *standard* puncture data allow for an approximate helical Killing vector
- Summary

Initial data, the 3+1 Split of spacetime, and constraints

- Spacetime is foliated by t = const slices, which are described by the 12 quantities g_{ij} (intrinsic spatial metric) and K_{ij} (extrinsic curvature)
- The initial data g_{ij} , K_{ij} are subject to 4 constraints:
 $$\begin{split} R[g] + K^2 - K_{ij}K^{ij} &= 0 \\ \nabla_j(K^{ij} - Kg^{ij}) &= 0 \end{split}$$
 [analog to $\partial^i E_i = 0$ in E&M]
- \Rightarrow There are 8 freely specifiable quantities
- \Rightarrow The 4 constraints alone do not tell us what we should choose as initial data
 - In order to get black hole (BH) initial data we need more information

Binary black hole puncture data

- conformal flatness: $g_{ij} = \phi^4 \delta_{ij}$
- conformal factor: $\phi = 1 + \frac{m_1}{2r_1} + \frac{m_2}{2r_2} + u$
- maximal slicing: $K = K_i^{i} = 0$

- Bowen-York curvature: $K^{ij} = \phi^{-10} \overline{L} W^{ij}$, $W^i = \sum_{A=1}^2 \left[-\frac{1}{4r_A} \left(7P_A^i + s_A^i s_{Aj} P_A^j \right) \right]$
- \Rightarrow Momentum constraint is already satisfied
 - Hamiltonian constraint becomes: $\overline{\nabla}^2 u + \frac{1}{8} \phi^{-7} \overline{L} W^{ij} \overline{L} W_{ij} = 0$ (H)
- we solve the elliptic Eq. (H) for u, subject to the boundary condition that $u\to 0$ for $r\to\infty$
- \Rightarrow we obtain binary black hole initial data that fulfill Einstein's equations

Questions:

- How should we pick the puncture parameters m_A , P_A and D
- How realistic are these data?

Toward realistic initial data for numerical relativity

In principle, we want initial data which represent a black hole (BH) binary, that has slowly been inspiraling already for a long time, due to the emission of gravitational waves.

Post-Newtonian (PN) calculations predict that the BHs are moving on quasicircular orbits with slowly shrinking radius, i.e. there are the two timescales

 $T_{orbit} \ll T_{inspiral}$

and in corotating coordinates the system is in quasi-equilibrium, i.e.

 $\partial_t g_{ij} \approx \partial_t K_{ij} \approx 0.$

- First approximation: assume that $T_{inspiral} \to \infty$ and that the two BHs are in a circular orbit
- \Rightarrow a (corotating) coordinate system exists in which $\partial_t g_{ij} = \partial_t K_{ij} = 0$
 - there exists a Killing vector V^a
 - in corotating coordinates

$$V^a = \left(\frac{\partial}{\partial t}\right)^a = \alpha n^a + \beta^a$$

• V^a is a helical Killing vector: $n^a = T^a$ and $\beta^a = \Omega \Phi^a$ at spatial infinity

- lapse α and shift β^i are pure gauge, and determine the coordinates
- \Rightarrow choose α and β^i , s.t. we have manifest time independence, i.e. $V^a = \left(\frac{\partial}{\partial t}\right)^a$

Are puncture data compatible with an approximate helical Killing vector, i.e. with quasi-equilibrium?

• The momenta P_A^i must be compatible with quasi-circular orbits: We choose the center of mass to be at rest and let P_1^i and P_2^i be perpendicular to the line connecting the two BHs.

 \Rightarrow The momenta are characterized by 1 parameter $P = |P_1^i| = |P_2^i|$.

• If there is an exact helical Killing vector V^a then the Komar integral

$$I_K(V,S) = -\frac{1}{8\pi} \oint_S \epsilon_{abcd} \nabla^c V^d$$

is related to the ADM mass as follows:

 $I_{K}(\alpha n, S_{\infty}) = M_{\infty}^{ADM}$ $I_{K}(\alpha n, S_{1}) = c_{1}M_{1}^{ADM}$ $I_{K}(\alpha n, S_{2}) = c_{2}M_{2}^{ADM}$ (*)

where α is chosen such that $\lim_{r\to\infty} \alpha = 1$ and $\lim_{r_A\to 0} \alpha = -c_A$.

 \Rightarrow (*) constitutes 3 equations for the 3 parameters P, c_1 , c_2 .

Idea:

Use standard puncture data, but try to find a lapse α and a momentum parameter P such that the necessary conditions (*) for a helical Killing vector are satisfied. Otherwise the puncture data cannot be in quasi-equilibrium!

Choice of lapse

• We make the ansatz $\alpha \phi = 1 - \left(\frac{c_1m_1}{2r_1} + \frac{c_2m_2}{2r_2}\right) + v$,

so that $\lim_{r\to\infty} \alpha = 1$ and $\lim_{r_A\to 0} \alpha = -c_A$.

• Since we are interested in quasi-equilibrium situations we choose a maximal slicing lapse α such that

$$\partial_t K = 0 \quad \Leftrightarrow \quad \overline{\nabla}^2 v = \frac{1}{8} (\alpha \phi) \phi^{-8} \overline{L} W_{ij} \overline{L} W^{ij}.$$

• If P, c_1 , c_2 are chosen such that the ADM and Komar integrals agree at infinity and at both punctures (i.e. if (*) is satisfied) the lapse is

• If the same procedure is applied to a single puncture we obtain the Schwarzschild lapse of isotropic coordinates, which goes from -1 to 1.

Choice of shift

- We choose the shift with the aim to minimize the time evolution of the conformal metric \overline{g}_{ij}
- We would like $\partial_t \bar{g}_{ij} \stackrel{?}{=} 0$. This however cannot be achieved by adjusting the shift. Instead we use $\bar{\nabla}^j \partial_t \bar{g}_{ij} = 0$ to obtain

 $\bar{\nabla}_j \bar{L} \beta^{ij} = \bar{\nabla}_j \left(2\alpha \phi^{-6} \bar{L} W^{ij} \right),$

• This is an elliptic equation for the shift, which we solve subject to the boundary condition

$$\lim_{r\to\infty}\beta^i=\Omega\Phi^i$$

- A puncture doesn't have momentum when viewed from the asymptotically flat region near it. Hence we choose Ω such that $\beta_A^i = 0$.
- Then the shift is

Advantages of our choice of lapse and shift

- The ADM and Komar masses agree at infinity and at both punctures, as they should if a helical Killing vector exists.
- The shift is zero at each puncture, which is a good choice as punctures do not move, when viewed from the other asymptotic end.
- The angular velocity satisfies $2J_{\infty}^{ADM}\Omega = M_{\infty}^{ADM} I_K(V, S_1 \cup S_2)$, which is another necessary condition for a helical Killing vector.
- $\bullet\,$ The inferred Ω agrees well with results obtained using the effective potential method.
- Since P and Ω can be determined for each separation D, we can easily construct quasi-equilibrium sequences.

Timescales on which metric components evolve for $\Omega = 0.1/M$:

orbital timescale $T_{orbit}\sim 2\pi/\Omega\sim 60M$

If the data are in quasi-equilibrium and if lapse and shift are chosen such that $(\frac{\partial}{\partial t})^a$ is an approximate helical Killing vector, ϕ , g_{ij} , K and K_{ij} should evolve on a timescale $T_{inspiral} \gg T_{orbit}$

•
$$T_{\phi} \sim 2\pi \max \left| \frac{\phi}{\partial_t \phi} \right| \sim 1200 M$$

•
$$T_{g_{ij}} \sim 2\pi \left(\frac{1}{\max |\partial_t g_{ij}|} \right) \sim 300 M$$

• $T_K \sim \infty$, since $\partial_t K = 0$

•
$$T_{K_{ij}} \sim 2\pi \left(\frac{\max |K_{ij}|}{\max |\partial_t K_{ij}|} \right) \sim 95M$$

Summary

- We have found a gauge choice for BH puncture data, which fulfills several necessary conditions for the existence of a helical Killing vector, such as agreement between ADM and Komar masses.
- With our gauge choice the metric, conformal factor and trace of the extrinsic curvature evolve on a timescale longer than the orbital timescale.
- The tracefree part of the extrinsic curvature still evolves on the orbital timescale.
- Using the conditions for the existence of a helical Killing vector, we can easily construct quasi-equilibrium sequences, for puncture data.