

Search for Gravitational Wave Events and Data Quality Evaluation on TAMA300

Nobuyuki Kanda Osaka City University & the TAMA collaboration

Plan of This Talk

- 1. Introduction for Laser Interferometric Gravitational Wave Detector
- 2. Brief History and Progress of TAMA Project
- 3. Evaluation of Data Quality
 - Sensitivity
 - Calibration
 - Stability
- 4. GW Event Search in TAMA
 - How to Extract GW signals
 - Binary Inspiral
 - BH Quasi-Normal Mode Ringdown
 - Burst

1. Introduction Target Sources for Ground-based Laser Interferometric GW Detector

1. Coalescence of Compact Binaries:

Neutron star-NS, Balckhole-BH, NS-BH, MACHO binaries

- Precise Prediction of Waveform for Inspiral (Chirp) wave
- 2. Burst GW (Supernovae)
- 3. Continuous Wave (Pulsar)

Typical Frequency band : 10Hz – 10kHz

(*in TAMA; several 10Hz – 5kHz*)

Sensitivity in strain $h > 10^{-21} - 10^{-24}$

(*inTAMA; 3x10⁻²²*)

Laser Interferometric GW Detector

Folding Arms & get more Power 1kHz GW --> Optimal arm length = 75 km !

Detector design

- Competition with Noises -

- 1. Seismic Noise
- 2. Thermal Noise
- 3. Photon Shot Noise & Radiation Pressure Noise

Skematic View

2. Overview of TAMA Project **TAMA 300**

Target:

- Achieve a Sensitivity for GW from Compact Binary in our Galaxy
 - -> Research and Shakedown the Interferometer Tech
- Establish the Detector System for Realistic "Observation"
- **Construction Site:**
 - NAOJ, Mitaka, Tokyo
- Collaboration:
 - 20 institutes with more than 70 persons

The First Search for Gravitational Waves from Inspiraling Compact Binaries using TAMA300 data

Hideyuki Tagoshi¹, Nobuyuki Kanda², Takahiro Tanaka³, Daisuke Tatsumi⁴, Souichi Telada⁵, Masaki Ando⁶, Koji Arai⁵, Akito Araya⁷, Hideki Asada⁸, Mark A. Barton⁴, Masa-Katsu Fujimoto⁵, Mitsuhiro Fukushima⁷, Toshifumi Futamase⁹, Gerhard Heinzel⁵, Gen'ichi Horikoshi^{10*}, Hideki Ishizuka⁴, Norihiko Kamikubota¹⁰, Keita Kawabe⁶, Seiji Kawamura⁵, Nobuki Kawashima¹¹, Yasufumi Kojima¹², Yoshihide Kozai⁵, Kazuaki Kuroda⁴, Namio Matsuda¹³, Sumihiro Matsumura⁴, Satoshi Miki¹⁴, Norikatsu Mio¹⁴, Osamu Miyakawa⁴, Shoken Miyama⁵, Shinji Miyoki⁴, Eiichi Mizuno¹⁵, Shigenori Moriwaki¹⁴, Mitsuru Musha¹⁶, Shigeo Nagano⁴, Ken'ichi Nakagawa¹⁶, Takashi Nakamura³, Ken-ichi Nakao¹⁷, Kenji Numata⁶, Yujiro Ogawa¹⁰, Masatake Ohashi⁴, Naoko Ohishi⁶, Akira Okutomi⁴, Ken-ichi Oohara¹⁸, Shigemi Otsuka⁶, Yoshio Saito¹⁰, Misao Sasaki¹, Shuichi Sato⁴, Atsushi Sekiya⁶, Masaru Shibata¹, Kazumichi Shirakata¹⁴, Kentaro Somiya¹⁴, Toshikazu Suzuki¹⁰, Ryutaro Takahashi⁵, Akiteru Takamori⁶, Shinsuke Taniguchi⁶, Kuniharu Tochikubo⁶, Takayuki Tomaru⁴, Kimio Tsubono⁶, Nobuhiro Tsuda¹⁹, Takashi Uchiyama⁴, Akitoshi Ueda⁵, Ken-ichi Ueda¹⁶, Kozo Ueda⁶, Koichi Waseda⁵, Yuko Watanabe², Hiromi Yakura², Kazuhiro Yamamoto⁶, and Toshitaka Yamazaki⁵ (The TAMA Collaboration) ¹Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043, Japan ²Department of Physics, Miyagi University of Education, Aoba Aramaki, Sendai 980-0845, Japan ³ Yukawa Institute for Theoretical Physics, Kyoto University ⁴Institute for Cosmic Ray Research, The University of Tokyo ⁵National Astronomical Observatory of Japan ⁶Department of Physics, The University of Tokyo ⁷Earthquake Research Institute, The University of Tokyo ⁸Faculty of Science and Technology, Hirosaki University ⁹Graduate School of Science, Tohoku University ¹⁰High Energy Accelerator Research Orginization ¹¹Kinki University ¹²Department of Physics, Hiroshima University ¹³ Tokyo Denki University ¹⁴Department of Advanced Materials Science, The University of Tokyo ¹⁵The Institute of Space and Astronautical Science ¹⁶Institute for Laser Science, University of Electro-Communications ¹⁷ Department of Physics, Osaka City University ¹⁸Faculty of Science, Niigata University ¹⁹Precision Engineering Division, Faculty of Engineering, Tokai University

Project History

1. 1995: start to construction

		1995	1996	1997	1998	1999
2.	Infrastructure					
2	Vacuum System					
5.	Optics&Suspension Installation					
4.	Adjustment, Observation(Phase I)				DAQ18	2 success
5.	R&D, Adjustment					
	Observation(Phase II)					

- 6. 1999: first physics run
- 7. 2001: 2 months observation
- 8. 2002: get new fund
- 9. 2003: Coincidence run with LIGO, GEO

Specification

- 1. Location : NAOJ, Mitaka, Tokyo (E139.32.21 N35.40.25)
- ^{2.} Target Sensitivity : $h_{r.m.s.} = 3 \times 10^{-21}$ at 300Hz with BW=300Hz
- 3. Baseline : 300m
- 4. Type : Fabry-Perot-Michelson with Power Recycling
- 5. Finesse of Arm Cavity : 520
- 6. Laser : Injection-lock Nd:YAG, 10W, 1064nm
- 7. Power Recycling Gain : 10

TAMA Photograph Bird view, Center Room

TAMA Photograph Vacuum, Arm, End Room

TAMA Photograph Mirrors, Vibration Isorations

TAMA PhotographElectronicsand hard worker...

TAMA Photograph Online Monitors

Real Time Diagnosis

and comfortable(?) workers...

Epoch Data Takings (DT#) - major test run, observational run -

17

TX

<u>Data Taking</u>	<u>period</u>	<u>actual data amount</u>	<u>take note</u>
DT1	8/6 - 7/1999	~3 + ~7 hours continuous lock	first whole system test
DT2	9/17 - 20/1999	31 hours	first Physics run
DT3 DT4	4/20 - 23/2000 8/14/2000 8/21 - 9/3/2000	13 hours <u>World best sensitivity</u> 167 hours	h ~ 5x10 ⁻²¹ [1/√Hz] stable long run
DT5	3/1 - 3/8/2001	111 hours	
Test Run 1	6/4 - 6/6/2001	Longest stretch of continuous lock is 24:50	keep running all day
DT6	8/1 - 9/20/2001	1038 hours duty cycle 86%	full-dressed run
DT7	8/31 - 9/2/2002	24 hours with duty cycle 76.7%	Recycling, h ~ 3x10 ⁻²¹ [1/√Hz], Simultaneous obs with LIGO & GEO
DT8	2/14 – 4/14/2003	1168 hours, duty cycle 81.1%	coincidence obs with LIGO S2

DT8 Observation

lock time table

Strain Equivalent Noise Spectrum of TAMA

Strain Equivalent Noise Spectrum of TAMA at DT8 (Feb.-Mar.2003)

Strain Equivalent Noise Spectrum of TAMA (latest)

cf: 2003/07/12 preserving the floor level of 8x10 -19 m/Hz 1/2 @1.5kHz.

Observational Range (distance with SNR=10)

• Inspiral SNR = $\sqrt{2} A \left[4 \int \frac{f^{-\frac{7}{3}}}{S_n(f)} df \right]^{\frac{1}{2}} A = T_{\odot} \frac{c}{d} \left(\frac{5\mu}{96M_{\odot}} \right)^{\frac{1}{2}} \left(\frac{M}{\pi^2 M_{\odot}} \right)^{\frac{1}{3}} T_{\odot}^{-\frac{1}{6}}$ • RECOMM

BHQNM

Assuming the BHs formed from binary coalescence (Flanagan & Hughes, Phys.Rev.D57)

Sound of TAMA...

"sound" of TAMA interferometer (at dt6) Sample of raw data v(t) sound.

3. Evaluation of Data Quality **What are required for realistic observatory ?**

We get it ! raw data (time series) : v(t)

Key technique !

to establish the detector as "observatory"

Transfer Function (Open loop Gain of the interferometer feedback system)

calibration : $\frac{\Delta h}{h}$

We need this ! obs. signal : s(t) = h(t) + n(t)

GW: h(t)noises : n(t)

characterization of noise
(n(f), <n>, gaussianity, stability, etc..)

3. Evaluation of Data Quality **What are required for realistic observatory ?**

1. Calibration

- Accuracy of Amplitude of GW (in strain h) These will change due to IF optical conditions during long operation.
- 2. Stability of Noises, or its Evaluation
 - Various Component of Noises
 - Unstable (non-stational) Noise Sources
 Noise source inside the detector
 Disturbances from outside

Calibration Signal Injection

Noise Stability

Typical Noise Drift at dt8

1.0e-01

1.0e-02

1.0e-03

1.0e-04

00:00

03:00

06:00

Noise

Drift of Noise Power 1.0e+05 1.0e+04 scale) 1.0e+03 1.0e+02 (arbitary 1.0e+01 1.0e+00

Aug 13 Aug 14

12:00

15:00

18:00

21:00

00:00

09:00

Sensitivity History of dt6 [/√Hz]

-**3** 29

4. GW Event Search in TAMA300 Strategy

- 1. Compact Binary Coalescence
 - Inspiral GW search
 - Online implementation of inspiral GW search
 - ringdown GW from BH quasi-normal mode
- 2. Burst
 - Burst GW behavior
- 3. Continuous
 - SN1987a remnant pulsar

• Parameters : mass, Kerr parameter

demonstration: Is it hard to hear the GW sound ?

Chirp signal (1.4-1.4 Msolar, Arbitrary)

Embeded chirp in TAMA noise (10 pc!)

-> We need powerful tool for kpc sources !

Matched Filter (Wiener Optimal Filter)

- 1. Known wave form
- 2. Known noise spectrum in Fourier domain
- 3. Linear system
 - signal: s(t) = n(t) + a h(t)
 - noise component :*n*(*t*), GW signal: *a h*(*t*)
 - average noise power spectrum: $S_h(f)$
 - template waveform: *h*(*t*)
 - signal-to-noise ratio: $SNR = \rho/\sqrt{2}$

$$\rho(\tau; \text{parameters}) = 2 \int_{f_1}^{f_2} \frac{\tilde{h}^*(f) \cdot \tilde{s}(f)}{S_h(f)} e^{-i2\pi f\tau} df$$

Simulation example of matched filter: QNM ringdown

simulation example (TAMA real data + embedded inspiral signal)

Inspiral GW

- 1. SNR with Matched Filter
- 2. Search mass region
 - DT2: 0.3 10 M_{solar} (Hierarchic Search)
 - DT6: 1 2 M_{solar}
 - DT8: 1 3 M_{solar}

3.
$$\chi^2$$
 test for veto of non-stationary noises
 $\rho_1 \qquad \rho_2 \qquad \rho_3 \qquad \rho_4 \qquad \rho_5 \qquad \cdots$
 $f_{min} \qquad f_1 \qquad f_2 \qquad f_3 \qquad f_4 \qquad f_5 \qquad \cdots \qquad f_{max}$
 $\chi^2 \equiv n \sum (\rho_i - \bar{\rho}_i)^2$
 $, \bar{\rho}_i = \langle \rho_i \rangle$
 $\hat{\gamma}^2 = \chi^2 / (2n-2)$

Galactic event detection efficiency

To estimate detection efficiency, we perform Galactic event simulation

 $\rho/(\chi^2)^{1/2}$ histrogram (DT8)

Upper Limit

In case for DT8;

- 1. Search Mass Region : 1 3 M_{solar}
- 2. Threshold = 12.5
 - (S/N ~ 9)
 - Fake event rate ~ 0.8 event/yr
 - Efficiency for Galactic Event : 61%
- 3. Observed event candidates : $N_{obs} = 0$
- 4. Expected Background contamination : $N_{BG} = 0.1$
- 5. Poisson statistics: N=2.3 (C.L.=90%) DT8 : $\frac{N}{Te} = 3.3 \times 10^{-3} [\text{event/hour}] (\text{C.L.} = 90\%)$

1. DT2 Upper limit (Summary)

- Range (SNR=10): 3.4 kpc
- Mass region: 0.3 10 M_{solar}, Upper limit: 0.59 event/hour (C.L.90%)
- 2. DT4
 - Range (SNR=10): 17.9 kpc
 - Mass region: 1-2 M_{solar}, Upper limit: 0.027 event/hour (C.L.90%)
- 3. DT6
 - Range (SNR=10): 33.1 kpc
 - Mass region: 1-2 M_{solar}, Upper limit: 0.0095 event/hour (C.L.90%)
- 4. DT8
 - Range (SNR=10): 42.2 kpc
 - Mass region: 1-2 M_{solar}, Upper limit: 0.0056 event/hour (C.L.90%)
 - <u>1-3 M_{solar}, Upper limit: 0.0033 event/hour (C.L.90%)</u>

Ringdown

- 1. BH formation (by compact binary, etc.)
 - -> quasi-normal mode GW
 - dumped sinusoidal waveform "ringdown"
 - mass and Kerr parameter determine the waveform

$$h(t) = Ae^{-\pi \frac{f_c t}{Q}} \sin(2\pi f_c t)$$

$$f_c t \sim \frac{3.2 \times 10^4}{M} [1 - 0.63(1 - a)^{0.3}] [\text{Hz}]$$

 $Q \sim 2.0(1 - a)^{-0.45}$

Ringdown

- 1. Templates
 - Optimized by Nakano et al. (gr-qc/0306082, submitted to PRD.)
 - Implementation on TAMA data with minimal match 98%
 - <u># of template ~800</u>

2. Efficiency for Galactic Event by MC simulation

- Monte-Carlo simulation with Galactic distribution $dN = e^{-\frac{R^2}{2R_0^2}} e^{-\frac{z}{h}} R dRdz$
- Eff ~ 60% $R_0 = 4.8[kpc], h = 1[kpc]$
- 3. More powerful veto logic is required to exclude the fake event due to non-stationary noises.
- 4. Search is on going...

Efficiency for galactic event of QNM ringdown (MC simulation)

Burst

1. Excess Power Filter

2. Non-Gaussian noise Rejection (c1-c2)

- rejection of non-gauss excess ~1/30
- Integrated sensitivity: $h_{rms} \sim 3 \times 10^{-17}$ for 1 msec spike

- **Summary** 1. TAMA progressed steadily, and established "observatory" key issues.
 - long&continuous operation (two months, with 80% duty time)
- 2. Data Calibration is well done.
 - Accuracy: $\Delta h/h \sim 1\%$
- 3. Noise charaterestics are traced in real time for long operation.
- 4. Event Search
 - Inspiral GW from Compact Binary
 - Upper limit for Galactic Event DT8 : $\frac{N}{Te} = 3.3 \times 10^{-3} [\text{event/hour}](\text{C.L.} = 90\%)$
 - DT8 (2003) result is two times better than DT6(2001)'s.
 - Quasi-Normal Ringdown
 - Matched Filter with an efficient template design
 - Eff. ~ 60% for Galactic event (assuming merger forms BH)
 - Burst
 - Excess power filter & Spectrogram filter
 - Non-Gaussian noise rejected by time-scale selection
 - Continuous
 - Upper limit for SN1987a remnant $h \sim 5 \times 10^{-23} (C.L. = 99\%)$

Now, the interferometric detectors growing as a r observatory.