Binary Pulsar Coalescence Rates and Detection Rates for Gravitational Wave Detectors

Chunglee Kim, Vassiliki Kalogera (Northwestern U.), and Duncan R. Lorimer (U. of Manchester)

> Advanced School and Conference on Sources of Gravitational Waves ICTP, Trieste, Italy (Sep. 25, 2003)

Detection of gravitational waves

1. GW detectors

ground-based detectors: AIGO, GEO, LIGO, TAMA, VIRGO space-based detector : LISA (scheduled in 2012)

2. Candidates of GW detectors

ground-based: "late" inspiral of stellar-mass compact object binaries LISA: Galactic binary GW foreground, massive BH binaries

3. Strong sources of GW

mainly astrophysical objects: understanding of the physics of those sources is needed.

Astrophysics comes in

Binary Compact Object Inspiral:

Indirect evidence of GW emission

Orbital decay of PSR B1913+16 is consistent with general relativity to within 0.35%
(Hulse and Taylor 1975; Weisberg and Taylor 2002)

Why are pulsar binaries interesting?

Coalescing pulsar binaries: strong candidates of GW detectors

ground based

LISA

1. Double neutron star (NS-NS) binaries

5 systems are known.

2 coalescing systems in the Galactic disk. (PSR B1913+16 and B1534+12)

2. Neutron star – White dwarf (NS-WD) binaries

Currently, more than 40 systems have been detected.

3 coalescing systems are observed. (PSR J0751+1807, J1757-5322, and J1141-6545)

Detectability of the inspiral of pulsar binaries also depends on the frequency of coalescence events.

Rate calculation: general strategy (Narayan et al.; Phinney 1991)

Merger Rate R = $\frac{\text{Number of sources}}{\text{Lifetime of a system}} \times \text{correction factor}$

 Lifetime of a system = current age + merging time of a pulsar of a system

 Number of sources : number of pulsars in a coalescing binary in the galaxy ("scale factor")

Correction factor : beaming correction for pulsars

Rate calculation: our work (Kim et al. 2003, ApJ, 584, 985)

 Previous studies on the coalescence rate typically have a large uncertainty in the coalescence rate calculation (more than two orders of magnitude) mainly due to the small number of observed samples.

We introduce a new analysis method to give a statistical probability of the coalescence rate.

Small number bias and selection effects for faint pulsars are implicitly included in our method.

Method

1. Model a pulsar population by Monte-Carlo method

Luminosity distribution

power-law: $f(L) \propto L^{-p}$, $L_{min} < L (L_{min}: cut-off luminosity)$

Spatial distribution

$$f(R,z) \propto \exp\left[-\frac{R^2}{2R_o^2} - \frac{|Z|}{Z_o}\right]$$

R_o: radial scale length, z_o: vertical height

- 2. Pulsar-survey simulation
 - consider selection effects of large-scale pulsar surveys
 - look for pulsars similar to each of observed pulsars (e.g. PSR B1913+16-like population)

Method

2. Pulsar-survey simulation (cont.)

adapt properties
 for each observed pulsar
 (period and pulse width)

calculate how many pulsars similar to the observed one can be detected by pulsar-surveys

Statistical Analysis

For a given total number of pulsars, the number detected by pulsarsurvey simulation follows a Poisson distribution.

We calculate the best-fit value of $\langle N_{obs} \rangle$ by fitting the data with the Poisson distribution, $P(N_{obs}; \langle N_{obs} \rangle)$.

Statistical Analysis

<N_{obs}> is linearly proportional to the total number of pulsars in a model galaxy (N_{tot}).

$$= \alpha N_{tot}$$

where α is a slope.

 $<N_{obs}>$ as a function of N_{tot} for B1913+16

Statistical Analysis

• We consider each binary system separately by setting

N_{obs}=1 (small number bias is implicitly included).

Bayes' theoremChange of variables
$$P(1;) \longrightarrow P() \longrightarrow P(N_{tot}) \longrightarrow P(R)$$

For an Individual binary *i*, $P_i(R) = C_i^2 R \exp(-C_i R)$ where $C_i = \left[\frac{t_{life}}{N_{tot} f_b}\right]_i$

Results: P(R_{tot}) of NS-NS binaries

Calculation of detection rate of NS-NS inspirals for LIGO

Detection rate = $R \times \rho_{gal}$

 $R_{max} (ini. LIGO) = 20 Mpc$ $R_{max} (adv. LIGO) = 350 Mpc$ (Finn 2001)

Rmay

calculate the number density of galaxies within the detection volume

Results: P(R_{tot}) of NS-NS binaries

and the corresponding detection rate for the initial LIGO

Results: correlation between R_{peak} and model parameters

- Luminosity distribution power-law: $f(L) \propto L^{-p}$, $L_{min} < L (L_{min}: cut-off luminosity)$
- Spatial distribution

$$f(R,z) \propto \exp\left[-\frac{R^2}{2R_o^2} - \frac{|Z|}{Z_o}\right]$$

R_o: radial scale length, z_o: vertical height

Correlations between the merger rate with parameters of pulsar population models

give constraint to modeling of a pulsar population

Results: R_{peak} vs model parameters I

Correlation between most probable rate R_{peak} and parameters of a pulsar luminosity function (L_{min} : cut-off luminosity, p: power index of L-function)

Results: R_{peak} vs model parameters II

Correlation between most probable rate R_{peak} and parameters of a pulsar luminosity function (L_{min} : cut-off luminosity, p: power index of L-function)

Results: P(R_{tot}) of NS-WD binaries

Results: NS-WD binaries

NS-WD binaries contribute to the GW foreground for LISA (cf. WD-WD binaries)

LISA sensitivity curve http://www.srl.caltech.edu /~shane/sensitivity/

Results: NS-WD binaries

NS-WD binaries contribute to the GW foreground for LISA (cf. WD-WD binaries)

LISA sensitivity curve http://www.srl.caltech.edu /~shane/sensitivity/

Results: NS-WD binaries

NS-WD binaries contribute to the GW foreground for LISA (cf. WD-WD binaries)

LISA sensitivity curve http://www.srl.caltech.edu /~shane/sensitivity/

Summary

Galactic coalescence rates of pulsar binaries

	R _{peak} (Myr ⁻¹)	R _{det} (ini. LIGO) (yr ⁻¹)	R _{det} (adv. LIGO) (yr ⁻¹)
NS-NS	30 ⁺³² ₋₁₆	0.011 ^{+0.013} -0.007	61 ⁺⁷² -36
	$R_{peak} = 2 - 60 \text{ per Myr}$ (all models)		ls)
NS-WD	9 ⁺¹² -6		
	$R_{peak} = 0.6$ -	- 20 per Myr (all mod	els)
			Ó
R _{pe}	_{ak} (NS-NS)	2	
R _{pe}	_{ak} (NS-WD) ∼	5	

Summary

Detection rate of NS-NS inspirals

 R_{det} (ini. LIGO) = 1 event per 30 – 1000 years...

 R_{det} (adv. LIGO) = 3 – 140 events per year

Most optimistic prediction? R_{det} < 300 per year (68% CL) (adv. LIGO)

Future work

 Apply the method to other classes of pulsar binaries (e.g. pulsar binaries in globular clusters)

Give statistical constraints for binary evolution theory
 determine a favored parameter space
 based on the rate calculation
 can be used for the calculation of coalescence
 rates of BH binaries