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Basic Properties of the Event Horizon
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Basic Properties of the Event Horizon
The event horizon is the (2+1) surface in (3+1) space inside of

which no null geodesics can escape to future null infinity and outside

of which at least some can.

The horizon is a globally defined object since the location of the

event horizon now depends on what falls into the black hole later.

Therefore it is in principle necessary to know the full space-time in

order to find the event horizon.

The event horizon is generated by a congruence of null geodesics

that once they join onto it stay on it forever.

This implies that the event horizon is (almost everywhere) a smooth

null surface. The exceptions are the caustics.
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Basic Properties of the Event Horizon II
Look at radially outgoing null geodesics in Schwarzschild

dr

dt
= 1− 2M

r
.
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Basic Properties of the Event Horizon II
Look at radially outgoing null geodesics in Schwarzschild

dr

dt
= 1− 2M

r
.

Consider outgoing geodesics near the horizon r = 2M + ε.

dε

dt
≈ ε

2M
.

Thus an outgoing null geodesic started close to the event horizon

will diverge exponentially away from it.

However, that means that an outgoing null geodesic will converge

exponentially towards the event horizon when integrated backwards

in time.
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Methods for Finding the Event Horizon

1. Integrating null geodesic equation for individual photons.
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Methods for Finding the Event Horizon

1. Integrating null geodesic equation for individual photons.

• Shooting null geodesics forward in time (Hughes et. al., 1994).

Tricky, slow.
• Integrating null geodesics backwards in time. Tangential drift.

2. Integrating a complete null surface backwards in time.

• Using explicit surface representations (Anninos et. al., 1995,

Libson et. al., 1996)

f(t, xi) = r − s(t, θ) = z − s(t, ρ) = 0

f(t, xi) = r − s(t, θ, φ) = 0.

• Using level set description f(t, xi) = 0 (Used here).

5



Level Set Description of a Surface
Define the horizon as a surface in 4-

space by

f(t, xi) = 0,

with the normal nµ = ∂µf(t, xi).
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Level Set Description of a Surface
Define the horizon as a surface in 4-

space by

f(t, xi) = 0,

with the normal nµ = ∂µf(t, xi).
At a t = constant slice, f is a 3-di-

mensional scalar function known as a

level set function.

The requirement that the surface is

null, amounts to

nµnµ = gµνnµnν = gµν∂µf∂νf = 0.

Changes of topology are

trivial.

f<0

f>0

f<0
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Level Set Description of a Surface II
The equation defining the 4-dimensional null surface

gµν∂µf∂νf = 0,
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Level Set Description of a Surface II
The equation defining the 4-dimensional null surface

gµν∂µf∂νf = 0,

can be rewritten as an evolution equation for a time sequence of

3-dimensional level set functions

∂tf =
−gti∂if +

√
(gti∂if)2 − gttgij∂if∂jf

gtt

= βi∂if −
√

α2γij∂if∂jf.

This is the evolution equation that is integrated backwards in time

given an initial guess for the event horizon on the final evolution

slice.
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The algorithm for finding the event horizon is:

8



Algorithm
The algorithm for finding the event horizon is:

1. Evolve numerically until the spacetime is almost stationary

outputting enough data to be able to reconstruct the 4-metric

at each time slice.

8



Algorithm
The algorithm for finding the event horizon is:

1. Evolve numerically until the spacetime is almost stationary

outputting enough data to be able to reconstruct the 4-metric

at each time slice.

2. Choose two or more surfaces: At least one inside and one outside

of the event horizon, trapping the event horizon between them.

8



Algorithm
The algorithm for finding the event horizon is:

1. Evolve numerically until the spacetime is almost stationary

outputting enough data to be able to reconstruct the 4-metric

at each time slice.

2. Choose two or more surfaces: At least one inside and one outside

of the event horizon, trapping the event horizon between them.

3. Evolve these surfaces backwards in time.

8



Algorithm
The algorithm for finding the event horizon is:

1. Evolve numerically until the spacetime is almost stationary

outputting enough data to be able to reconstruct the 4-metric

at each time slice.

2. Choose two or more surfaces: At least one inside and one outside

of the event horizon, trapping the event horizon between them.

3. Evolve these surfaces backwards in time.

4. When the distance between the surfaces becomes small enough,

the event horizon has been located and can be tracked until the

initial data slice is reached.
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Tracking the Generators

The generators of the event horizon satisfy in general

dxµ

dλ
= A(xα)gµν∂νf.
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Tracking the Generators

The generators of the event horizon satisfy in general

dxµ

dλ
= A(xα)gµν∂νf.

Choosing A(xα) = 1/(gtβ∂βf) ensures that dλ = dt. This can be

rewritten in terms of the 3+1 ADM variables as

dxi

dt
= −βi +

α2γij∂jf√
α2γkl∂kf∂lf

.

Thus the generators can be tracked without calculating derivatives

of the metric. However interpolation to the generator position is

necessary.
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3 Black Hole Spacetime I
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3 Black Hole Spacetime II
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3 Black Hole Spacetime II
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3 Black Hole Spacetime II
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Orbiting Black Holes

Numerical run done by Frank Herrmann.
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Collapsing Rotating Neutron Star

Numerical run and visualization done by Ian Hawke.

Further details on the physics in Ian’s talk tomorrow.
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Concluding Remarks

• The event horizon finder is robust.

• The event horizon finder is accurate.

• The generators can be tracked and used to obtain information

about the mass and angular momentum of the final black hole.

• The event horizon finder is a thorn in Cactus using the

CactusEinstein toolkit for the metric information.

• The event horizon finder will be released soon.

• For further details see gr-qc/0305039.
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