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I. INTRODUCTION

A method for constructing instantaneously Kerr-Schild initial data

has been developed 1, and implemented for the case of a perturbed

Schwarzschild geometry. The general case is problematic because

• The momentum and Hamiltonian constraints are inter-mixed;

• The construction of intial data starts at the horizon and goes

outwards. Experience with the perturbed Schwarzschild solution

suggests that the data near infinity will be singular.

Thus some variations of the initial data method were investigated,

with the objective of finding a form that resembles Kerr-Schild, and

is not York-Lichnerowicz.

1N.T. Bishop, R. Isaacson, M. Maharaj & J. Winicour Black hole data via a Kerr-Schild approach

Phys. Rev. D 57 6113-6118 (1998).
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II. ANSATZ

The following ansatz appears to satisfy the above criteria

Kij = 0

γij =
dij − 2V kikj

1− 2V
(1)

where

• Kij and γij are, as usual, the extrinsic curvature and the intrinsic

3-metric

• dij is a Euclidean (flat) 3-metric

• ki is a unit vector field

• V is a scalar field.

The data is time-symmetric, as this is the easiest way to satisfy the

momentum constraints. Non-time-symmetric initial data is being

investigated, but as yet there are no results to report.

It is useful to note here that

γij = (1− 2V )dij + 2V kikj (2)

with ki = dijkj, so that 1 = dijkikj.
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III. THE HAMILTONIAN CONSTRAINT

The Hamiltonian constraint for (1) has been computed by Maple

in the specific case of axial symmetry, i.e. xi = (r, θ, ϕ), dij =

diag(1, r2, r2 sin2 θ), and with V = V (r, θ) and

ki =
Φ,i√

dijΦ,iΦ,j

, (3)

where Φ = Φ(r, θ). The only unknown is therefore V , which was

found to satisfy the following elliptic equation

c11V,rr + c12V,rθ + c22V,θθ + c211 (V,r)
2 + c212V,rV,θ + c222 (V,θ)

2 +

c1V,r + c2V,θ + c0V = 0 (4)

The coefficients ci··· were computed by Maple. The script also com-

putes

∆ = c11c22 −
c2
12

4
=

8

(1− 2V )r2
(5)

demonstrating that Eq. (4) is elliptic for V < 1
2.
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/d \2 2 / d \2 / d \2

2 |-- phi| r - 2 V |--- phi| + |--- phi|

\dr / \dth / \dth /

c11 := 2 --------------------------------------------

//d \2 2 / d \2\

||-- phi| r + |--- phi| | (-1 + 2 V)

\\dr / \dth / /

/d \ / d \

(2 V + 1) |-- phi| |--- phi|

\dr / \dth /

c12 := 4 --------------------------------------

//d \2 2 / d \2\

||-- phi| r + |--- phi| | (-1 + 2 V)

\\dr / \dth / /
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/d \2 2 /d \2 2 / d \2

-|-- phi| r + 2 |-- phi| r V - 2 |--- phi|

\dr / \dr / \dth /

c22 := -2 -----------------------------------------------

2 //d \2 2 / d \2\

r ||-- phi| r + |--- phi| | (-1 + 2 V)

\\dr / \dth / /

8

Delta := - -------------

2

(-1 + 2 V) r
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IV. THE SCHWARZSCHILD CASE

In the case of a single Schwarzschild black hole, we set Φ = 1/r

and the metric (1) is

ds2 = dr2 +
r2

1− 2V

(
dθ2 + sin2 θdϕ2

)
, (6)

which we construct from the standard isotropic form

ds2 =
(
1 +

m

2r̄

)4 (
dr̄2 + r̄2dθ2 + r̄2 sin2 θdϕ2

)
(7)

by means of the coordinate transformation

(
1 +

m

2r̄

)2
dr̄ = dr. (8)

Thus,

r = r̄ + m ln r̄ − m2

4r̄
+ C. (9)

For convenience, we fix C so that the horizon in both coordinate

systems is at r = r̄ = m
2 . Then

r = r̄ + m ln
2r̄

m
− m2

4r̄
+

m

2
. (10)

Thus the metric (6) is recovered with

V (r) =
1

2

1−
(
1 +

m

2r̄

)−4 r2

r̄2

 (11)
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with r̄ defining r implicitly by Eq. (10).

On the horizon, r = (r̄) = m
2 , so

V =
15

32
. (12)

Note that the horizon is also defined by the condition that it is a

stationary surface, i.e.

∂

∂r

 r2

1− 2V (r)

 = 0. (13)

For large r, we apply the binomial expansion, and use Eq. (10), in

Eq. (11) to find

V (r) =
m

2r̄

1− 2 ln
2r̄

m

 . (14)

Since, to first order, r = r̄, this can be rewritten as

V (r) =
m

2r

1− 2 ln
2r

m

 . (15)
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V. PROGRESS TOWARDS A NUMERICAL SOLUTION

A Cactus programme solves Eq. (4) numerically, using a general

nonlinear elliptic solver TAT Jacobi

• In the Schwarzschild case, the programme converges to the ex-

pected analytic solution. The input data was

Boundary conditions:

V =
15

32
r =

1

2

V =
1

2r0
(1− 2 ln 2r0) r = r0 � 1

∂V

∂θ
= 0 θ = 0, π (16)

Φ:

Φ =
1

r
(17)

Initial V :

V =
15

32
+

 r − 1
2

r0 − 1
2


 1

2r0
(1− 2 ln 2r0)−

15

32

 (18)

• The perturbed Schwarzschild case is discussed below

• The case of two equal Schwarzschild black holes is being inves-

tigated.
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VI. PERTURBED SCHWARZSCHILD

Again we choose Φ = 1/r, and write

V (r, θ) = VS(r) + εW (r, θ). (19)

We found that, to first order in ε, Eq. (4) reduces to a linear partial

differential equation in W (r, θ). Further this equation is separable

with solution

W (r, θ) = Σ∞
1 anwn(r)Pn(cos θ) (20)

where Pn is a Legendre polynomial and we define wn(r) to be the

solution of

b2
d2wn(r)

dr2
+ b1

dwn(r)

dr
+ b0(n) = 0 (21)

subject to

wn(r =
1

2
) = 1, lim

r→∞wn(r) = 0. (22)

The coefficients b2, b1 and b0(n) are

b2 = r2 (−1 + 2 VS(r))2 (23)

b1 = − r (−1 + 2 VS(r)) (3− 6 VS(r) + 7 r V ′
S(r)) (24)
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b0(n) = 1− n(n + 1)

2
+ (3n(n + 1)− 8) VS(r)− 2 (3n(n + 1)− 10) VS(r)2 (25)

+ 4 (n(n + 1)− 4) VS(r)3 + 7 r2 V ′
S(r)

2
. (26)

Is the above linearized solution conformally flat? We evaluated

the York tensor

Yijk = Rij;k −Rik;j +
1

4
(R,jgik −R,kgij), (27)

and found that, to first order in ε,

Yijk = 0 for n = 1, (28)

but that for n > 1 Yijk 6= 0; for example

Y112 =
2− n(n + 1)

4 r2
wn(r)P ′

n(cos θ)ε. (29)

Thus, our method does produce initial data that is not conformally

flat.
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VII. BOUNDARY, AND OTHER, DATA FOR TWO BLACK HOLES

Consider two equal Schwarzschild black holes, each of unit mass,

situated at the origin and at (2a, 0, 0), where a > 1. The scalar

field Φ is freely choosable. Thus, it can be set so that it takes the

Schwarzschild form in a neighbourhood of r = 1
2, so

∂

∂r

 r2

1− 2V (r)


r=1

2

= 0. (30)

Boundary data for large r is obtained from Eq.(15) with m = 2

V (r) =
1

r
(1− 2 ln r) . (31)

The 2-surface S defined by r cos θ = a is a surface of symmetry.

Also, the line L defined by

L = {1

2
< r < a, θ = 0} ∪ {1

2
< r < rmax, θ = π}

is an axis of symmetry. Therefore on S and L

∂V

∂n
= 0, (32)

where n is a normal to S or L.

Eq. (4) is singular at the point of symmetry (OS). Let (ρ, α) be

spherical coordinates with origin at OS. Then trying
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V = ρnfn(α), (33)

we find that fn(α) satisfies an equation of the form

d2fn

dα2
+ an(α)

dfn

dα
+ bn(α)fn = 0. (34)

The functions an(α) and bn(α) are complicated, but

• Near α = 0, Eq. (34) is Bessel’s equation of order 0, with fre-

quency that increases with n;

• Near α = π/2, Eq. (34) is the harmonic equation, with frequency

that increases with n.

Thus, we expect that values of n exist for which Eq. (34) has non-

trivial solutions with f ′n(0) = f ′n(π/2) = 0 (which is necessary for

consistency with Eq. (32)). Once a solution to Eq (34) has been

constructed, the region around ρ = 0 can be excised from the com-

putational domain and the solution used to provide boundary data

at ρ = ρ0, with ρ0 small.
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VIII. FURTHER WORK

• Convergence testing of the solution found by the elliptic solver

in the perturbed Schwarzschild case

• A comparative evolution, in the perturbed Schwarzschild case,

from initial data generated by (a) the York-Lichnerowicz decom-

position, (a) the method described here, and (c) instantaneously

Kerr-Schild initial data

• The two black hole problem
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