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The general-covariant Z4 formalism is further analyzed. The gauge conditions are generalized with
a view to Numerical Relativity applications and the conditions for obtaining strongly hyperbolic
evolution systems are given both at the first and the second order levels. A symmetry-breaking
mechanism is proposed that allows one, when applied in a partial way, to recover previously proposed
strongly hyperbolic formalisms, like the BSSN and the Bona-Massó ones. When applied in its full
form, the symmetry breaking mechanism allows one to recover the full five-parameter family of first
order KST systems. Numerical codes based in the proposed formalisms are tested. A robust stability
test is provided by evolving random noise data around Minkowski space-time. A strong field test is
provided by the collapse of a periodic background of plane gravitational waves, as described by the
Gowdy metric.

PACS numbers:

I. INTRODUCTION

The waveform emitted in the inspiral and merger of
a relativistic binary is a theoretical input crucial to the
success of the laser interferometry gravitational labora-
tories [1–4]. Although the regular orbiting phase can be
treated with good accuracy by well-known analytical per-
turbation methods, the later phases belong clearly to the
strong field regime of either a black hole or a neutron star
collision, so that a computational approach is mandatory.
This kind of computational effort has been the objective
of the Binary Black Hole (BBH) Grand Challenge [5] and
other world wide collaborations. The resulting numerical
codes are based on the so called ADM formalism [6] for
the Einstein field equations, where only a subset of the
equations are actually used for evolution whereas the re-
maining ones are considered as constraints to be imposed
on the initial data only (free evolution approach [7]).

It is clear that, by taking the constraints out of the
evolution system, one is extending the solution space.
This extension is the crucial step that opened the way
to new hyperbolic formalisms after the seminal work of
Y. Choquet-Bruhat and T. Ruggeri [8], using the con-
straints to modify the evolution system in many different
ways [9–18], even taking additional derivatives [8, 19, 20].
These formalisms can be interpreted as providing many
non-equivalent ways of extending the solution space of
Einstein’s equations with at least one common feature:
constraint equations are left out of the final evolution
system and general covariance is broken as a result, even
before a specific coordinate system is chosen.

As a side result, numerical codes based on these for-
malisms are quite intolerant to violations of the Hamilto-
nian constraint in the initial data. This is a serious draw-
back if one is planning to use the results of the analytical
approximation to the regular orbiting phase of a binary
system as initial data for a numerical simulation of the fi-
nal ringdown and merger. The numerical code will crash
before any template for the gravitational wave emission

could be extracted. This is because the analytical data
are just a good approximation, so that the energy con-
straint does not hold exactly and the code is intolerant
to that kind of “off-shell” initial data. Although there
can be other options, we claim that a numerical code tol-
erant to constraint violation would be undoubtedly the
best alternative.

A natural theoretical framework (but not the only one,
see for instance [21]) for this purpose will be the general-
covariant extension of the Einstein field equations pro-
posed recently (Z4 system) [22]:

Rµν +∇µZν +∇νZµ = 8 π (Tµν − 1
2

T gµν) , (1)

so that the full set of dynamical fields consists of the
pair {gµν , Zµ}. The solutions of the original field equa-
tions can then be recovered by imposing the algebraic
constraint

Zµ = 0 (2)

and the evolution of this constraint is subject to the linear
homogeneous equation

¤ Zµ + RµνZν = 0 , (3)

which can be easily obtained from (1) allowing for the
contracted Bianchi identities. Here again, by allowing
for non-zero values of the extra four-vector Zµ, one is
extending the solution space. But now, as we will see in
the following section, one is using all the field equations
to evolve the pair {gµν , Zµ}: no equation is taken out
of the system and, as a result, general covariance is not
broken. The initial metric gµν can be taken to be the
one arising from analytical approximations and the initial
four-vector Zµ can be taken to vanish without any kind
of inconsistence: one can even use the evolving values of
Zµ during the calculation as a good covariant indicator
of the quality of the approximation.

Besides these practical considerations, there are impor-
tant theoretical issues that we will address in this work.
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The first one is a thorough analysis of the hyperbolicity
of the evolution system. This is more or less straightfor-
ward for the first order version of the system, as discussed
in Appendix B, but it is not so well known in the case of
the second order version, discussed in Appendix A, where
we have used the results of Kreiss and Ortiz [23] that re-
cently shed light on this issue, which is crucial to discuss
the well-posedness [24] of the evolution system (see also
[25] for similar results for the BSSN system).

The second theoretical point that we want to stress
here is that the Z4 system (1) is not just one more hy-
perbolic formalism to be added to the long list. As far
as it is the only general covariant one, the question arises
whether the existing non-covariant hyperbolic formalisms
[9–18] can be recovered from (1) by some “symmetry
breaking” mechanism. We have extended in this sense a
previous work [26] where the deep relationship between
the more widely used hyperbolic formalisms was pointed
out. A partial symmetry breaking mechanism is pre-
sented in section II for recovering the second order sys-
tems [11, 12] and for the first order systems containing
additional dynamical fields [9, 10] in section III. These
sections are followed by another one containing numer-
ical simulations that have been proposed recently [27]
as standard test-beds for Numerical Relativity codes. A
more general symmetry breaking mechanism is proposed
in Appendix C to recover first order formalisms which do
not contain additional dynamical fields [13–18].

II. 3+1 EVOLUTION SYSTEMS

The general-covariant equations (1) can be written in
the equivalent 3+1 form [22] (Z4 evolution system)

(∂t − Lβ) γij = −2 α Kij (4)

(∂t − Lβ) Kij = −∇iαj + α [(3)Rij +∇iZj +∇jZi

− 2K2
ij + (trK − 2Θ) Kij

− Sij +
1
2

(tr S − τ) γij ] (5)

(∂t − Lβ) Θ =
α

2
[(3)R + 2 ∇kZk + (trK − 2 Θ) trK

− tr(K2)− 2 Zkαk/α− 2τ ] (6)

(∂t − Lβ) Zi = α [∇j (Ki
j − δi

jtrK) + ∂iΘ

− 2 Ki
j Zj −Θ αi/α− Si] (7)

where we have noted

Θ ≡ α Z0, τ ≡ 8πα2 T 00, Si ≡ 8πα T 0
i, Sij ≡ 8π Tij .

(8)
In the form (4-7), it is evident that the Z4 evolution

system consists only of evolution equations. The only
constraints (2), that can be translated into:

Θ = 0, Zi = 0, (9)

are algebraic so that the full set of field equations (1)
is actually used during evolution. This is in contrast

with the ADM evolution system [6], which can be recov-
ered from (4-7) by imposing (9). The first two equations
(4,5) would transform into the well known ADM evolu-
tion system, whereas the last two equations (6,7) would
transform into the standard energy and momentum con-
straints, namely

(3)R + tr2K − tr(K2) = 2 τ (10)

∇j (Ki
j − δi

jtrK) = Si (11)

In the “free evolution” ADM approach [7], both (10)
and (11) were taken out of the evolution system: they
were imposed only on the initial data. This was consis-
tent because (10,11) are first integrals of the ADM evo-
lution system, but one can not avoid violations of (10,11)
due to errors in numerical simulations or approximated
initial data, as stated before, which can eventually grow
and result into crashing of numerical simulations.

One can also ask in this context what happens if, in-
stead of imposing of the full set (9), one imposes the
single condition

Θ = 0 (12)

obtaining a system with only three supplementary dy-
namical variables Zi of the kind determined in [26] (Z3
system): the one corresponding to the parameter choice

µ = 2, ν = n = 0 (13)

(we follow the notation of [26]).
One can easily understand two of the three conditions

(13), namely

µ = 2, ν = n, (14)

because this amounts to the ‘physical speed’ requirement
for the degrees of freedom not related to the gauge [26]
and nothing else can arise from the general covariant
equations (1) which are at our starting point. But values
of the remaining parameter n other than zero would be
very interesting. In particular, the choice

µ = 2, ν = n =
4
3
. (15)

would lead to the evolution system which is quasiequiv-
alent (equivalent principal parts [26]) to the well known
BSSN system [11, 12].

At this point, let us consider the following recombina-
tions of the dynamical fields

K̃ij ≡ Kij − n

2
Θ γij (16)

so that the Z4 system (4-7) can be written in a one-
parameter family of equivalent forms just by replacing
everywhere

Kij → K̃ij +
n

2
Θ γij . (17)
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This kind of transformations leave invariant the solution
space of the system (it is actually the same system ex-
pressed in a different set of independent fields), even if
they can affect the behavior of the numerical algorithms
(see [17] for a striking example in this context). But if
the suppression of the Θ field (12) is made after the re-
placement (17), one gets a one-parameter family of non-
equivalent systems (Z3 evolution systems), namely:

(∂t − Lβ) γij = −2 α Kij (18)

(∂t − Lβ)Kij = −∇iαj + α [(3)Rij +∇iZj +∇jZi

− 2K2
ij + trK Kij − Sij +

1
2
(trS − τ)γij ]

− n

4
α [(3)R + 2 ∇·Z + tr2K − tr(K2)

−2(α−1αk)Zk − 2τ ] γij (19)

(∂t − Lβ)Zi = α [∇j (Ki
j − δi

j trK)− 2Ki
jZj − Si]

(20)

where we have suppressed the tilde over Kij , allowing for
the vanishing of Θ.

The resulting system (18-20) is quasiequivalent (equiv-
alent principal parts) to the ‘system A’ in ref. [26] veri-
fying the ‘physical speed’ requirement (14). As we have
already mentioned, it follows that the particular case

n =
4
3

(21)

is quasiequivalent to the BSSN system [11, 12]. The sys-
tem (18-21) can be decomposed into trace and trace-free
parts

e4 φ = γ1/3 , γ̃ij = e−4 φ γij (22)

K = γij Kij , Ãij = e−4 φ (Kij − 1
3

K γij) (23)

Γ̃i = −γ̃ik γ̃kj
,j + 2 Zi (24)

to follow the correspondence with BSSN more closely. It
must be pointed out, however, that one does not get in
this way the original BSSN system: there is actually one
difference in the lower order terms (only the principal
parts are equivalent). The difference is in the term of the
form

+
n

2
αk Zk γij (25)

in the evolution equation (19), which is missing in the
original BSSN system [12]. This lower order term is
needed for consistency with the general covariant equa-
tions (1).

We have seen then how the widely used ADM and
BSSN systems can be obtained from the more general
Z4 formalism. The equivalence transformation (16) plays
the crucial role because suppressing the Θ field (12) pro-
duces a sort of symmetry breaking: different values of

the parameter n will lead to evolution systems that can
no longer be transformed one into another once the set of
dynamical fields is reduced by the disappearance of Θ. It
can be regarded as a partial symmetry breaking mecha-
nism for the original equations (4-6). The terms “partial”
refers to the fact that only the quantity Θ is suppressed,
while the Zi are kept into the system (18-20). A complete
symmetry breaking mechanism is discussed in Appendix
C.

In section IV, we present the results of some test-bed
simulations for the ADM and Z4 systems. We have con-
sidered for simplicity only vacuum space-times with the
time coordinate conditions

(∂t − Lβ) ln α = − α [ftrK − λΘ] (26)

which are a further generalization of the one proposed in
[22], where

f = 1, λ = 2. (27)

This two-parameter family of coordinate conditions is
very interesting from the point of view of Numerical Rel-
ativity applications. But it is also interesting from the
theoretical point of view, because it provides the oppor-
tunity to apply the recent results of Kreiss and Ortiz [23]
on the hyperbolicity of the ADM system in a wider con-
text. In Appendix A, we will use the same formulation
(see ref. [24] for more details) to study the hyperbolic-
ity of the Z4 system with the two-parameter family of
dynamical gauge conditions (26).

III. FIRST ORDER SYSTEMS

A first order version of the Z4 evolution system (4-7)
can be obtained in the standard way by considering the
first space derivatives

Ak ≡ αk/α, Dkij ≡ 1
2

∂kγij (28)

as independent dynamical quantities with evolution
equations given by

∂tAk + ∂k[ α(f tr K − λΘ) ] = 0 (29)

∂tDkij + ∂k[αKij ] = 0 (30)

(we will consider in what follows the vanishing shift case
for simplicity), so that the full set of dynamical fields can
be given by

u = {α, γij , Kij , Ak, Dkij , Θ, Zk} (31)

(38 independent fields).
Care must be taken when expressing the Ricci tensor

(3)Rij in (5) in terms of the derivatives of Dkij , because
as far as the constraints (28) are no longer enforced, the
identity

∂rDsij = ∂sDrij (32)
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can not be taken for granted in first order systems. As a
consequence of this ordering ambiguity of second deriva-
tives, the principal part of the evolution equation (5) can
be written in a one-parameter family of non-equivalent
ways, namely

∂tKij + ∂k [α λk
ij ] = ... (33)

λk
ij ≡ −Γk

ij +
1− ζ

2
(D k

ij + D k
ji − δk

i D r
rj − δk

j D r
ri )

+
1
2

δk
i (Aj + Djr

r − 2Zj) +
1
2

δk
j (Ai + Dir

r − 2Zi)

(34)

so that the parameter choice ζ = +1 corresponds to the
standard Ricci decomposition
(3)Rij = ∂k Γk

ij − ∂i Γk
kj + Γr

rkΓk
ij − Γk

riΓr
kj (35)

whereas the opposite choice ζ = −1 corresponds to the
de Donder-Fock [28, 29] decomposition

(3)Rij = −∂k Dk
ij + ∂(i Γj)k

k

+ 4Drs
iDrsj − ΓirsΓj

rs − ΓrijΓrk
k (36)

which is most commonly used in Numerical Relativity
codes. Note that this ambiguity does not affect to the
principal part of eq. (6), namely

∂tΘ + ∂k[αV k] = ... (37)

where we have noted

Vk ≡ Dkr
r −Dr

rk − Zk. (38)

We are now in position to discuss the hyperbolicity of
this first order version of the Z4 systems. This is done in
a straightforward way in Appendix A.

In order to compare the new first order system with
the Bona-Massó ones [9, 10] we could either apply here
again the recombination (16) followed by the suppression
(12) of the Θ field or we could take directly a first order
version of the Z3 system (18-20). Eqs. (18,20,30) do not
change, but eqs. (29,33,34) are replaced in this case by

∂tAk + ∂k [α f trK] = 0 (39)
∂tKij + ∂k [α λk

ij ] = . . . (40)

λk
ij ≡ −Γk

ij −
n

2
V kγij (41)

+
1
2
δk
i (Aj + Djr

r − 2Zj) +
1
2
δk
j (Ai + Dir

r − 2Zi)

+
1− ζ

2
(D k

ij + D k
ji − δk

i D r
rj − δk

j D r
ri )

The full Bona-Masso family of evolution equations is re-
covered for the ζ = −1 case, where (41) can be written
as

λk
ij ≡ Dk

ij −
n

2
V kγij (42)

+
1
2
δk
i (Aj −Djr

r + 2Vj) +
1
2
δk
j (Ai −Dir

r + 2Vi)

with Vk defined by (38).
In the following section, we will compare the behavior

of both families in numerical simulations. To this end,
we will also consider the first order version of the ADM
system, which can be obtained from the previous ones
just by suppressing the Zi eigenfields.

Zi = 0 . (43)

Before proceeding to the test section, let us just men-
tion, that the same game of recombining the Θ field with
Kij (17) before suppressing it can also be played with
the Zk fields and Dkij in first order systems. As stated
before, this will provide a complete symmetry breaking
mechanism. We will do that in Appendix C, where we
will show how the well known KST system [17] can also
be recovered in that way from the Z4 framework dis-
cussed in this paper.

IV. TESTING SECOND AND FIRST ORDER
SYSTEMS

We will present in this section a couple of numerical ex-
periments which have been suggested very recently [27] as
standard test-beds for Numerical Relativity codes. Our
philosophy is that all the tests could be done “out of the
box”, using well known numerical methods and the equa-
tions that are fully presented here: anyone should be able
to reproduce our results without recourse to additional
information.

We will use the standard method of lines [30] as a fi-
nite differencing algorithm, so that space and time dis-
cretization will be dealt separately. Space differencing
will consist of taking centered discretizations of deriva-
tives in our 3D grid. We use the standard centered stencil
for first derivatives and we make sure that second deriva-
tives, when needed, are coded also as centered deriva-
tives of these first derivatives, even if it takes up to five
point along every axis.In order to avoid boundary effects,
the grid has the topology of a three-torus, with periodic
boundaries along every axis. The time evolution will be
dealt with a third order Runge-Kutta algorithm. The
time step dt is kept small enough to avoid an excess of
numerical dissipation that could distort our results in
long runs.

A. Robust stability test

Let us consider a small perturbation of Minkowski
space-time which is generated by taking random initial
data for every dynamical field in the system. The level
of the random noise must be small enough to make sure
that we will keep in the linear regime even for a thousand
of crossing times (the time that a light ray will take to
cross the longest way along the numerical domain). This
is in keeping with the theoretical framework of Appendix
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FIG. 1: The maximum of (the absolute value of) trK is plot-
ted against the number of crossing times in a logarithmic
scale. The initial level of random noise remains constant dur-
ing the evolution in the case of strongly hyperbolic systems
(only the second order Z4 system is shown here for clarity).
In the case of weakly hyperbolic systems, like the ADM sec-
ond order system ADM-2 or its first order version ADM-1,
a linear growth is detected up to the point where the codes
crash. Notice that the second order version is more robust,
an order of magnitude, than the first one. The simulations
are made with 50 grid points with dt = 0.03 dx.

A, where only linear perturbations around the Minkowski
metric are considered.

We have plotted in Fig. 1 our results for the standard
harmonic case (27). We see the expected polynomial (lin-
ear in this case) growth [24] of the weakly hyperbolic
ADM system. Notice that modifications of the lower
order terms (the ones not contributing to the principal
part) could lead to catastrophic exponential growth, re-
vealing an ill-posed evolution system [24].

The Z4 system shows instead the no-growth behavior,
independent of the time resolution, which one would ex-
pect from a strongly hyperbolic system. The same qual-
itative behavior is shown by the corresponding Z3 sys-
tems in (18-20), including the one with n = 4/3 that is
quasiequivalent to the BSSN system.

We also show in Fig. 2 the same results, but distorted
by using too much numerical dissipation: the time evo-
lution here is dealt with the second order ICN method
rather than the third order Runge-Kutta of Fig. 1. Af-
ter hundreds of crossing times, the numerical dissipation
manages to curve the linear growing of ADM and the
noise level goes down in the Z4 case. This is just a nu-
merical artifact, because in the linear regime there is no
physical damping mechanism for strongly hyperbolic sys-
tems in a three-torus, where periodic boundary condi-
tions do not allow propagation outside the domain. This
is why we will use here third order Runge-Kutta instead
of the ICN method proposed in [27].

In Fig. 3, we explore parameter space in the (f ,λ)
plane. If we interpret the constant behavior in Fig. 1
as revealing a strongly hyperbolic system and the poly-
nomial growth (linear in this case) in Fig. 1 as revealing
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Z4
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FIG. 2: Same as Fig. 1, but using the second order ICN
method to evolve in time instead of a third order Runge-
Kutta algorithm. Numerical dissipation is severely distorting
the plots, by masking the linear growth in the weakly hyper-
bolic case and dramatically reducing the initial noise level in
the strongly hyperbolic case. Notice than both dt and dx are
the same as in Fig. 1 and we are using also the same space
discretization algorithm: only the time evolution method has
changed.

a weakly hyperbolic system, the results of our numerical
experiment fully agree with the theoretical results pre-
sented in Appendix A.

f
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0 1 2 3 4
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FIG. 3: Array of results of numerical experiments in the gauge
parameter plane (f ,λ), by using the Z4 system. A trian-
gle stands for linear growth of noise (weak hyperbolicity),
whereas a cross stands for a constant noise level (strong hy-
perbolicity). This is consistent with the strong hyperbolicity
requirements f > 0 and λ = 2 when f = 1, predicted in
Appendix B.
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B. Gowdy waves

In order to test the strong field regime, let us consider
now the Gowdy solution [31], which describes a space-
time containing plane polarized gravitational waves (see
also [32] for an excellent review of these space-times as
cosmological models). The line element can be written
as

ds2 = t−1/2 eλ/2 (−dt2+dz2)+t (eP dx2+e−P dy2) (44)

where the quantities λ and P are functions of t and z
only and periodic in z, so that (44) is well suited for
finite difference numerical grids with periodic boundary
conditions along every axis. Following [27], we will choose
the particular case

P = J0(2πt) cos(2πz) (45)
λ = πJ0(2π)J1(2π)− 2πtJ0(2πt)J1(2πt) cos2(2πz)

+ 2π2t2[J0
2(2πt) + J1

2(2πt)− J0
2(2π)− J1

2(2π)]
(46)

so that it is clear that the lapse function

α = t−1/4 eλ/4 (47)

is constant everywhere at any time t0 at which J0(2πt0)
vanishes. In [27] the initial slice t = t0 was chosen for the
simulation of the collapse, where 2πt0 is the 20-th root
of the Bessel function J0, i.e. t0 ' 9.88.

Let us now perform the following time coordinate
transformation

t = t0 e−τ/τ0 , τ0 = t
3/4
0 eλ(t0)/4 ' 472 , (48)

so that the expanding line element (44) is seen in the
new time coordinate τ as collapsing towards the t = 0

FIG. 4: The quantity Θ is plotted as an indicator of the
accumulated error of the simulations for the ADM, Z4 and
Z3-BSSN second order forms. Even in this logarithmic scale,
it can be clearly seen how the Z4 and Z3-BSSN codes performs
much better than the ADM one: error differs by one order of
magnitude at τ ' 1000. The Z3-BSSN code gets closer to the
Z4 one in the oscillatory phase (up to τ ' 2000).
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FIG. 5: Time evolution of (the maximum value of) the lapse
function α in a collapsing Gowdy space-time (harmonic slic-
ing). Notice that the harmonic time coordinate τ is not the
proper time and it does not coincide with the number of cross-
ing times, due to the collapse of the lapse, which is visible
here, by a 10−9 factor.

singularity, which is approached only in the limit τ →∞.
This “singularity avoidance” property of the τ coordinate
is not surprising if one realizes that the resulting slicing
by τ = constant surfaces is harmonic [33].

This means that we can launch our simulations starting
with a constant lapse α0 = 1 at τ = 0 (t = t0) with the
gauge parameter choice f = 1 (which means also λ = 2 in
the Z4 case). Notice that the harmonic time coordinate
τ is not the proper time and it does not coincide with the
number of crossing times, due to the collapse of the lapse.
Remember also that the local value of light speed (proper
distance over coordinate time) is ±α. Even though in our
plots τ goes up to 10000, the light ray manages to cross
the domain in the z-direction only t0 ' 9.88 times, as it
follows from the original form (44) of the line element.

FIG. 6: Same as Fig. 4, but with the first order versions of
both the ADM and Z4 codes, which behave in the same way
as their second order counterparts. The Z3-BM code gets here
closer the ADM one in the oscillatory phase (up to τ ' 2000),
in contrast with the behavior of the Z3-BSSN code in Fig. 4.
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We plot in Fig. 5 the maximum values of the lapse
function as time goes on, measured in terms of the har-
monic time coordinate τ . Notice the huge magnitude of
the dynamical space we are covering, as α goes down (col-
lapse of the lapse) by the factor of one billion during the
simulation. This is a real challenge for numerical codes
and all of them are doing quite well until τ = 10000. The
behavior at later times is dominated by the lower order
terms: coordinate light speed (±α) is so small that the
dynamics of the principal part is frozen and care must
be taken to avoid too big time steps. We have not seen
any of the codes crashing even in very long simulations
(up to τ = 60.000) when the size of the time step is kept
under control.

In Fig. 4, we use the quantity Θ, as computed from (6)
to monitor the quality of the simulation both in the Z4
case (4-7), where Θ is a dynamical field, and in the other
two second order cases (ADM and Z3-BSSN), where Θ
is no longer a dynamical quantity but can still be used
as a good measure of the error in the simulation. Notice
that our Z3-BSSN code performs here much better than
the original BSSN one [12], as reported in [27]. This is
mainly due to the fact that we are not using here the
conformal decomposition (22-24) which is at odds with
the structure of the line element (44). This is why we talk
here about Z3-BSSN (18-21) instead of simply BSSN.

The same kind of comparison is made in Fig. 6 for the
first order version of the ADM and Z4 codes, which show
the same behavior than their second order counterparts
in Fig. 4. The third plot corresponds to the Z3 version of
the Bona-Massó code, which can be obtained from (39-
41), with the parameter choice ζ = −1, n = +1. Notice
that in the oscillatory phase (up to τ ' 2000) the Z3-BM
code tends to behave like the ADM one, whereas in Fig. 4
the Z3-BSSN code tends to behave more like the Z4 one.
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FIG. 7: Same as Fig. 4, but with different values of the pa-
rameter n arising from the symmetry breaking mechanism in
the Z3 codes. The differences show up in the collapse final
phase (starting at τ ' 2000). Notice that the value n = 4/3
corresponds to the Z3-BSSN case in Fig. 4, whereas the case
n = 1 corresponds to (the second order version of) the Z3-BM
case in Fig. 6. First order versions (not shown) behave in the
same way as their second order counterparts shown here

Notice that the Z3 versions, when compared with both
ADM and Z4, show a different behavior after the oscilla-
tory phase: θ grows at a much lower rate or even starts
going down. This behavior is due to the extra terms that
appear in the evolution equations for Kij after the sym-
metry breaking, which can be controlled by the parame-
ter n introduced in (17). This point is clearly shown in
Fig. 7, where different choices of n produce different be-
havior in the final collapse phase (starting at τ ' 2000).
This shows the relevance of the recombination between
the dynamical fields in numerical applications, as pointed
out in [17].

Appendix A: Hyperbolicity of the Second Order Z4
System

Let us consider the linearized version of the Z4 system
(4-7) around Minkowski space-time in order to study the
propagation of a plane wave in that background:

γij = δij + 2 ei ω·x γ̂ij(ω, t) (A.1)

α = 1 + ei ω·x α̂(ω, t) (A.2)

Kij = i ω ei ω·x K̂ij(ω, t) (A.3)

Θ = i ω ei ω·x Θ̂(ω, t) (A.4)

Zk = i ω ei ω·x Ẑk(ω, t) (A.5)

where we will take for simplicity βi = 0 and

ωk = ω nk , δij ni nj = 1 (A.6)

The Z4 system reads then

∂tγ̂ij = −i ω K̂ij (A.7)

∂tα̂ = −i ω [f trK̂ − λ Θ̂] (A.8)

∂tΘ̂ = −i ω [trγ̂ − γ̂nn − Ẑn] (A.9)

∂tẐk = −i ω [nk (trK̂ − Θ̂)− K̂n
k ] (A.10)

∂tK̂ij = −i ω λ̂ij (A.11)

where we have noted

λ̂ij ≡ γ̂ij + ni nj (α̂ + trγ̂)

− ni (γ̂n
j + Ẑj)− nj (γ̂n

i + Ẑi) (A.12)

and where the symbol n replacing an index means the
contraction with ni. It can be also expressed in matrix
form, namely

û = (α̂, γ̂ij , K̂ij , Θ̂, Ẑk) (A.13)
∂tû = −i ω A û (A.14)

The spectral analysis of the characteristic matrix A
provides the following list of eigenvalues and eigenfields

a) Standing eigenfields (zero characteristic speed)

α̂− ftrγ̂ + λ(trγ̂ − γ̂nn − Ẑn) , γ̂n
⊥ + Ẑ⊥ (A.15)

where the symbol ⊥ replacing an index means the
projection orthogonal to ni.
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b) Light-cone eigenfields (characteristic speed ±1)

K̂⊥⊥ ± γ̂⊥⊥ (A.16)

K̂n
⊥ ± Ẑ⊥ (A.17)

Θ̂± [trγ̂ − γ̂nn − Ẑn] . (A.18)

Notice that (A.16-A.18) can be seen as the compo-
nents of a tensor:

L̂±ij ≡ [K̂ij − (trK̂ − 2Θ̂) ni nj ]

± [λ̂ij − α̂ ni nj ] (A.19)

c) Gauge eigenfields (characteristic speed ±√f)

Ĝ± ≡
√

f

[
trK̂ +

2− λ

f − 1
Θ̂

]

±
[
α̂ +

2 f − λ

f − 1
(trγ̂ − γ̂nn − Ẑn)

]
(A.20)

From (A.15-A.20) we can easily conclude [23, 24]

i) All the characteristic speeds are real (weak hyper-
bolicty at least) if and only if f ≥ 0.

ii) In the case f = 0, the two components of the gauge
pair (A.20) are not independent, so that the total
number of independent eigenfields is 16 instead of
17 required for strong hyperbolicity.

iii) The case f = 1 (harmonic case) is special:

• if λ 6= 2, then the gauge pair (A.20), which
can be previously rescaled by a (f − 1) factor,
is equivalent to (A.18), so that one has only
15 independent eigenfields

• if λ = 2, then the quotient 2−λ
f−1 can take any

value, reflecting the degeneracy of the gauge
and light cone eigenfields. One can then re-
cover the full set of 17 independent eigenfields
(strong hyperbolicity).

iv) In all the remaining cases (f > 0, f 6= 1), the
system is strongly hyperbolic, as we can recover
the full set of 17 independent eigenfields.

Appendix B: Hyperbolicity of the First Order Z4
System

The principal part of the first order Z4 evolution sys-
tem (4-7,26,29-30) can be written as (vanishing shift
case):

∂tγij = . . . , ∂tα = . . . (B.1)

∂tΘ + ∂k [α V k] = . . . (B.2)
∂tZi + ∂k [α (δk

i (trK −Θ)−Kk
i)] = . . . (B.3)

∂tAk + ∂k [α (ftrK − λΘ)] = . . . (B.4)
∂tDkij + ∂k [α Kij ] = . . . (B.5)

∂tKij + ∂k [α λk
ij ] = . . . (B.6)

where

λk
ij = Dk

ij − 1 + ζ

2
(D k

ij + D k
ji − δk

i D r
rj − δk

j D r
ri )

+
1
2

δk
i (Aj −Djr

r + 2Vj)

+
1
2

δk
j (Ai −Dir

r + 2Vi) (B.7)

Vk ≡ Dkr
r −Drk

r − Zk. (B.8)

Now, if we consider the propagation of perturbations
with wavefront surfaces given by the unit (normal) vector
ni, we can express (B.1-B.6) in matrix form

α−1∂t u + A(u) nk ∂ku = ... , (B.9)

where

u = {α, γij , Kij , Ak, Dkij , Θ, Zk} . (B.10)

(notice that derivatives tangent to the wavefront surface
play no role here).

A straightforward analysis of the characteristic matrix
A(u) provides the following list of eigenfields:

a) Standing eigenfields (zero characteristic speed)

α, γij , A⊥, D⊥ij , Ak − fDk + λVk (B.11)

(24 independent fields), where the symbol ⊥ re-
placing an index means the projection orthogonal
to ni:

D⊥ij ≡ Dkij − nknrDrij . (B.12)

b) Light-cone eigenfields (characteristic speed ±1)

L±ij ≡ [Kij − ninj trK]
± [λn

ij − ninj tr λn] (B.13)
L± ≡ θ ± V n (B.14)

(12 independent fields), where the symbol n replac-
ing the index means the contraction with ni

λn
ij ≡ nk λn

ij . (B.15)

c) Gauge eigenfields (characteristic speed ±√f)

G± ≡
√

f

[
tr K +

2− λ

f − 1
Θ

]

±
[
An +

2f − λ

f − 1
V n

]
(B.16)

From (B.11-B.16) we can easily conclude that

i) All the characteristic speeds are real (weak hyper-
bolicity at least) if and only if f ≥ 0.

ii) In the case f = 0, the two components of the pair
(B.16) are not independent, so that the total num-
ber of independent eigenfields is 37 instead of 38
required for strong hyperbolicity.
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iii) The case f=1 (harmonic case) is special:

• if λ 6= 2, then the pair of fields (B.16) is the
same as (B.14), so that one has only 36 inde-
pendent eigenfields

• if λ = 2, then the quotient 2−λ
f−1 can take any

value due to the degeneracy of the gauge and
light eigenfields. One can then recover the full
set of 38 independent eigenfields (strong hy-
perbolicity).

iv) The first order Z4 system described by (B.1-B.6) is
strongly hyperbolic in all the remaining cases (f >
0, f 6= 1).

Notice also that the special (harmonic) case f = 1,
λ = 2 has been shown in [22] to be symmetric hyperbolic
for the parameter choice ζ = −1. The corresponding
energy function can be written as

E ≡ KijKij + λkijλkij + (trK − 2Θ)2 + AkAk

+ (Ak −Dkr
r + 2V k)(Ak −Dkr

r + 2Vk) (B.17)

but notice that this expression is far from being unique.
For instance, allowing for (B.11), the last term in (B.17)
could appear with any arbitrary factor.

Appendix C: Recovering the KST systems

Let us start with the first order Z4 evolution system
(4-7,26,29-30) where the principal part is given by (B.1-
B.8). Now let us follow the two step ‘symmetry breaking’
process, namely

i) Recombine the dynamical fields Kij , Dkij with Θ
and Zi in a linear way,

K̃ij = Kij − n

2
Θ γij , (C.1)

dkij = 2Dkij + η γk(iZj) + χ Zkγij , (C.2)

where we have used the notation of Ref. [17], re-
placing only their parameter γ by −n/2 for con-
sistency. Notice that (C.1-C.2) is generic in the
sense that it is the most general linear combination
that preserves the tensor character of the dynami-
cal fields under linear coordinate transformations.

ii) Suppress both θ and Zi as dynamical fields, namely

Θ = 0, Zi = 0 . (C.3)

In that way, the principal part (B.1-B.8) becomes

∂tγij = . . . , ∂tα = . . . (C.4)

∂tAk + ∂k [α f tr K̃ ] = 0 (C.5)

∂tdkij + ∂r[α{2 δr
k K̃ij − χ (K̃r

k − δr
k trK̃)γij

+ η γk(i(K̃r
j) − δr

j)trK̃)}] = . . . (C.6)

∂tK̃ij + ∂k [α λk
ij ] = . . . (C.7)

2 λk
ij = dk

ij − n

4
(dkr

r − dr
rk)γij

+
1 + ζ

2
(dij

k + dji
k)− 1− ζ

2
(δk

i drj
r + δk

j dri
r)

+ δk
j (Ai +

1
2
dir

r) + δk
i (Aj +

1
2
djr

r) (C.8)

for the reduced set of variables

u = {α, γij , K̃ij , Ak, dkij}. (C.9)

This provides a “dynamical lapse” version of the KST
evolution systems [17]. In order to recover the original
“densitized lapse” version, one must in addition integrate
explicitly the dynamical relationship (26) between the
lapse and the volume element (remember that now Θ =
0). It can be easily done in the case

f = 2 σ = constant, (C.10)

namely

∂t(αγ−σ) = 0, (C.11)

so that the value of α can be defined in terms of γ for
every initial condition. The same thing can be done with
Ai and di, so that

Ai ≡ σ dir
r + ... (C.12)

and the set of dynamical fields is then further reduced to

u = {γij , Kij , dkij}. (C.13)

The principal part of the evolution system is then given
by (we suppress the tildes over the Kij)

∂tγij = . . . (C.14)
∂tdkij + ∂r[ α{ 2 δr

k Kij − χ (Kk
r − δr

k trK)γij

+ η γk(i(Kr
j) − δr

j)trK) } ] = . . . (C.15)

∂tKij + ∂k [α λk
ij ] = . . . (C.16)

2 λk
ij = dk

ij − n

4
(dkr

r − dr
rk)γij

− 1− ζ

2
(δk

i dr
rj + δk

j dr
ri) +

1 + ζ

2
(dij

k + dji
k)

+
1 + 2σ

2
(δk

i djr
r + δk

j dir
r) (C.17)

which corresponds precisely to (the principal part of)
the original KST system [17].
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