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duction

wave equation in [0, 1]:

Oru = Oy wave traveling to the left

u(t,x) = u(t + ) Is a solution
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wave equation in [0, 1]:

8tu = Bwu

undary alue roblem.
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Energy | nequality

Let U be a vector valued function in a region 2 satisfying
Uy = A'0;U + BU

With A a matrix which is symmetric with respect to some scalar product < -, - >
and with all its eigenvalues real, then the initial-boundary value problem:

Ut=0,z) = F(x), PY(U(t,1) - G(t) =0

Is well posed with respect to the energy:
E = / <UU >dV
Q

Where PT is the projector to the positive eigenvalue space of A'n;, with n; the
normal to the boundary.
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Jy | nequality

/{< U, A'0;U >+ < A'0;U, U >}dV

Q

/ {0; < U, AU > — < U, (6;A")U >}dV Symmetry + Leibniz
Q

/ < U.A'nU > dS + ||(0;A")||o€  integration by parts
02

/ < Pt A" PTU > +|[(0; A" || o0&
o2



Energy | nequality

Energy inequality is based on:
1. Symmetry of A w.r.t. a scalar product (Symmetric hyperbolicity)
2. Integration by parts
3. Leibniz’s rule

4. Boundary condition implementation
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Energy | nequality

Energy inequality is based on:

1. Symmetry of A w.r.t. a scalar product (Symmetric hyperbolicity)
2. Integration by parts

3. Leibniz’s rule

4. Boundary condition implementation

Want to imitate this numerically!

Trieste Gravitational Wave Meeting — p.12/31



Numerical | mplementation |

= Choose a symmetric hyperbolic formulation, or at
least a strongly hyperbolic one.

= Choose correct boundary conditions.

Trieste Gravitational Wave Meeting — p.13/31



rical Implementation: SBP

Inite-difference operator has to satisfy the Summation By Parts property:

Y 0i{<V;,DV; >+ < DV;,V; >} =< Vn, VN > — < Vo,V >.
0



Numerical | mplementation: SBP

™ The finite-difference operator has to satisfy the Summation By Parts property:

N
Y 0i{<Vi,DV; >+ <DV;,V; >} =<V, Vy > = < Vo, o > .
1=0

™ This property depends on the integration region and on the order of accuracy
of the operator.

™ The operator D and the scalar product (given by the values of ¢;) are tied
together.

W Pairs (3, D) are known for square grids in any dimension.

™ Are also known for square and cubic excision regions.
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Numerical | mplementation: SBP

Example: in [0, 1]

Vi41—Vi—1

UN—UN-—-1

\

|

V1 —%g

1
1
2

1 #0,N
=\
1 =0
1 #0, N
1=0,N

Second order accurate in the interior, first order at boundary points. Overall second

order accurate.
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rical Implementation: SBP

cubic excision
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e discrete level Leibniz’s rule is not valid.
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e discrete level Leibniz’s rule is not valid.
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Numerical | mplementation: Lelbniz

W At the discrete level Leibniz’s rule is not valid.

W At finite resolution this might imply exponential grows of numerical solution.

W Remedy 1: Choose the discretization in a careful way so that Leibniz’s rule is
not used in the discrete energy inequality.
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Numerical | mplementation: Lelbniz

W At the discrete level Leibniz’s rule is not valid.

W At finite resolution this might imply exponential grows of numerical solution.

W Remedy 1: Choose the discretization in a careful way so that Leibniz’s rule is
not used in the discrete energy inequality.

W Remedy 2: Use artificial dissipation (Kreiss-Oliger). They must also satisfy
the corresponding SBP property.
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U = A9,U
PTU G(t)

on (Projection method):

Vi =(I - P")A'D;V + PTG,



INUTHICT 1CAl THTIPICSITICTILALION.  BOUl U=
ary Conditions

U = A9,U
PTU G(t)

™ Olsson (Projection method):
Vi =(I - P")A'D;V + PTG,

W Carpenter et. al. (Penalty function method):

: 2
= A"D;V — ~—PT(V —
Vi %4 A (V —G)
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Stummary

W Stress importance of symmetric hyperbolic systems
™ Finite-difference operators satisfying SBP

W Stress strict-stability (do not use Leibniz)

W Dissipative operators (Kreiss-Oliger)

™ Boundary treatment: Projection or Penalty

™ Interface treatment: Penalty in multi-grids

™ Runge-Kutta third or fourth order — stability
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Example 1

W Cubic excision on a Kerr-Schild Static Black Hole
™ No dissipation (Except for Maxwell).

W strict stability (w.r.t. physical energy)

™ Olsson Projection at outer boundary

™ Excised cube has to be VERY SMALL

™ Not possible for rotating BH
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Wave equation on an annulus around a “2D Kerr-Schild Black Hole”

2 touching grids

no-dissipation Convergence factors (compact sup. data)
) o S second order Q fourth order derivatives
strict stability
In2L2Q41
penalty method | » 212541

In2 L2 S8l
22081

In2L2Q 161
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Wave equation on a sphere
6 touching grids
no-dissipation
strict stability
penalty method

Convergence Test (In2 L2 Q factor)
D=2nd, D=4th, RK=4th

21-41-81
41-81-161
81-161-321
21-81-161
41-81-161
81-161-321
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Wave equation on a 3D Kerr-Schild Black Hole
6 touching grids

no-dissipation Convergence Wave in Kerr_Schild

Second Order in Differences

strict stability

penalty method |
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TO THE MOVIES!
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