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I. Introduction

In a magnetized plasma, when dealing with phenomena involving frequency smaller or

comparable to the ion cyclotron frequency Ωi =
ZieB

cmi
and scales smaller or comparable to the

ion-inertial length di =
cA
Ωi

, the dynamics can be described in the MHD approximation with the

addition of the Hall term (ion inertia) in a generalized Ohm’s law: E = −1
cu×B +

mi
ecρj× B

Remarks : ni ≈ ne = n, ρ ≈ min, u ≈ ui

ions and electrons move in a similar way (they separate at the scale di).

one can also write E = −1
cue × B

the magnetic field is frozen in the electron plasma: no reconnection possible.



Hall-MHD equations (in a non-dimensional form)

The state law is that of a polytropic gas p ∝ ργ:

∂tρ +∇ · (ρu) = 0

ρ(∂tu + u · ∇u) = −β

γ
∇ρ

γ
+ (∇× b)× b

∂tb−∇× (u× b) = − 1

Ri

∇×
(

1

ρ
(∇× b)× b

)

︸ ︷︷ ︸
Hall term

∇ · b = 0

β =
c2s
c2
A

cA ≡ B0√
4πρo

= 1 Ri = L
di

where di ≡ c
ωpi

=
cA
Ωi

This MHD formalism is valid for a collisional plasma. It can also be used in the collisionless

case provided β is not too large (smaller than unity). Results of the fluid limit are usually valid

in the limit me
mi
¿ β ¿ Te

Ti
. The assumption of a scalar pressure is a further simplification

that can be questionable but which allows much simpler algebra.



One dimensional reduction

In a slab geometry, for oblique propagation, the MHD equations take the form

∂ρ

∂t
+

∂(ρux)

∂x
= 0

∂ux

∂t
+ ux

∂ux

∂x
= −1

ρ

∂

∂x
(

ργ

γM2
s

+
|b|2
2M2

a

)

∂u

∂t
+ ux

∂u

∂x
=

bx

M2
aρ

∂b

∂x

∂b

∂t
+

∂

∂x
(uxb) = bx

∂u

∂x
+ iσ

Ri

Ma

∂

∂x
(
bx

ρ

∂

∂x
b),

where :

x is the direction of propagation,

θ is the angle between x̂ and B0,

V = uxx̂ + uyŷ + uzẑ ; u = uy − iσuz,



B = bxx̂ + byŷ + bzẑ ; b = by − iσbz,

sonic Mach number : Ms = U0/cs,

Alfvénic Mach number Ma =
U0
ca

,

bx = cos θ is a constant and bz(t = 0) = sin θ,

U0 is a typical speed used to adimentionalize the plasma velocity,

β =
c2s
c2
A

,

σ = ±1.

In the dispersionless case three basic modes coexist: Alfvén and fast and slow magnetosonic

waves.



Linear MHD waves (no dispersion):
ρ = ρ0 + δρ b = B0 + δb u = 0 + u

∂tδρ +∇ · (ρ0u) = 0

∂tδb = ∇× (u× B0)

∂tu = − β

ρ0
∇δρ− B0

ρ0
× (∇× δb)

∇ · δb = 0

For perturbations ∝ ei(kx−ωt), two types of waves

Alfvén waves : perturbations ⊥ plane (k, B0)

uz = − 1
√

ρ
0

δbz ;
ω

k
= cA cos θ ; cA =

B0√
ρ0

cA : Alfvén velocity ; cs : sound velocity

Magneto-sonic waves : perturbations in plane (k, B0)

ω
4 − k

2
(c

2
A + c

2
s)ω

2
+ k

4
v

2
ac

2
s cos

2
θ = 0

largest solution : FAST WAVE ; smallest solution : SLOW WAVE



Figure 1: Polar diagram of the phase velocity ω/k



Physical interpretation of the magneto-sonic waves when β ¿ 1 :

• The fast wave is a transverse wave with perturbations along y-axis : magnetic sound wave.

• The slow wave corresponds to perturbations along the x-axis : ion acoustic wave.

When β is not small it is not possible to separate the magnetic sound from the ionic sound.

Propagation quasi-parallel to the ambient magnetic field:

The phase velocity of the Afvén wave and that of the fast (β ¿ 1) or the slow (β À 1)

magnetosonic wave identify : DEGENERACY : two modes are relevant in a small dispersion
reductive perturbative expansion

⇒ equation for a complex field



II. Alfvén waves in Hall-MHD

Exact solutions: monochromatic, circularly polarized, parallel-propagating
Alfvén waves

by − σibz = −ω

k
(uy − σiuz) = Be

i(kx−ωt)

bx = ρ = 1, ux = 0.

For forward propagation,

ω =
σk2

2Ri

+ k

√
1 +

(
k

2Ri

)2

Choosing k > 0, σ = ±1 for right-hand or left-hand polarization respectively.

Alfvén waves are then dispersive.



Dispersion relation ω(k) for parallel-propagating modes

• LH Alfvén waves identify with ion-cyclotron waves for ω <∼Ωi.

• In the high-frequency (small-wavelength) limit, RH Alfvén waves identify with whistler

modes:

RH Alfvén Hall-MHD for k2d2
i À 1 −→ ω ≈ k2c2Ωe/ω2

pe

≈ whistler EMHD for k2d2
e ¿ 1, where de ≡ c/ωpe

• In the non-dispersive limit (k/Ri → 0) the two modes become a shear-Alfvén branch

(coinciding with a magnetosonic branch).

• Hall-MHD extends MHD to frequencies Ω>∼Ωi, with still Ω ¿ Ωe.



Direct observations of quasi-monochromatic dispersive almost circularly-polarized AW in the

solar wind close to the Earth

(Spangler et al. JGR 93, 845 (1988)). ISEE 1 and 2.

Figure 2: Time series of one magnetic field component (left) and plot of loci of the magnetic field

components by and bz on a time interval of 300 s. (right)

These MHD waves are excited by the reflected solar wind protons.



Instabilities =⇒ nonlinear effects :

=⇒ small scale formation =⇒ heating of the plasma

or

=⇒ formation of solitary structures

In order to distinguish between the different possibilities it is useful to study separately

the finite wavelength perturbations and the long wavelength ones. In the latter case two

different situations lead to asymptotic reductions: the long-wave limit (dispersion comparable

to nonlinearity) and the situation of an amplitude modulation (finite dispersion, small amplitude

limit).



General dispersion relation:

Linearization of the primitive MHD equations about an Alfvén wave of wavenumber k and

amplitude b0 (not restricted to be small), yields the dispersion relation

(Ω
2 − βK

2
)A+A− =

b2
0K

2

2
(A+C− +A−C+) (1)

where

A± = (ω ± Ω)
2 − (k ±K)

2 − σ

Ri
(ω ± Ω)(k ±K)

2

C± = −k(k ±K)− σ

Ri
k(ω ± Ω)(k ±K)

+
Ω

K
(ω(k ±K) + (ω ± Ω)(k ±K)− σ

Ri
k
2
(k ±K)).

Following Wong and Goldstein (JGR 91, 5617 (1986)), the instability is said modulational

when it affects wave numbers K < k (not necessarily asymptotically small), and decay when

K > k.



Longitudinal dynamics of small-amplitude waves

Pump wave : ei(kx−ωt)

Daughter wave : ei(Kx−Ωt) Side-band waves : ei[(k±K)x−(ω±Ωt)]

Figure 3: decay (a), modulational (b), long-wavelength modulational (c) instabilities (for RH polarized

pump β = 2.7).

(a) Decay instability (forward Alfvén wave −→ forward sound wave + backward Alfvén

wave): unstable wavenumbers K > k.

(b) Modulation instability: unstable wavenumbers K < k.

(c) Long-wavelength modulational instability extends to K = 0.



Figure 4: Longitudinal instability ranges for a small-amplitude right-hand (a) or left-hand (b) polarized

Alfvén wave (β = c2
s, vg = dω

dk , vph = ω
k ).

Numerical resolution of the dispersion relation (1) for a carrier of small amplitude b0 ≈ εB0

shows that for right-hand polarization the instability is modulational for β > v2
ph and of decay

type for β < v2
ph, where vph = ω/k is the phase velocity of the Alfvén wave. For left-hand

polarization, the wave is stable for β > v2
ph, while modulational and decay instabilities coexist

for β < v2
ph (Fig. 4).

Note that, using Whitham formalism, one finds that waves are stabilized at large amplitude
(Mjølhus, JPP 16, 321 (1976)).



III. Nonlinear dynamics of long wavelength Alfvén waves

Long waves for which the dispersion is comparable to the nonlinearity are amenable to

a reductive perturbative expansion. In the context of Alfvén waves propagating along an

ambient magnetic field, due to the equality of the phase velocity of the Alfvén wave and of

the speed of sound in the zero-dispersion limit, the latter asymptotics does not lead to the

canonical Korteweg-de Vries equation but to the so-called “derivative nonlinear Schrödinger”

(DNLS) equation for the two components of the magnetic field transverse to the propagation

(Mjølhus, J. Plasma Physics 16, 321 (1976), Mio et al. J. Phys. Soc. Japan 41, 265 (1976), Kennel et al.

Phys. Fluids 31, 1949 (1988)). This approach concentrates on large-scale phenomena and neglects

counterpropagating waves.



III.a Derivation of the multi-dimensional DNLS equation

We define the stretched variables ξ = ε(x− t), η = ε3/2y, ζ = ε3/2z, and τ = ε2t and expand

ρ = 1 + ερ1 + ε
2
ρ2 + +ε

3
ρ3 · · · (2)

ux = εux1 + ε
2
ux2 + ε

3
ux3 + · · · (3)

bx = 1 + εbx1 + ε
2
bx2 + ε

3
bx3 + · · · (4)

u = ε
1/2

(u1 + εu2 + ε
2
u3 + · · ·) (5)

b = ε
1/2

(b1 + εb2 + ε
2
b3 + · · ·). (6)

At order ε3/2, we have
∂ξu1 + ∂ξb1 = 0. (7)

Equation (7) implies that the fluctuating parts (denoted by tildes) satisfy

ũ1 = −b̃1. (8)

It is possible at this level to introduce mean (averaged over the ξ variable) transverse fields which can be shown
to obey the reduced MHD equations. In the following, this coupling is ignored.



At order ε2, we obtain

−∂ξρ̃1 + ∂ξũx1 + ∂ηũy1 + ∂ζũz1 = 0 (9)

−∂ξb̃x1 + ∂ηũy1 + ∂ζũz1 = 0 (10)

∂ξ(−ũx1 + βρ̃1 +
|b̃1|2

2
) = 0 (11)

∂ξb̃x1 + ∂ηb̃y1 + ∂ζ b̃z1 = 0. (12)

Using Eq. (8) we get

∂ξb̃x1 + ∂ηb̃y1 + ∂ζ b̃z1 = 0 (13)

Defining ∂⊥ = ∂ξ + i∂η, Eqs. (9) then rewrite

∂ξ(−ρ̃1 + ũx1 + b̃x1) = 0 (14)



At order ε5/2, we obtain

∂τ b̃1 − ∂ξ(b̃2 + ũ2) + b̄x1∂ξb̃1 + ∂ξ

(
b̃1(ũx1 + b̃x1)

)
+

i

Ri
∂ξξb̃1 = 0. (15)

Similarly, the equation for u1 leads to

∂τ ũ1 − ∂ξ(ũ2 + b̃2) + ∂ξ

(
b̃1(ρ̃1 − ũx1 − b̃x1)

)

+(ρ̄1 − ūx1 − b̄x1)∂ξb̃1 + ∂⊥(βρ̃1 + b̃x1 +
|b̃1|2

2
) = 0 (16)

Here the overbar means average over the longitudinal variable. The solvability condition for eqs. (15) and (16)
leads to

∂τ b̃1 + ∂ξ

(
(−ρ̃1

2
+ ũx1 + b̃x1)b̃1

)
+ (−ρ̄1

2
+ ūx1 + b̄x1)∂ξb̃1

−1

2
∂⊥

(
βρ̃1 + b̃x1 +

|b̃1|2
2

)
+

i

2Ri
∂ξξb̃1 = 0, (17)

which generalizes the usual DNLS equation by the presence of coupling to longitudinal mean fields. While, to
leading order, the fluctuating fields entering eq. (17) have been determined by the equations obtained at order
ε2, the computation of the mean fields requires to push the expansion to order ε3. Defining δ = ρ− bx, we get

∂τ δ̄1 +
1

2

[
〈∂∗⊥(b̃1(ũx1 − δ̃1))〉+ c.c.

]
= 0 (18)



and

∂τ ūx1 +
1

2

[
−〈∂∗⊥(b̃1(b̃x1 + ũx1))〉+ c.c.

]
= 0. (19)

Eliminating δ̃1 and ũx1, by using eqs. (11) and (14), using the divergenceless conditions for b̃ in order to simplify
eq. (17), and dropping the subscripts, one finally gets

∂τ b̃ + ∂ξ

(
1

2
b̃P̃ + (ūx +

1

2
b̄x −

1

2
δ̄)b̃

)
− 1

2
∂⊥P̃ +

i

2Ri
∂ξξb̃ = 0

∂ξb̃x +
1

2

(
∂
∗
⊥b̃ + c.c.

)
= 0 (20)

∂τ δ̄ = 0 (21)

∂τ ūx =
1

2

(
∂
∗
⊥〈b̃P̃ 〉+ c.c.

)
(22)

∆⊥

(
(1 + β)b̄x + βδ̄ +

|b̃|2
2

)
= 0. (23)

where P̃ = 1
2(1−β)

(2b̃x + |b̃|2 − 〈|b̃|2〉).
For localized waves (Mjølus & Wyller ’86, ’88):

∂τb +
1

4(1− β)
∂ξ((|b|2 + 2bx)b)− 1

4(1− β)
∂⊥(|b|2 + 2bx) +

i

2Ri
∂ξξb = 0

∂ξbx +
1

2
(∂
∗
⊥b + ∂⊥b

∗
) = 0



III.b Properties of the DNLS equation in 1D

In 1D the mean fields are identically zero and the equation reads

∂τb +
i

2Ri
∂ξξb +

1

4(1− β)
∂ξ(|b|2b) = 0 (24)

which is integrable by inverse scattering (Kaup and Newell, J. Math. Physics, 19, 798 (1978)).

(i) Modulational stability of a circularly polarized wave

The DNLS equation also admits an exact solution in the form of circularly polarized Alfvén

waves b = b0e
−iσ(kξ−ωτ).

Linearization of the DNLS equation (24) about the above solution leads to the dispersion
relation

Ω
2 − 2K(

σk

Ri
+

b2
0

2(1− β)
)Ω + (

k2

R2
i

− K2

4R2
i

+
3σkb2

0

4Ri(1− β)
+

3b4
0

16(1− β)2
) = 0 (25)

Equation (25) predicts a modulational instability for right-hand (left-hand) polarized waves

when β > 1 +
b20Ri
4k (respectively β < 1− b20Ri

4k ).

On the primitive MHD equations, in the case of right-hand polarization, only the decay instability is present

for β < 1. For 1 < β < 1 +
b20Ri
4k the wave is stable, while for β > 1 +

b20Ri
4k it is modulationally unstable. In



the case of left-hand polarization, modulational and decay instabilities coexist for β < 1− b20Ri
4k , only the decay

instability is present for 1 − b20Ri
4k < β < 1 and the wave is stable for β > 1. The corresponding instability

growth rates are shown on Fig. 5 for various values of β, together with the predictions of the DNLS models.

Figure 5: Instability growth rates (modulational and decay) for amplitude ε1/2 = 0.25,

k = ε = 0.0625 at various β for right-hand polarization (panels (a)–(c)) and left-hand polarization

(panel (d)), from the primitive MHD equations (solid line), the DNLS equation (24) (dashed line) and a

non-adiabatic DNLS model (dotted line).



(ii) Two-parameter solitons
They form in the nonlinear stage of the modulation instability of the circularly polarized solutions. Rescale ξ so
that Ri = 1. Mjølhus 1 found solitary wave packet solutions: b = a exp iθ with real amplitude a = a(x− vt)
and phase θ. The local wavenumber κ = θx and frequency ν = −θt obey, in a simple case:

a
2

=
4(ν0 + κ0)

(ν0 + 2κ0)
1/2 cosh [(x− vt− x0)/δ] + κ0

κ = κ0 + (3/4)a
2

δ
−1

= 2(κ
2
0 + ν0)

1/2

ν = ν0 + (3/4)a
2

v = −2κ0

–0.2

0

0.2

0.4

0.6

0.8

–20 –10 0 10 20 30

ξ

Figure 6: Envelope (solid) and real part (dotted) of the above soliton for κ0 = 0.5, δ = 1, ν0 = 0.

1Mjølhus and Hada in, Nonlinear Waves in Space Plasmas, eds. T. Hada and H. Matsumoto, Terrapub,
Tokyo, 1997, p. 121



Perturbations

In the presence of a driver, the 1D DNLS equation can lead to chaos; RH soltions are more stable than LH
ones. (Buti and Nocera, 1999).

Higher order nonlinearities also destroy the coherent properties of the DNLS solitons.

file:///C:/Textes/papers/Trieste/Buti-fig8.html�


III.c The TRIPLE POINT β = 1

ξ = ε1/2(x− t), η = εy, ζ = εz, τ = εt, write β = 1 + αε1/2 and expand

ρ = 1 + ε
1/2

ρ1 + ερ2 + ε
3/2

ρ3 · · ·
ux = ε

1/2
ux1 + εux2 + ε

3/2
ux3 + · · ·

bx = 1 + ε
1/2

bx1 + εbx2 + ε
3/2

bx3 + · · ·

u = ε
1/2

(u1 + ε
1/2

u2 + εu3 + · · ·)

b = ε
1/2

(b1 + ε
1/2

b2 + ε
2
b3 + · · ·).

Coupling to a Burgers type equation for the magnetosonic wave (Hada Geophys. Res. Lett. 20, 2415 (1993)).

ρ1 = ux1
, bx1

= 0. Dropping subscript index 1,

2∂Tb + ∂ξ(ρb)− ∂⊥ρ +
i

Ri

∂ξξb = 0

2∂Tρ + ∂ξ(αρ +
γ + 1

2
ρ

2
+
|b|2
2

)− 1

2
(∂
∗
⊥b + ∂⊥b

∗
) = 0,

Webb, Brio & Zang, J. Plasma Phys. 54, 201 (1995); J. Phys. A 29, 5209.



Obliquely propagating Alfvén wave : non canonic

• The AW is compressive at dominant order if linearly polarized but can be almost

incompressible in the case of arc or “banana” polarization.

• Nonlinearities vanish identically in the long-wave limit when the fields vary only along the

direction of propagation

→ dynamics reduces to linear dispersion (the same as for KdV) (Mio, Ogino & Takeda J. Phys.

Soc. Japan 41, 2114 (1976)).

• For nonlinear dynamics in one dimension, strong perturbations of the magnetic field

component transverse to the propagation are required (Kakutani & Ono J. Phys. Soc. Japan 26,

1305 (1969)): mKdV.

• In several dimensions, non canonic equations. Nonlinearities disappear in the limit of zero

dispersion or for slowly varying perturbations in the transverse directions (Brodin J. Plasma

Phys. 55, 121 (1996); Gazol, Passot & Sulem J. Plasma Phys. 60, 95 (1998).



IV. Envelope dynamics

Heuristic interpretation :

• For LINEAR wave Bei(kx−ωt) , the dispersion relation reads

(ω − Ω(k)) B = 0 with B = constant

ω and k are associated to derivatives acting on ei(kx−ωt).

• With MODULATION and WEAK NONLINEARITIES:

B = B(X, Y, Z, T ) where X, Y, Z, T are slow variables.

The dispersion relation becomes :
(ε ∼ wave amplitude ∼ inverse scale of the modulation)

{ω + iε∂T − Ω(k − iε∂X, ε∇⊥, ε
2|B|2, · · ·︸︷︷︸)}B = 0

mean fields

Dispersion enables computation of the harmonics in terms of the carrier



ε-expansion (amplitude and gradient expansion)

−→ Nonlinear Schrödinger equation :

i (∂T + vg∂X)B︸ ︷︷ ︸ +ε(
v′g
2

∂XXB
︸ ︷︷ ︸

+ p∆⊥B︸ ︷︷ ︸) + ε(q|B|2 + · · ·)B = 0

transport dispersion diffraction

(eliminated by a ‖

change of frame)
v′g
2v2

g

∂TTB

Isotropic medium : p = 1
2

∂Ω

∂k2
y

= 1
2

∂Ω

∂k2
z
|k=kex =

vg
2k, with vg = dω

dk = group velocity

Formal procedure

Use of a MULTIPLE-SCALE expansion

∂t −→ ∂t + ε∂T

∂x −→ ∂x + ε∂X

∂y −→ ε∂Y



∂z −→ ε∂Z

b = εb1 + ε
2
b2 + ...

• b1 = B(X, Y, Z, T )ei(kx−ωt) solves the linear problem

L0b1 = 0

• Hierarchy of equations for higher order contributions:

L0bi = Fi−1 i ≥ 2

Fi−1 given in terms of lower order harmonics.

Solvability conditions for i = 2 and i = 3

=⇒AMPLITUDE equation.



IV.a The governing equations in 1D

The envelope equations governing the slow modulation of an Alfvén wave with a small (but finite) amplitude
is obtained by a standard multiple-scale analysis (Champeaux, Passot & Sulem J. Plasma Physics 58, 665 (1997)).
Defining the slow variables X = εx and T = εt and expanding

u = εu1 + ε
2
u2 + ε

3
u3 + · · · , b = εb1 + ε

2
b2 + ε

3
b3 + · · · ,

ρ = 1 + ε
2
ρ2 + ε

3
ρ3 + · · · , ux = ε

2
u2 + ε

3
u3 + · · · ,

To leading order

∂tu1 − ∂xb1 = 0, ∂tb1 − ∂xu1 − i
σ

Ri
∂xxb1 = 0. (26)

The solution of Eq. (26) corresponds to a circularly polarized Alfvén wave b1 = −(ω/k)v1 = B1ei(kx−ωt)

whose complex amplitude now depends on the slow variables.

Elimination of the secular oscillating terms in the equations at order ε2 for the transverse fields leads to

∂T B1 + vg∂XB1 = 0 (27)

which expresses that B1 is advected at the group velocity vg ≡ ω′ = 2ω3

k(k2+ω2)
. At order ε3, the solvability

condition of the equations for the transverse fields reads

i(∂T B2 + vg∂XB2) +DB1 − k(ūx2 −
vg

2
ρ̄2)B1 = 0 (28)



where we introduced the dispersion operator

D =
ω

ω2 + k2
(
ω2

k2
∂XX +

2k

ω
∂XT +

k2

ω2
∂TT ). (29)

From Eq. (27), DB1 = ω′′
2 ∂XXB1. Furthermore, overbars denote averaging over the fast variables.

Writing the equations obeyed by ūx2 and ρ̄2, and defining B = B1 + εB2 one gets, after dropping
overbars and subscripts,

i(∂T + vg∂X)B + ε
ω′′

2
∂XXB − εk(u− vg

2
ρ)B = 0 (30)

∂T ρ + ∂Xu = 0 (31)

∂T u + ∂X(βρ +
1

2
|B|2) = 0. (32)

In the long-wavelength limit k → 0, this system reduces to that introduced by Ovenden et al. JGR 88, 6095
(1983).

In the frame moving at the Alfvén-wave group velocity the above system rewrites, in terms of the coordinate
ξ = X − vgT and of the slower time τ = εT = ε2t

i∂τB +
ω′′

2
∂ξξB − k(u− vg

2
ρ)B = 0 (33)

ε∂τρ + ∂ξ(u− vgρ) = 0 (34)

ε∂τu + ∂ξ(βρ− vgu +
1

2
|B|2) = 0. (35)



Neglecting the terms of order ε in Eqs. (34)–(35) make ρ and u slaved to the magnetic field amplitude, in the

form u = vgρ =
vg|B|2

2(v2
g−β)

, (up to a constant in the periodic case). The long-wavelength modulation of the

Alfvén wave envelope then obeys the nonlinear Schrödinger equation (NLS)

i∂τB +
ω′′

2
∂ξξB +

kvg

4(β − v2
g)
|B|2B = 0. (36)

This adiabatic approximation clearly breaks down near the resonance β = v2
g, associated with the equality

between the group velocity of the Alfvén wave and the speed of sound. Near this resonance, Eqs. (33)–(35) simplify
through an additional rescaling. Keeping unchanged the magnitude of the transverse velocity and magnetic field

and defining β1/2− vg = ε2/3λ, ξ = ε2/3(x− vgt), τ = ε4/3t, and ux− vg
2 (ρ

M
− 1) = ε4/3φ, one gets

the Hamiltonian system derived by Benney (Stud. Appl. Math. 56, 81 (1977)) in a general context

i∂τB +
ω′′

2
∂ξξB − kφB = 0 (37)

∂τφ + λ∂ξφ = −1

8
∂ξ|B|2. (38)



IV.b Linear stability analysis

The NLS equation (36) admits a solution with a constant amplitude B0 and a phase that

is uniform in space and linear in time. At the level of the primitive equations, it corresponds

to a monochromatic Alfvén wave whose frequency is slightly shifted by the nonlinearity.

Linearization about this solution leads to the dispersion relation

Ω
2
=

ω′′2

4
K

4 − kvgω
′′

4(β − v2
g)

B
2
0K

2
, (39)

which predicts a long-wavelength modulational instability for β > v2
g or β < v2

g according to

the right-hand (ω′′ > 0) or left-hand (ω′′ < 0) carrier polarization.

NLS misses the modulational instability that occurs in the region of the plane (β, k)

between the two curves β = v2
g and β = v2

ph. In this range of parameters, the unstable scales

are too small to be accurately captured by the NLS asymptotics. In contrast, the dispersion

relation for the envelope equations (30)–(32) predicts the persistence of the modulational

instability for β < v2
g (right-hand polarization) or β > v2

g (left-hand polarization). The

quantitative predictions for the range of unstable wave numbers and for the growth rates

become nevertheless poorly accurate when β approaches v2
ph, due to the loss of scale separation

between the carrier and the unstable modes in this regime. The analysis can be refined by

pushing the expansion to the next order in the modulational analysis.



IV.c Nonlinear dynamics

Simulations of the primitive MHD equations for β = 4.0, much in excess of the value

β ≈ 3.2 associated with the resonance vg = β1/2, show that in the nonlinear regime solitonic

structures for the envelope of the transverse fields are formed (Fig. 7) and display a recurrent

dynamics. Furthermore, as seen in Fig. 7, the density adiabatically follows the Alfvén wave

intensity b2 = b2
y + b2

z. As shown in Fig. 8, this dynamics is reproduced by the envelope

equations (33)–(35), for which the adiabatic approximation is also verified. and which thus

reduces to the NLS equation (from Champeaux et al. Nonlinear Proc. Geophys. 6, 169 (1999))

Near the resonance (β = 3.2) the dynamics is still of modulational type but the density

no longer follow the variation of the magnetic field amplitude.



Figure 7: Snapshots of the magnetic field by (left) and of the density ρ (corrected by a constant) (right)

from the primitive MHD equations with β = 4.0, for an initially weakly perturbed right-hand polarized

wave of amplitude ε = 0.1 and k = 0.64.



Figure 8: Comparison of the squared Alfvén wave intensity obtained from the primitive MHD equations

in the laboratory frame (top), and the envelope equations (33)–(35) in the Alfvén wave frame (bottom), for

β = 4.0, amplitude ε = 0.1, k = 0.64 and right-hand polarization at comparable times (see text).



In the case β = 2.45, thus well beyond the resonance, the simulations of the MHD equations show that
the dynamically relevant scales are not clearly separated from the carrier wavelength (Fig. 9). The envelope
equations (33)–(35) can only provide a qualitative description of the dynamics, limited on a relatively short period

of time. Even far from the resonance vg = β1/2, the adiabatic approximation does not hold and the MHD
equations rapidly develop strong nonlinear phenomena, leading to density shocks (Fig. 9, where the small-scale
oscillations are due to the Gibbs effect which develops in our non-dissipative code).

Figure 9: Snapshots of the magnetic field by (top) and of the density ρ (bottom) obtained from

the primitive MHD equations, for β = 2.45, amplitude ε = 0.1, k = 0.64 and right-hand polarization.

Shocks are showed on a magnified scale.



As already mentioned, if the carrying wave is left-hand polarized, modulational and decay instabilities always
coexist and the dynamics depends on the kind of instability that is prevalent. For a sufficiently small β the decay
dominates the long-wavelength modulational instability (see Fig. 6), and strong nonlinearities rapidly develop,
leading to small scales formation on the density field (Fig. 10, left). The modulational and decay growth rates
become comparable when β slightly exceeds v2

g. In this regime, the modulational instability affects scales that are
not large enough to be accurately described by the envelope equations, and the corresponding evolution is seen in
Fig. 10 (right). For larger β, the dynamics is governed by a modulational instability at scales comparable to that
of the carrier, and density shocks rapidly form.

Figure 10: Snapshots of the magnetic field by (top) and, on a magnified scale, of the density ρ

(bottom) obtained from the primitive MHD equations with β = 0.21 (left) and β = 0.30 (right), for

amplitude ε = 0.1, k = 0.64 and left-hand polarization.



IV.d Envelope dynamics in 3D

To select circularly polarized Alfvén waves, scale the transverse fields uy, uz, by, bz like ε and the longitudinal

fields (ρ− 1, ux, bx) like ε2. Define δ = ρ− bx where · denotes averaging on the wave period.
Expend in powers of ε ; Define X = εx, T = εt

i(∂T B + vg∂XB) + εα∆⊥B

+ε
ω

k2 + ω2
(
ω2

k2
∂XXB +

k2

ω2
∂TT B +

2k

ω
∂XT B)





ε
v′g
2 ∂XXB

ε
v′g
2v2

g
∂TT B

−εkvg(
1

vg
ūx +

k2

2ω2
b̄x −

1

2
δ)B = 0

∂T δ + ∂Xūx = 0

∂T ūx + β∂X(δ + b̄x) + ∂X
|B|2
2

= −i
α

vg
ε(B∆⊥B

∗ − B
∗
∆⊥B)

︸ ︷︷ ︸
1
vg

(∂T + vg∂X)|B|2

∂TT b̄x − ∂XX b̄x −∆⊥(βδ + (β + 1)b̄x +
k2

2ω2
|B|2) = 0(ε)

vg = ω′ = 2ω3

k(k2+ω2)
; α = kω

k2+ω2

(
ω2

2k3 −
1
2

βk

βk2−ω2

)



It is possible to take the limit k → 0 or Ri → ∞ in the coefficients. Equivalent to a

modulation on DNLS equation.

Dispersion term :
vg
2 ∂XXB for an IVP in time (ABSOLUTE MODULATION)

v′g
2v2

g
∂TTB for IVP in space (CONVECTIVE MODULATION)

diffraction term : α∆⊥B with α = 1
2

∂2Ω

∂k2
y

= 1
2

∂2Ω

∂k2
z
|k=kex

potential : V = −δω
δρρ− δω

δux
ux − δω

δbx
bx

where ω = k(εux +
B0+εbx√

1+ερ
) is the Doppler shifted frequency in the limit k → 0

ponderomotive forces : the term which appears subdominant rewrites (∂T + vg∂x)|B|2

and become relevant for quasi-transverse perturbation (transverse) self-focusing or

filamentation.



The Hamiltonian character of the envelope equations prescribe the form of the ponderomotive force (Zakharov
Rubenchik ’72)

iψt = −ivgψx −
v′g
2

ψxx− α∆⊥ψ + (q|ψ|2 + µρ + λφx)ψ

ρt = −ρ0∆φ− λ|ψ|2x
φt = −c

2 ρ

ρ0
− µ|ψ|2



V. Self-focusing instability: filamentation

Whatever their polarization, monochromatic Alfvén waves are unstable relatively to transverse

modulation

• β > ω
k ≈ 1 for small k the instability is ABSOLUTE

i.e. develops in time.

possibly affected by kinetic effects (P. and Sulem 2003)

• β < ω
k ≈ 1 for small k the instability is CONVECTIVE

i.e. develops along the direction of propagation.



Nonlinear developments :

In the absolute regime: For a purely transverse modulation,

ρ̄ = b̄x, ūx =
1

vg

|B|2, b̄x = − k2

2(β + 1)ω2
|B|2,

(up to additive numerical constants),

=⇒ 2d-NLS equation

i∂τB + α∆⊥B + r|B|2B = 0

α =
kω

2(k2 + ω2)
(
ω2

k3
− kβ

βk2 − ω2
), r = −kvg(

1

v2
g
− k4

4(β + 1)ω4
), vg =

dω

dk
.

Usual two-dimensional NLS equation, modulational instability can lead to SELF-FOCUSING

(or FILAMENTATION and WAVE-COLLAPSE : AMPLITUDE BLOW UP at localized foci.

Possible (transverse) WAVE COLLAPSE (blow-up of the NLS solution) =⇒ intense

magnetic filaments parallel to the ambient magnetic field.
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Mechanism leading to the filamentation process:

• the fluctuation of the Alfvén speed vA = B√
4πρ

during the filamentation process is given by

v̄A ≈ ūx +
b̄x

B0

− 1

2

ρ̄

ρ0

=
4β + 3

4(β + 1)
|B|2 > 0

• for β not too small (β > 1 in the long-wavelength limit), the wave amplitude grows where

the transverse Laplacian of the wave phase ∆⊥φ > 0: ∂t|B| = q2(β)∆⊥φ

vA grows ⇒ the wavefront gets curved to have ∆⊥φ > 0 ⇒ |B| grows ⇒ vA grows ...

(a) (b)

This mechanism needs compressibility but not dispersion in principle. Dispersion is nevertheless

essential to prevent longitudinal resonant coupling.



Such NLS solutions develop in such a way so as they invalidate the premises on which the

multiple-scale expansion is based: The asymptotic description breaks down as the singularity is

approached.

Near collapse, damping processes, not included in NLS,
come into play and dissipate the wave energy

? How does the system leave the asymptotic regime?
? Does the wave amplitude eventually saturate?
? Influence of phenomena arising at other scales and eliminated by the asymptotics.
? In particular, influence of the other instabilities that can compete with filamentation and
possibly prevent it.



V.a Filamentation of a LH plane polarized Alfvén wave; Hall-MHD simulations

LH polarized pump, amplitude B0 = 0.1, wavenumber k/Ri = 1, β = 1.5 (no longitudinal
instability.)

Direct numerical simulations of 3D Hall MHD (Laveder, Passot & Sulem Phys. Plasmas 9, 293 (2002)).

In order to concentrate on the action of the transverse instability

(and prevent significant excitation of the oblique instabilities),

? only 4 pump wavelengths included in the computational box

? dynamics initiated by density disturbances on small Fourier modes.
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Figure 11: Amplitude of the transverse magnetic field intensity in a plane perpendicular to the

propagation at times t = 73.5, 74, 74.8, 75.7.

Maximum amplification of the transverse magnetic-field intensity ≈ factor 10.



Nonlinear structures

� � � � ���

� � � � ���

Figure 12: Isosurfaces (at 2/3 of the extremal values) of the transverse magnetic field intensity

|b⊥|2 = b2
y + b2

z (a), of the positive and negative density fluctuations ρ − ρ0 (b), induced longitudinal

magnetic field bx (c) and longitudinal velocity ux (d) at t = 73.7.



A regime of intense filamentation

LH polarized pump, amplitude B0 = 0.05, wavenumber k
Ri

= 0.25

(wave period = 7.05)

� � � � ���

Figure 13: Isosurfaces of the transverse magnetic field intensity (inner tube) and of the positive and

negative density fluctuations (helices) at 2/3 of their extrema, at t = 620 (a) and 665 (b).

Local amplification of the wave intensity > 120 when 1283-resolution becomes insufficient.



Density gradients are maximal inside the magnetic filament.

Figure 14: Transverse components (arrow) and longitudinal one (contours) of the magnetic field (a),

velocity (b) and vorticity (c) in a plane perpendicular to the propagation, at t = 665. Panel (d) displays

contours of positive and negative density fluctuations superimposed on the grey levels of the transverse

magnetic field intensity. (Thick lines for positive contours, thin lines for negative ones and the dashed line

for the zero-contour).



Electric field



Comparison with amplitude-equation predictions

Mean fields:

ρ̄ = b̄x ūx =
1

vg

|B|2 b̄x = − k2

2(β + 1)ω2
|B|2

Early collapse Late collapse

Figure 15: Plots of 〈ρ〉 − ρ0 (where ρ0 is the unperturbed density) and 〈ux〉 versus 〈|b⊥|2〉 at

t = 620 (a, c) and t = 665 (b,d). The directions of the straight lines are given by the envelope equations.



What happens at later time?

For moderate amplitude initial AW saturation of the filamentation process takes place.

Below a certain amplitude, preliminary results (Grauer et al. using AMR simulations) indicate

a possible finite-time singularity.



Oblique instabilities

Direct simulations:

Figure 16: Spectral instability ranges of an Alfvén wave of amplitude 0.1 in various regimes: (a) RH

polarization with k = 2 and β = 2.7; (b) details of (a) about the transverse unstable modes; (c) RH

polarization with k = 3.2 and β = 2.7; (d) LH polarization with k = 4 and β = 1.5.



Envelope equations:

Figure 17: Spectral instability ranges provided by the envelope equations in the conditions of Figs. 8a,

8c and 8d (from left to right).

Spurious unstable oblique tails.



V.b Effect of quasi-transverse modes

Requires a large box in the longitudinal direction

Computational box including 16 pump wavelengths:

Parallel magnetic filaments first form but break at later times into a few segments oriented

along oblique directions.

Filamentation proceeds after breaking.

Figure 18: Magnetic filament before breaking (t = 520, upper panel) and after breaking (t = 600,

lower panel).

Transverse magnetic field intensity locally amplified by a factor 100 before 1283-resolution

becomes insufficient.



Computational box including 32 pump wavelengths:

Figure 19: Isosurface of the transverse magnetic field intensity at 1/3 of the maximum at t = 480.

Oblique filaments are formed
Transverse magnetic field intensity locally amplified by a factor 12 when the
512× 1282-resolution becomes insufficient.



V.c Three dimensional wave packet: non-monochromatic Alfvén beam

Is a non-monochromatic wave collapsing?

=⇒ only “sufficiently monochromatic” wave packets can develop filamentary structures.

Simulation of the 3D amplitude equations (1283) (Laveder et al. Physica D 184, 237 (2003)):

Simulation of 3D amplitude equations from an initial Alfvén wave packet of amplitude

B0 = 6e−[ 1
25(x−5π)2+2.5(y−π)2+(z−π)2].



Simulation of 3D Hall-MHD (1024x128x256)

Direct simulation of an Alfvén wave packet with an initial amplitude

e−
1

288[
1
25(x−48π)2+(y−10π)2+2.25(z−10π)2].



VI. Retaining kinetic effects in a fluid description of long Alfvén waves

In natural and fusion plasmas, collisions usually negligible.

Description of the large-scale dynamics in terms of usual magnetohydrodynamics questionable.

In most situations, direct numerical integration of the Vlasov-Maxwell equations beyond the

capabilities of the present day computers.

This suggest development of a reduced description of the large-scale dynamics that retains

most of the aspects of a fluid description but includes realistic approximations of the pressure

tensor and wave-particle resonances.

Rogister (Phys. Fluids 14, 2733 (1971)): reductive perturbative expansion on the Vlasov-Maxwell

equations to isolate the dynamics of small-amplitude Alfvén waves with a typical length much

larger than the ion inertial length.

Here we revisit Rogister’s approach and generalize it to address transverse phenomena,

such as the filamentation of a small-amplitude Alfvén wave train.



V.a Derivation of the KDNLS equation

Vlasov-Maxwell equations:

∂tfr + v · ∇fr +
qr

mr
(e +

1

c
v × b) · ∇vfr = 0

1

c
∂tb = −∇× e

∇× b =
4π

c

∑
r

qrnr

∫
vfrd

3
v +

1

c
∂te

∇ · e = 4π
∑

r

qrnr

∫
frd

3
v,

fr and nr are the distribution function and the average number density of the particle species

r with charge qr and mass mr. The electric and magnetic fields are e and b respectively.

For an ambient field of strength B0 pointing in the x-direction,

ξ = ε
2
(x− λt)

η = ε
3
y , ζ = ε

3
z

τ = ε
4
t



λ is the Alfvén-wave propagation velocity (to be determined)

fr = F
(0)
r + ε(f

(0)
r + εf

(1)
r + . . .)

b = B0x̂ + ε(b
(0)

+ εb
(1)

+ . . .)

e = ε(e
(0)

+ εe
(1)

+ . . .),

Equilibrium velocity distribution function F (0)
r is rotationally symmetric around the direction

of the ambient field and symmetric relatively to the parallel velocity component.

x̂: unit vector in the direction of the ambient magnetic field.

Cyclotron frequency of the particles of species r: Ωr =
qrB0
mrc

Velocity: v = (v‖ , v⊥ cos φ , v⊥ sin φ)



Expand Vlasov equation:

Ωr∂φF
(0)
r = 0

Ωr∂φf
(0)
r = Σ

(0)
r

Ωr∂φf
(1)
r = Σ

(1)
r

Ωr∂φf
(2)
r = (v‖ − λ)∂ξf

(0)
r + Σ

(2)
r

Ωr∂φf
(3)
r = (v‖ − λ)∂ξf

(1)
r + (~v⊥ · ∇⊥)f

(0)
r + Σ

(3)
r

Ωr∂φf
(4)
r = (v‖ − λ)∂ξf

(2)
r + (~v⊥ · ∇⊥)f

(1)
r + ∂τf

(0)
r + Σ

(4)
r

Ωr∂φf
(5)
r = (v‖ − λ)∂ξf

(3)
r + (~v⊥ · ∇⊥)f

(2)
r + ∂τf

(1)
r + Σ

(5)
r

where

Σ
(s)
r =

qr

mr
(e

(s)
+

1

c
v × b

(s)
) · ∇vF

(0)
r

+
∑

p+q=s−1

qr

mr
(e

(p)
+

1

c
v × b

(p)
) · ∇vf

(q)
r ,

the second term of the r.h.s. being absent when s = 0.



Solvability condition for f (3)
r :

(v‖ − λ)∂ξf
(1)
r = (v‖ − λ)Rr + Sr

∂F
(0)
r

∂v‖
with f

(1)
r = 1

2π

∫
f

(1)
r dφ where Sr is independent of v‖.

Wave-particle resonance at v‖ = λ: landau kinetic effect

∫
∂ξf

(1)
r dv‖ =

∫
Rrdv‖ + P

∫
1

v‖ − λ

∂F
(0)
r

∂v‖
dv‖Sr + π

∂F
(0)
r

∂v‖
|v‖=λHξ{Sr}

where Hξ is the Hilbert transform with respect to the longitudinal coordinate.

From Maxwell equations:

Local magnetic field:

b =
(

B0 + ε
2
b
(1)
‖ + · · · , ε(b

(0)
⊥ + ε

2
b
(2)
⊥ + · · ·)

)
+ O(ε

3
)

∂ξb
(1)
‖ +∇⊥b

(0)
⊥ = 0

|b| = B0(1 + ε
2
A) + O(ε

3
) , A =

b
(1)
‖
B0

+
|b(0)
⊥ |2
2B2

0



Electric field:

e⊥ = −ε
λ

c
x̂× b

(0)
⊥ + ε

3
(−λ

c
x̂× b

(2)
⊥ +

1

c
x̂× ∂

−1
ξ ∂τb

(0)
⊥ ) + · · ·

e‖ = ε
4
(

1

cB0

b
(0)
⊥ × ∂

−1
ξ ∂τb

(0)
⊥ + L−1M ∂ξA) + · · ·

where

L = 2π
∑

r

q2
rnr

mr

∫ ∞

0
d(

v2
⊥
2

)Gr , M = 2π
∑

r

qrnr

∫ ∞

0
d(

v2
⊥
2

)
v2
⊥
2
Gr

Gr = P

∫
1

v‖ − λ

∂F
(0)
r

∂v‖
dv‖ + π

∂F
(0)
r

∂v‖
|v‖=λHξ

Hξ{S} =
1

π
P

∫
S(ξ′)
ξ′ − ξ

dξ
′



One gets the dynamical equation

∂τb
(0)
⊥ + δ∂ξξ(x̂× b

(0)
⊥ )− B0

2λρ(0)
∇⊥P̃ +

∂

∂ξ
[(

P̃

2λρ(0)
+ 〈U〉ξ)b(0)

⊥ ] = 0

dispersion coefficient: δ = 1
2Ωi

(λ2 + 3
p
(0)
‖i

ρ(0)
− 2

p
(0)
⊥i

ρ(0)
)

Propagation velocity: λ = [ 1

ρ(0)
( 1
4π |B0|2 + p

(0)
⊥ − p

(0)
‖ )]

1
2 .

P̃ =
B2

0

4π
Ã + (2p

(0)
⊥ +N −M2L−1

)Ã = p̃
(1)
mag + p̃

(1)
⊥

N = 2π
∑

r

mrnr

∫ ∞

0
d(

v2
⊥
2

)
v4
⊥
4
Gr.

ψ = 〈ψ〉ξ + ψ̃, 〈·〉ξ : averaging on the ξ-variable.

〈b(0)
⊥ 〉ξ = 0 (not driven by the dynamics).

The mean values arise when solving equations of the form ∂ξψ = 0.

In the case of localized Alfvén wave pulse, all the functions decay
to zero as ξ → ±∞. The mean values 〈·〉ξ are also zero and the system is
closed (Rogister 1971).



Such a “Kinetic Derivative Non-Linear Schrödinger” equation can be reproduced by

a long-wave reductive perturbative expansion performed on the Hall-MHD equations with

pressure fluctuations computed using the guiding center approximation (Mjølhus and Wyller, J.

Plasma Phys. 40, 299 (1988)).

Mean field contributions are to be computed when dealing with Alfvén wave
trains. Their role is essential for describing the phenomenon of Alfvén wave filamentation.

〈U〉ξ = 〈u(1)
‖ 〉ξ +

λ

2B0
〈b(1)
‖ 〉ξ +

1

λρ(0)
(p

(0)
‖ − p

(0)
⊥ )〈A〉ξ +

1

2λρ(0)
(〈p(1)

⊥ 〉ξ − 〈p(1)
‖ 〉ξ)

∂τ〈u(1)
‖ 〉ξ =

1

ρ(0)B0

∇⊥ · 〈P̃ b
(0)
⊥ 〉ξ P̃ =

B2
0

4π
Ã + p̃

(1)
⊥

〈p(1)
⊥ 〉ξ +

B2
0

4π
〈A〉ξ = Π(τ) A =

b
(1)
‖
B0

+
|b(0)
⊥ |2
2B2

0
where

d

dτ
Π(τ) = − 1

2λρ(0)
(
B2

0

4π
+ p

(0)
⊥ )〈Ã(N −M2L−1

)∂ξÃ〉ξ,η,ζ

This constraint defines 〈b(1)

‖ 〉ξ in terms of the transverse magnetic field and of the mean

transverse pressure.



Transverse and parallel O(ε2)-pressure perturbations (relatively to the local magnetic field):

Fluctuating parts:

p̃
(1)
⊥ = (2p

(0)
⊥ +N −M2L−1

)Ã

p̃
(1)
‖ = (p

(0)
‖ − p

(0)
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Ã)
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= (ρ
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+O − PL−1M)Ã
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⊥
2
Grd(
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⊥
2

) , P = 2π
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r

qrnr

∫ ∞

0
Grd(

v2
⊥
2

),

Equations for the mean pressures:

∂τ


〈p

(1)
⊥ 〉ξ

p
(0)
⊥

− 〈ρ(1)〉ξ
ρ(0)

− 〈A〉ξ


 = 0

∂τ



〈p(1)
‖ 〉ξ

p
(0)
‖

− 3
〈ρ(1)〉ξ

ρ(0)
+ 2〈A〉ξ


 =

2λ

p
(0)
‖
〈Ã(N −M2L−1

)∂ξÃ〉ξ

with

〈ρ
(1)

ρ(0)
〉ξ = 〈

b
(1)
‖
B0

〉ξ



This leads to a closed system:

(
∂τ + 〈U〉ξ∂ξ

)
b
(0)
⊥ +

∂

∂ξ
(

P̃ b
(0)
⊥

2λρ(0)
)− B0

2λρ(0)
∇⊥P̃ + δ∂ξξ

(
x̂× b

(0)
⊥

)
= 0

ρ
(0)

∂τ〈U〉ξ = c1


∇⊥ · 〈P̃

b
(0)
⊥
B0

〉ξ − 〈ÃK∂ξÃ〉ξ


− c2〈ÃK∂ξÃ〉ξ,η,ζ,

∂ξb̃
(1)
‖ +∇⊥ · b(0)

⊥ = 0

P̃ = (
B2

0

4π
+ 2p

(0)
⊥ +K)Ã

with A =
b
(1)
‖
B0

+
|b(0)⊥ |2

2B2
0

, K = N −M2L−1,

c1 =
1

2 + β⊥ − β‖
(
12 + 18β⊥ + 5β2

⊥
8(1 + β⊥)

) , c2 =
1

2 + β⊥ − β‖
(
(2 + β⊥)2

8(1 + β⊥)
)

where β‖ = 8πp
(0)
‖ /B2

0 and a similar definition in the perpendicular direction.



V.b Landau damping of circularly polarized Alfvén wave trains

In one dimension the KDNLS equation writes

∂τb +
∂

∂ξ
(b(α + γH)|b|2) + iδ

∂2

∂ξ2
b = 0

When |b|2 is constant, there is no Landau damping: the H term vanishes. However it is non zero in
presence of modulation, hence the misleading denomination of nonlinear Landau damping.

Two main points (Fla, Mjølhus and Wyller, Physica Scripta 40, 219 (1989)):
• Instability of the circularly polarized wave for all parameter values (even RH polarization, β < 1, although it is
weak in that case).
• For typical parameters instability of the RH case is suppressed for β > 1.

Also: along with damping, wavenumber decreases, a consequence of the conservation of helicity

K = 1
2i

∫ +∞
−∞ [b? ∫ x

−∞ bdx′ − b
∫ x
−∞ b?dx′]dx = −2πP ∫ +∞

−∞
|bk|2

k dk.

Numerical simulations show the formation of stationary S-type and arc-polarized directional and rotational
discontinuities (Medvedev et al. PRL 78, 4934 (1997)). Linear waves evolve to rotational discontinuities while
circular ones do not evolve, a phenomenon due to the fact that Landau damping is NOT restricted to small scales.



V.c Filamentation in collisionless plasmas

Derive an envelope equation from KDNLS with mean fields:

Define slow transverse variables Y = εη and Z = εζ and slow time T = ε2τ ;

Consider a circularly polarized quasi-monochromatic Alfvén wave train, slowly modulated in

the transverse directions:

b
(0)
⊥ = εψ(Y, Z, T )ei(kξ−ωτ).

Up to a simple rescaling, the wave envelope obeys a nonlinear Schrödinger equation with
dissipation

i∂T ψ + (χ + iν)∆⊥ψ − k(
λ

B2
0

(c1|ψ|2 + c2〈〈|ψ|2〉〉 − c1|ψ0|2 − c2〈〈|ψ0|2〉〉))ψ = 0

with χ =
v2
A

4kλ(1 + β⊥ +
KR

ρ(0)v2
A

) and ν =
KI

4|k|λρ(0)

where K = KR + KIH and vA =
B2

0

4πρ(0) .



Dispersion relation for a monochromatic perturbation ei(KX−ΩT ) of a wave of amplitude |ψ0|:

Ω = iνK
2 ±

√
2χkλc1

|ψ0|2
B2

0

K2 + χ2K4.

Instability for negative µ.

• When T⊥ = T‖ for both ions and electrons with Tp = Te,

No filamentation instability

• When T⊥ = T‖ for both ions and electrons with Tp ¿ Te,

χ∗ = χ(
v2
A

4kλ)−1 reduces to χ
∗
=

1

1− β
with β = Te

mpλ2 .

In this limit, filamentation occurs for β > 1 .



Effect of the ratio electron vs. ion temperature
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Figure 20: Plots of χ∗ (solid line) and ν∗ (dashed line) as a function of β‖p when all temperatures are

equal (a) and when Te = 8Tp (b).



Effect of electron temperature anisotropy
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Figure 21: Plots of χ∗ (solid line) and ν∗ (dashed line) as a function of β‖p for T⊥e = 1.8T‖e
(a) and for 10% of He2+ with T⊥p = 3.25T‖p, T⊥α = 3.25T‖α, T⊥e = 1.27T‖e, T‖e = 5.5T‖p,

T‖α = 5.5T‖α (b). These parameters are typical of the solar wind; filamentation takes place as soon as

β‖p exceeds a critical value βc = 0.315.



Variation of βc as functions of electron temperature anisotropy and ratio of
electron to proton temperature
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Figure 22: Plot of the critical value βc as a function of T⊥e/T‖e for T⊥p = T‖p, T‖e = T‖p (a)

and as a function of T‖e/T‖p for T⊥p = T‖p, T⊥e = 1.5T‖e (b).



VII. A Landau-fluid model for dispersive MHD waves

From Vlasov-Maxwell equations, derive a hierarchy of moment equations for each particle species r:

density ρr = mrnr
∫

frd3v

hydrodynamic velocity ur = nr
∫

vfrd3v

pressure tensor Pr = mrnr
∫

(v − ur)⊗ (v − ur)frd3v

heat flux tensor Qr = mrnr
∫

(v − ur)⊗ (v − ur)⊗ (v − ur)frd3v.

∂tρr +∇ · (urρr) = 0

∂tur + ur · ∇ur +
1

ρr
∇ · Pr −

qr

mr
(e +

1

c
ur × b) = 0

∂tPr +∇ · (urPr + Qr) = 2[Pr · ∇ur +
qr

mrc
b× Pr]

S

[·]S is the symmetric part of the corresponding matrix.

Large-scale dynamics: Ωr =
qrB0
mrc →∞:

Pressure tensor Pr = P 0
r + P

(1)
r + · · ·

Gyrotropic pressure: P
(0)
r = p⊥r(I − b̂⊗ b̂) + p‖rb̂⊗ b̂

Gyrotropic heat flux:

Q
(0)
ijk,r

= q‖rb̂ib̂j b̂k + q⊥r(δij b̂k + δikb̂j + δjkb̂i − 3b̂ib̂j b̂k),



∂tp⊥ +∇ · (ur p⊥r) +∇ · (̂b q⊥r) + p⊥r∇ · ur − p⊥r b̂ · ∇ur · b̂ + q⊥r∇ · b̂ = 0

∂tp‖r +∇ · (ur p‖r) +∇ · (̂b q‖r) + 2p‖r b̂ · ∇ur · b̂− 2q⊥r∇ · b̂ = 0

Heat fluxes in the long-wave asymptotics

When the plasma contains electrons and only one species of Z = 1 ions with bi-maxwellian
equilibrium distribution functions, operators L, M, N are expressed in terms of the plasma
response function

Wr ≡ W(cr) =
1√
2π

P

∫
ζe−ζ2/2

ζ − cr
dζ +

√
π

2
cre

−c2r/2Hξ,

where cr = λ/vth,r and vth,r =

√
T

(0)
‖r /mr.

One has

q
(1)
‖r

vth,rp
(0)
‖r

=
cr(c

2
r − 3 +W−1

r )

c2
r − 1 +W−1

r

T
(1)
‖r

T
(0)
‖r

q
(1)
⊥r

vth,rp
(0)
⊥r

= −T
(0)
⊥r

T
(0)
‖r

crWr

1− T
(0)
⊥r

T
(0)
‖r
Wr

T
(1)
⊥r

T
(0)
⊥r

= −T
(0)
⊥r

T
(0)
‖r

crWrA



In the nearly isothermal limit (cr ¿ 1), Wr ≈ 1− c2
r +

√
π
2crHξ.

q
(1)
‖r = −

√
8
πvth,rn(0)HξT

(1)
‖r and q

(1)
⊥r
¿ 1.

In the adiabatic limit (cr À 1), Wr ≈ −1/c2
r − 3/c4

r.
Heat fluxes are negligible.



Towards a Landau fluid closure

Extension to more general situations:

• cr replaced by − 1
vth,r

∂t∂
−1
x .

• equations for the heat fluxes replaced by

q
(1)
‖r

vth,rp
(0)
‖r

= F‖(−
1

vth,r
∂t∂

−1
x )

T
(1)
‖r

T
(0)
‖r

q
(1)
⊥r

vth,rp
(0)
⊥r

= F1
⊥(− 1

vth,r
∂t∂

−1
x )

T
(1)
⊥r

T
(0)
⊥r

+ F2
⊥(− 1

vth,r
∂t∂

−1
x )A

with homographic approximants

F‖(X) = (q
3
‖ + q

4
‖XH)

−1
(q

1
‖X + q

2
‖H)

F1
⊥(X) = (q

3
⊥ + q

4
⊥XH)

−1
(q

1
⊥X + q

2
⊥H)

F2
⊥(X) = (q

3
⊥ + q

4
⊥XH)

−1
(q

5
⊥X + q

6
⊥H).

The coefficients qi
‖ and qi

⊥ are chosen in a way that ensures the correct asymptotic behavior of the heat

fluxes in both isothermal (cr ¿ 1) and adiabatic (cr À 1) limits.



The Landau-fluid model

For a plasma of electrons and one ion species with Z = 1, velocity u = ui = ue and density
ρ =

∑
r ρr = n

∑
r mr obey

∂tρ +∇ · (uρ) = 0

ρ (∂tu + u · ∇u) +∇ · (P (0)
+ Π)− 1

4π
(∇× b)× b = 0.

with P (0) =
∑

r P
(0)
r and finite Lamor radius corrections

Πyy = −Πzz = −p⊥i

2Ωi
(∂yuz + ∂zuy)

Πxx = 0

Πyz = Πzy =
p⊥i

2Ωi
(∂yuy − ∂zuz)

Πzx = Πxz = − 1

Ωi
[p⊥i(∂xuy − ∂yux)− 2p‖i∂xuy]

Πxy = Πyx =
1

Ωi
[p⊥i(∂xuz − ∂zux)− 2p‖i∂xuz].

Parallel and perpendicular gyrotropic pressures governed by

∂tp‖r +∇ · (u p‖r + b̂ q‖r) + 2p‖r b̂ · ∇u · b̂− 2q⊥r∇ · b̂ = 0,

∂tp⊥r +∇ · (u p⊥r + b̂ q⊥r) + p⊥r∇ · u− p⊥r b̂ · ∇u · b̂ + q⊥r∇ · b̂ = 0.



Induction equation with Hall-effect and electron pressure

∂tb−∇× (u× b) = −mic

qi
∇× [

1

4πρ
(∇× b)× b− 1

ρ
∇ · P (0)

e ].

Heat flux closures

(
d

dt
+

vth,r√
8
π(1− 3π

8 )
H∇‖)

q‖r
vth,rp

(0)
‖

=
1

1− 3π
8

vth,r∇‖
T‖r
T

(0)
‖r

(
d

dt
−

√
π

2
vth,rH∇‖)

q⊥r

vth,rp
(0)
⊥r

= −vth,r∇‖(
T⊥r

T
(0)
⊥r

+ (
T

(0)
⊥r

T
(0)
‖r

− 1)
|b|
B0

),

with p‖r = nT‖r and p⊥r = nT⊥r.



Landau-fluid description of long dispersive Alfvén waves

The long wave reductive perturbative expansion performed on the Landau-fluid model

reproduces the KDNLS equations derived from Vlasov-Maxwell up to the replacement in

the transverse pressure fluctuations of K = N −M2L−1 by
N2+N4

2 −M2
4L−1

4 where the

subscripts in the operators correspond to the replacement of the plasma response function W
by the corresponding two- or four-pole approximants.
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Figure 23: Contributions pR (left column) and pI (right column) to the perpendicular pressure
p̃
(1)
⊥

p
(0)
⊥

= −(pR+pIH)Ã

versus β−1/2, where β = T‖e/(miλ
2), for T‖e = T‖i = T⊥e = T⊥i (a and b), for T‖e = 8T‖i and T⊥e = T‖e,

T⊥i = T‖i (c,d) and for T⊥e = T‖e = T‖i and T⊥i = 3T‖i (e, f). The solid line refers to the exact (long wave)

kinetic calculation and the dashed line to the Landau-fluid closure.



An extended Hall Landau-fluid model has also been built that reproduces the
dynamics of long obliquely propagating waves.

• For magnetosonic waves, the Landau damping rate (assuming me
mp
¿ β ¿ Te

Tp
) is

γ = −
√

β

√
π

8

√
me

mp

sin2 α

cos α

(ω2 − β cos2 α)2 + β2 cos4 α

(2ω2 − β − 1)(ω2 − β cos2 α)
,

an expression identical to that found in Akhiezer (Vol. 1). The long-wave equation is

KdV+damping term.

• For Alfvén waves at finite angle of propagation , finite Larmor radius corrections

of order 1/Ω2
p have to be added. The governing equation is linear and reads, assuming

me
mp
¿ β ¿ Te

Tp
, (adiabatic protons and isothermal electrons) and β ¿ 1

∂τ

by

B0

+
v3

A

2Ω2
p

[
cos3 α

sin2 α
+

√
β

√
π

2

√
me

mp

cos
3
α( tan

2
α +

1

tan2 α
)H]∂ξξξ

by

B0

= 0,

• For Kinetic Alfvén waves (cos2 θ ¿ β),

∂τ

by

B0

+
v3

A

2Ω2
p

cos θ[− β(1 +
3

4

T (0)
p

T
(0)
e

) +
√

β

√
π

2

√
me

mp

H]∂ξξξ

by

B0

= 0.



VIII. Conclusion

Collisionless dissipation (Landau damping) of dispersive MHD waves can be described using a

fluid model.

The model thus reproduces the correct dispersion relation for MHD waves for any value of the

β parameter and for any angle of propagation, provided the wavelength is large compared to

the ion inertial length.

Secondary instabilities as well as the resulting nonlinear dynamics are also captured.

For example small-amplitude oblique Alfvén waves obey a linear dynamics while parallel Alfvén

waves are governed by the KDNLS equation.

In particular, Alfvén wave filamentation occurs for β‖p > βc where βc is of order unity as soon

as T⊥e ≥ T‖e and/or T‖e > T‖p. The value βc can become small when T⊥e > T‖e increases.



Perspectives

• Simulation of dispersive Alfvén wave turbulence:

? Generation of KAW at small scales: importance of higher-order FLR corrections that

are to be described in a computationally manageable way.

? Self-consistent computation of turbulent dissipation

? Possible emergence of coherent structures

• Treat electrons as a Landau fluid in hybrid simulations.

• Explore the possible description of nonlinear Landau damping (see Prakash and Diamond, Nonlinear

Proc. Geophys. 6, 161 (1999)).

References:

Passot T. and Sulem, P.L.: A long-wave model for Alfvén wave trains in a collisionless plasma: I. Kinetic theory,

Phys. Plasmas, in press.

Passot T. and Sulem, P.L.: A long-wave model for Alfvén wave trains in a collisionless plasma: II. A Landau-fluid

approach, Phys. Plasmas, in press.

T. Passot and P.L. Sulem, “Filamentation instability of long Alfvén waves in warm collisionless plasmas”, Phys.

Plasmas, in press.

T. Passot and P.L. Sulem, “A fluid description for Landau damping of dispersive MHD waves”, submitted to

Nonlinear Proc. Geophys.


