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HYDRODYNAMIC STABILITY

This chapter is devoted to hydrodynamic instabilities. ICF capsule implosions
are inherently unstable. In particular, the Rayleigh-Taylor instability (RTI) tends
to destroy the imploding shell (see Fig. 8.1). It should be clear that the goal of
central hot spot ignition depends most critically on how to control the instability.
This is a major challenge facing ICF.

For this reason, large efforts have been undertaken over the last two decades
to study all aspects of RTI and related instabilities. Significant progress has
been made, based on theory, simulations, and experiments. They show impressive
agreement. Of course, the ultimate experiment will be the first successful ignition
of an ICF capsule, and this is still ahead.

In an attempt to cover most of these recent results, the present chapter has
become longer than others and contains many more references and a bibliograph-
ical note. Together with Chapter 12 on fast ignition, it may also be among the
first that need update in a future edition of this book. Here, starting from basic
theory, we develop the linear theory in much detail, including most importantly

(b)
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FIG. 8.1. • Rayleigh-Taylor instabilities occur at two stages of the implosion of
an ICF shell. The outer surface of the shell is unstable when the shell is
accelerated inward by the pressure exerted by the beam-heated plasma. The
inner shell surface becomes unstable when the shell is slowed down by the
hot spot gas.
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FIG. 8.2. Rayleigh-Taylor instability of (a) superimposed fluids and (b) an
accelerated fluid layer. The two cases are equivalent. In both cases instability
occurs because exchanging the position of elements of equal volume of fluids
1 and 2 (with p\ < pi) reduces the potential energy.

the stabilizing effects of ablative RTI, and apply it to actual ICF implosions,
deriving the admissible levels of non-uniformity in capsule make and implosion
drive. We also describe the nonlinear growth of bubbles and spikes, including
turbulent mixing.

It is worth observing that RTI and RMI play an important role in many
complex phenomena, such as some stages of stellar evolution, fragmentation of
vapour films, deceleration of laser generated plumes, underground salt domes,
and volcanic islands; see Dimonte (1999) and references therein. Currently, laser-
driven experiments on RTI and RMI are being performed as scaled-down test-
beds of models of astrophysical phenomena (Remington et al. 1999).

8.1 Fluid instabilities and ICF: a preview
8.1.1 Rayleigh-Taylor instability, RTI

The basic mechanisms of the RTI can be illustrated by referring to the simple
configuration of Fig. 8.2(a), showing a vessel containing two immiscible fluids
of different densities separated by a plane, horizontal boundary at z — 0. The
fluids are subjected to gravity, g, and fluid 1 with density p\ supports fluid 2
with density p^. The fluids are in hydrostatic equilibrium for any value of the
density ratio pil p\ • However, when the upper fluid is heavier than the lower one
(p2 > Pi), the small perturbations of the interface rapidly grow in time. Soon
spikes of the heavier fluid fall down, while bubbles of the lighter fluid rise. The
instability, first studied by Lord Rayleigh in 1883, occurs because any exchange
of position between two elements with equal volume of the two fluids leads to
a decrease of the potential energy of the system. The same considerations can
be applied in a straightforward manner to the interface between two fluids in
an accelerated frame [see Fig. 8.2(b)]. This is for instance the case of an ICF
shell driven by hot ablating plasma. In a frame moving with the interface the
fluid effectively sees an inertial force per unit mass g = —a, where a is the

Fig. 8.2
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FIG. 8.3. Rayleigh-Taylor instability of a laser accelerated plane target. The
target, which appears as a black area in the pictures, is irradiated by a laser
beam on the right hand side. Reprinted from Nakai et al. (1995), with per-
mission.

Fig. 8.3

acceleration. The interface is then unstable if the acceleration is directed towards
the denser fluid, which is just the case of the outer surface of an ICF shell during
the stage of inward acceleration. The first theoretical analysis and experimental
results on the instability of an accelerated layer were published by Taylor (1950)
and Lewis (1950), respectively. In the current literature, the instability of both
accelerated fluids and fluids in a gravitational field are referred to as Rayleigh-
Taylor instability.

A beautiful example of RTI of an accelerated layer is shown in Fig. 8.3 [after
Nakai et al. (1995)]. It refers to a laser-accelerated 25 (im thick plastic foil, with
an imposed initial sinusoidal corrugation of amplitude of 1.5 fim and wavelength
of 100 //m. The foil is irradiated by a pulse of green laser light (wavelength
A = 0.53 (im) of intensity / = 2 x 1014 W/cm2. Laser induced ablative pressure
drives the foil with an acceleration of a ~ 1016 cm/s2. The picture, obtained by
optical diagnostics, shows the amplification of the perturbations up to a point
where the foil integrity is lost. One should not be worried by the large amplitude
of the perturbation, which results from the relatively large imposed corrugation.
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Linear theory (see § 8.2) shows that sinusoidal perturbations of the unstable
interface with wavelength A and initial amplitude £o -C A grow exponentially in
time, according to £ = Coexp^RT^)) with linear growth rate

(8.1)

where k = 2JT/A is the wavenumber of the perturbation and

A _P2~Pl
P-2+P1

(8.2)

is the Atwood number of the interface. According to eqn 8.1 the growth rate
diverges as the wavelength lambtm'—l 0. Actually, for very short wavelengths one
should take into account surface tension and viscosity, which reduce instability
growth. However, as we shall see in § 8.2.5 and jj 8.2.6, both these effects turn
out to be negligible in ICF.

dooo not apply for vory ohort wavdcngtho, which are atabiliaod by viooooity.
For typical ICF pnramotcw, however, thin only occuro fui A jC 1 /xm, and L, uf
iittlc practical iclovanee.

As the perturbation amplitude £ becomes comparable to the wavelength
(say, as C — A/2TT), the pace of growth slows down. This phenomenon is called
linear growth saturation. At this stage an initially sinusoidal perturbation be-
comes asymmetric. At a fluid-vacuum interface one observes [see Fig. 8.4(a)]
a large curvature bubble asymptotically rising at constant velocity and a fluid
spike falling down at constant acceleration. In the case of a boundary separat-
ing two fluids of different densities, the falling spike is slowed down and de-
formed by the Kelvin-Helmoltz instability, and mushroom-like patterns develop
[see Fig. 8.4(b)]. Asymptotically, mushroom-headed spikes fall at constant veloc-
ity.

Perturbations of real surfaces are not sinusoidal, but can anyhow be thought
of as the sum of a large number of sinusoidal modes. In this case, in the nonlinear
stage the various modes interact with each other and a nearly turbulent regime
occurs (see Fig. 8.5). Experiments show that the penetration of bubbles of the
lighter fluid into the denser fluid is well described by the law h^ = aai2, with
a = 0.05-0.07. Here t is the time after the onset of turbulent behaviour.

8.1.2 RTI and ICF

Equation 8.1 refers to the classical RTI of incompressible fluids, and neglects
such effects as density gradients, thermal conduction and ablation. A simple
estimate shows that, unless these processes reduce the RTI growth rate well
below the classical value, ICF by spherical shell implosion would fail. Following
Bodner (1991), we consider a single mode perturbation and take a wavelength
A = 3AR, where AR is the in-flight shell thickness. We take this wavelength
as the most dangerous mode for shell integrity, since it evolves linearly up to
an amplitude £ » A/2?r ~ AR/2, which would threaten the integrity of the

Fig. 8.4

Fig. 8.5
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FIG . 8.4. Non linear evolution of a single-wavelength Rayeigh-Taylor instability,
a) Instability of a fluid-vacuum interface (At = 1); b) instability of the
interface between fluids of different densities (At < 1).
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FlG. 8.5. Turbulent mixing resulting from the nonlinear evolution of a
multi-wavelength RTI of superposed fluids with density ratio P2/P1 = 2.
After Atzeni and Guerrieri (1993).

shell. Longer wavelengths grow slowlier, while shorter wavelengths saturate at
smaller amplitudes. We assume that the ICF shell, with initial radius RQ, is
imploded half way to R = RQ/2 at constant acceleration a, which takes a time
to = TJRO/CL. At this time, a perturbation with initial amplitude £0 would then
reach an amplitude £ = Coexp(<7RT*o) = Co exp y/2Ra/AR. Since typical ICF
shells have Ro/AR > 40, then net perturbation growth would be about 8000. In
order to keep the final perturbation amplitude smaller than AR/1« 10-20 //m,
initial perturbations should be at the level of 1-2 nm. This is below practical
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FIG. 8.6. Growth rate vs wavelength for classical RTI and for ablative RTI.
Both curves are computed for the same acceleration a = 1016 g/cm2. The
ablative case (eqn 8.3) assumes tia = 5 x 10s cm/s, L = 1 /un and /3 = 1.5.

limits.
Fortunately, ablation effects reduce linear growth substantially. Theory and

numerical simulations indeed show that the linear growth rate of the RTI of an
ablation front is well approximated by

<r = (8.3)

where L is a characteristic density scalelength at the ablation front, j3 is co-
efficient in the range 1-3, and ua is the ablation velocity, i.e. the velocity of
penetration of the ablation front through the dense matter (see § 8.4). Equation
8.3, which is also represented in Fig. 8.6 for parameters typical of indirect-drive
ICF, shows that the finite density gradient reduces the growth rate and that abla-
tion even stabilizes perturbations of short wavelengths. As we shall see in § 8.4.5,
data from highly sophisticated recent experiments are in qualitative agreement
with eqn 8.3. RTI at an ablation front will be discussed in some detail in § 8.4.
Many features not taken into account in the classical RTI treatment will also be
discussed at appropriate places in § 8.2—§ 8.5.

The above discussion clearly shows that even perturbations described by
linear theory can pose a serious threat to ICF. For this reason, in this chapter
we discuss linear evolution in detail. Concerning nonlinear aspects, we introduce
the basic ideas and show some results of general interest, often without presenting
detailed derivations. The interested reader can refer to the literature quoted in
the individual sections and in the bibliographical section.

[Fig. 8.6
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FIG. 8.7. Richtmyer-Meshkov instability. It is caused by a downward moving
shock wave crossing the deformed interface between fluids of different density.
After Grove et al. (1993), reprinted with permission.

Fig. 8.7

Fig. 8.8

8.1.3 Richtmyer-Meshkov instability, RMI

A process related to RTI was predicted by Richtmyer (1960) and was demon-
strated experimentally by Meshkov (1969). It is now known as Richtmyer-Meshkov
instability (RMI). It occurs when a shock wave crosses the interface between two
different fluids which is not perfectly flat; see Fig. 8.7. In this case, the passage of
the shock suddenly distorts the boundary and imparts to it a nonuniform veloc-
ity, causing amplification of the perturbation. RMI is important in ICF because
it can produce seeds which are later amplified by the more violent RTI.

8.1.4 Kelvin-Helmoltz instability, KHI

The Kelvin-Helmoltz instability (KHI) concerns the equilibrium of a stratified
fluid, when the different layers are in shear motion. The simplest case is that of
two superimposed thick fluid layers moving with opposite velocities (see Fig. 8.8).
Small sinusoidal perturbations of the interface grow exponentially in time. As the
perturbation amplitude becomes comparable to the wavelength, the perturbed
interface becomes asymmetric and characteristic rolls appear; see Fig. 8.8(b).
KHI occurs frequently in nature. For instance, it is responsible for the excitation
of waves by winf on sea water, and for the oscillating structures observed at the
boundaries of the wake of a ship. In ICF, KHI plays some role in the nonlinear
evolution of RTI bubbles, where it produces mushroom-shaped structures, and
in the interaction between neighbouring RTI bubbles. A qualitative description

FIG. 8.8. Kelvin-Helmoltz instability. Adapted after Acheson (1990), with per-
mission.
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of the KHI mechanism will be given later in § 8.2.7.

8.2 Stability of plane interfaces
The fundamental question to be answered when dealing with the stability of
a fluid equilibrium is the response to small perturbations. This is addressed
by linear stability analysis, which applies to perturbations of small amplitude.
They can be considered as the superposition of independently evolving sinusoidal
modes A(t) sin kx, characterized by wave number k = 2ir/\ and wavelength A
and with amplitudes varying like A(t) ~ exp(<rt). The main objective of linear
theory is to determine the dispersion relation

a = a(k),

relating the linear growth rate a to the wavenumber.
In this section, we apply linear stability theory to the potential flow model

of an incompressible fluid. We first present a simple derivation of the dispersion
relations of the RTI, the KHI and the RMI of plane boundaries separating homo-
geneous and incompressible fluids. Then, we study the RTI of accelerated foils
and surfaces accelerated by a nonuniform pressure, two topics of great relevance
to ICF. The presentation closely follows the treatment by Kull (1991). The po-
tential flow model will be used again in § 8.5 to study the stability of spherical
boundaries.

8.2.1 Potential flow equations for incompressible fluids

Simple, instructive and rather general linear solutions are obtained by using the
potential flow model of an incompressible fluid subjected to gravity. One starts
from the assumption of irrotational motion, V x u = 0, which allows us to write
the fluid velocity as the gradient of a potential, i.e.

u = V<p. (8.4)

We recall that irrotationality implies conservation of circulation, provided the
fluid motion is isentropic, i.e. adiabatic and with constant entropy throughout
the fluid. In such a case, a flow being everywhere irrotational at some initial time,
will remain irrotational. Potential flow is a good approximation to the actual
fluid motion when dissipation is negligible and when the flow is not hindered by
solid bodies immersed in the fluid. A discussion can be found in textbooks on
hydrodynamics (e.g. Landau and Lifshitz 1987, § 9).

We also assume that the fluid is incompressible, which is appropriate if both
the fluid velocity and the phase velocity of relevant perturbations are small
compared with that of sound (see Landau and Lifshitz 1987, §10). By expressing
the velocity through eqn 8.4, the incompressibility condition V • u = 0 becomes

VV = 0, (8.5)

i.e. the Laplace equation for the potential <p.
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We now need an equation for the evolution of the flow. We start by writing
Newton's law along particle trajectories:

p i — + u - V u ) = - V p + F , (8.6)

where F = pg is the force of gravity per unit volume of fluid. We choose a
reference system oriented in such a way that gravity is directed along the negative
z-axis, g = — <7ez, where g is a positive quantity, and introduce a gravitational
potential U, such that F = —pVU. Inserting this last equation and eqn 8.4 for
the velocity into eqn 8.6, we get

which can be integrated to obtain

^ ^ E (8.8)

This is one of the forms of Bernoulli's equation. Here C(t) is an arbitrary time-
dependent gauge function. A useful gauge when dealing with an interface at
uniform pressure p = po is C(t) = po/p, from which we get

In ICF, the effect of gravity is negligible, but the fluid is accelerated and
flow perturbations are best studied in a non-inertial frame moving with the fluid
interface. When the acceleration (relative to an inertial frame) is a = aez, where
ez is the unit vector parallel to the z-axis, Bernoulli's equation takes just the
same form as eqn 8.9, with g replaced by a, and with ip, u and z measured in
the accelerated frame.

In the following we shall focus on the case of accelerated systems, which is
of primary importance to ICF, and therefore use the symbol a for acceleration
throughout. However, it should be understood that all results also apply to the
gravitational case when replacing a with g. In any case, equations will be written
in the reference frame comoving with the boundary.

8.2.2 Fluid boundaries

The next step concerns the conditions to be satisfied at a fluid boundary, in
particular at the surface separating two homogeneous fluid regions, for which
both the Laplace equation for the potential and the Bernoulli equation apply.
The surface moves with the fluid, therefore the normal components of the fluid
velocities on both sides of the surface have to be continuous. Let the coordinates
of the points on the surface be x(t), which obey the equation S(x,t) = 0. The
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equation for the velocity components is found as follows. Since the surface moves
with the fluid the total time derivative of S must be identically zero on both sides
of the interface. Introducing explicitly the dependence on space and time, S(x, t)
must satisfy

^ = ^ + u . V S = 0, (8.10)

on both sides of the interface. Writing the interface equation in the form z =
£(x,y,t), then S = z — £. This is particularly convenient when considering a
nearly flat, nearly horizontal surface. The interface equation 8.10 can then be
written as

(dtC + UxdxC + UydyC ~ U2)2=(± = 0, (8.11)

which has to be evaluated on both sides of the interface, formally denoted by
z = £+ and z = £~, and hence represents two equations. Equation 8.11 is often
referred to as the kinematic interface condition.

A dynamical interface condition is obtained by considering the forces acting
on the interface. At equilibrium the pressures on the opposite sides of the inter-
face differ by an amount depending on the surface tension T and on the curvature
of the boundary. Using square brackets to denote the jump of a quantity through
the interface ([/] := /+—/_) , we have

where i?a and Rb are the principal radii of curvature of the surface at the con-
sidered point. They have to be taken as positive when the centre of curvature
lies on the upper side of the interface (where the upper position is defined with
reference to downward directed gravity or upward directed acceleration). In cases
with T — 0 (typical for ICF applications), one has [p] = 0.

Using Bernoulli's equation 8.9 to express the pressure on both sides of the
interface, eqn 8.12 becomes

[p (3t<p + «2/2 + az)\ = T (CC + 3 U ) • (8-13)

For a fluid - vacuum interface and T = 0 eqns 8.11 and 8.13 simplify to:

+ «*d*C + «»5yC - «,) z = c = 0 , (8.14)

u2/2 + az)z=(=0 . (8.15)

8.2.3 Small perturbations: linearized equations

We now study the evolution of small perturbations of a hydrostatic equilibrium.
For simplicity, from now on we consider superimposed fluids with a horizontal
unperturbed interface z(x,y) — 0. The equation of the perturbed interface can
therefore be expressed as z = £(x, y, t). We recall that the analysis applies either
to downward directed gravity g = — aez or upward directed acceleration a = aez.
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In general, any flow quantity will be written as

F(x,y,z,t) = F0(z) + F(x,y,z,t),

where the index 0 refers to unperturbed quantities, and the tilde to the per-
turbed quantities, coming with index 1 below the interface and 2 above. At
equilibrium the vertical component of the velocity vanishes everywhere. Con-
cerning the horizontal component, we take Uy = 0 everywhere and a uniform
(but otherwise arbitrary) velocity for each fluid in the x direction, i.e. ux = ux\,
for z < 0, and ux = nX2, for z > 0. With this notation, the velocity of fluid 1 is

Perturbed quantities have to satisfy the kinematic and dynamic boundary
conditions (eqns 8.11 and 8.13, respectively), just as the equilibrium quantities.
Assuming that all perturbations have small amplitudes, we linearize the rele-
vant equations, i.e. neglect second order terms, such as products of perturbed
quantities.

The linearized kinematic interface conditions 8.11 then become

dtC + MzoAC - dz<fii = 0 , (8.16)

AC + «*oAC - dzyi = 0 , (8.17)

while the dynamic condition 8.13 reads

Pl(Ay>l + ux0idxlfil) — P2(dt<f>2 + UxQ2dx<p2)

+aC(pi - pi) - T(dL + d^K = 0, (8.18)

where we have used uz — dz<p and have neglected second order terms such as
uxdxC,. Equations 8.16-8.18 have to be evaluated at the unperturbed interface
position z = 0.

8.2.4 Normal mode analysis and dispersion relation

The assumption of small perturbations allows us to use the superposition princi-
ple, i.e. to describe the perturbed fluid motion as the sum of linearly independent
modes. Here we consider a plane interface, while the case of spherical geometry
will be addressed in § 8.5. We then take sinusoidal modes and seek for solutions
in which any perturbed quantity F evolves in time proportionally to eat:

F oc cos(kxx + kyy)eat.

Formally, this can be done by performing a Fourier transformation of the relevant
equations both in the x and y coordinates and in time, i.e. by performing the
replacement

F(x, z,t)->Sl [P(kx, ky, z)e
i<-k*x+kvy-"t^ , (8.19)

where the real numbers kx and ky are the components of the wavevector, F is a
complex amplitude, and u is a complex frequency. The great advantage of such
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an approach is that derivatives with respect to t, x and y can be replaced by
products

9 • (8.20)

(8.21)

(8.22)

In the following, all equations are understood as written for the amplitudes F
and only the real part of each quantity is taken; for simplicity of notation the
circumflex and the 3? sign will be omitted.

It is useful to write the frequency by separating the real and the imaginary
parts, i.e.,

U = UR + i<r, (8.23)

where WR = $t(w) and a — 9(w). Perturbed quantities will then evolve propor-
tionally to

SR(eik**eik'>ye-iWRt)eat = cos(kxx + kyy - uRt)eat. (8.24)

A mode with given wavevector k = kxex 4- ky&y will grow indefinitely, if the
linear growth rate a — <r(k) is positive. Instability will occur ifo-(k) > 0 for at
least one k. Notice that a positive linear growth rate corresponds to exponential
growth of the amplitude of the relevant mode. Linear stability analysis aims at
determining the spatial shape .F(k, z) of the allowed perturbation modes, the
dispersion relation UJ = w(k), and hence the relationship a = <r(k) between the
linear growth rate and the perturbation wavevector.

We start by analyzing the spatial distribution of the perturbation. From the
Fourier transform of the Laplace equation (8.5), we find that the perturbed
potential satisfies

( l l l ) (8.25)
which has the general solution

<p(z) = Aekz + Be~kz , (8.26)

where we have set A;2 = k^. + ky. Since the perturbations must vanish as z —> ±oo
and uz has to be continuous at z = 0, one has

i (2) = AekZ for z < 0, . .
( 8 2 7 )

with A = nz(z = Q)/k. Perturbations therefore peak on the interface and decay
exponentially with scale-length I/A; = X/2ir.
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Next, we study the time evolution. From the Fourier transform of eqns 8.16
and 8.17 we get

-«(« - kxuxOl)C - dztr = 0, (8.28)

-i(u - *xtix0,)C - dz<p2 = 0, (8.29)

and substituting eqn 8.27 for the spatial part of the potentials we have

-i(uj - kxuxOl)C - Ak = 0, (8.30)
-i(u - kxuxQ2)C + Ak = 0. (8.31)

Analogously, from the Fourier transform of eqn 8.18 and eqn 8.27 we obtain

- i(u - kxuxOl)PlA/C - (p2 - pi)a + k2T = 0. (8.32)

The desired dispersion relation is then found by eliminating A/£ in the first two
terms through eqns 8.30 and 8.31, respectively, which gives

(w - kxux02)
2p2 + (u- kxuxOlfpi = -[{p-2 - pi)a - k2T]k. (8.33)

Solving for ui = w(k), we get the general dispersion relation

P1+P2
\ *— 2- , 8.34
i P1+P2 }

where UXQ = (piuXQt + P2Uxo2)/(pi + P2)- Obviously, it is convenient to refer to
a frame moving with velocity u = uxoex, so that the first term on the right-
hand side of eqn 8.34 vanishes. We now consider particular cases of eqn 8.34
to obtain the linear growth rates for the Rayleigh-Taylor and Kelvin-Helmholtz
instabilities.

8.2.5 Classical RTI growth rate

Classical RTI refers to superimposed fluids with no tangential velocity shear, i.e.
MXOI = UXQ2. From eqn 8.34 and the definition of a in eqn 8.23 we then have

/ ( / » * ) « * * T . (8.35)
V P1+P2 V '

When the argument of the square root is positive, the growth rate is real and
positive, leading to exponential growth of the perturbation. In the opposite case,
a is imaginary and corresponds to undamped oscillations, known as internal
gravity waves. Equation 8.35 shows that the interface is stable if pi < pi, i.e. if
the denser liquid supports the lighter one. In the opposite case surface tension
stabilizes modes with wavelength A < 27r7"/[(/02 — />i)fl], but longer wavelengths
grow unboundedly, and therefore the system is unstable. In ICF and in many
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other applications, however, the effect of surface tension is negligible. E.g., in ICF
implosions, one has a > 1015 cm/s2 , and even taking for T the very high value
7" = 500 g/(cm s2) referring to a mercury-water interface, only wavelengths
smaller than about 10~7 cm are stabilized. Neglecting surface tension, one gets
the classical Rayleigh-Taylor growth rate:

a = (7RT = .y/Atak, (8.36)

where At = (p2 ~Pi)/)(P2 +Pi) is the Atwood number. It is useful to notice that
the linear growth rate only depends on the absolute value of the wavenumber
k — |k|, not on its components kx and ky. This means, e.g., that the linear growth
of disturbances with k — kx and ky = 0 is just the same as that of disturbances
with the same value of k = (A:2 + 2 1 / 2

8.2.6 Influence of viscosity and compressibility on RTI

In the previous derivation of the classical RTI growth rate we did not take into
account viscosity and compressibility. Here, we show that in ICF the effect of
viscosity is indeed always negligible, while that of compressibility is marginal.

Concerning viscosity, Menikoffetf al. (1977) have shown that the growth rate
of the RTI of superimposed viscous fluids is well approximated by

a = (Atak)1'2 [(1 + w)l/2 - w)1'2] , (8.37)

where w = J[ a , F^ = (pupi + /^82P2)/(Pi + /°2) is a density averaged kinematic
viscosity, and Hi and /J.2 are the viscosities of the two fluids. For small values of w,
eqn yields the classical inviscid result, while in the opposite limit <r ~ Ata\/Airis^,
showing that the growth rate vanishes as A/F|< —¥ 0. It is also easily found that
the growth rate is maximum for A = Am = 4?r(I72./ylta)1/'3. For application to
ICF, we can use the expression for the viscosity of a fully ionized plasma (Spitzer
1962)

775/2^1/2
ix = 2.21 x 10-1 5 ^ 4 1 n A g/(cms), (8.38)

where 7] is the ion temperature in Kelvin, A and Z are the atomic mass and
charge, respectively, and In A is the Coulomb logarithm. Application of eqn fe-2-fi
to the ablation front of an ICF target is not straightforward because density and
temperature vary sustantially in space. However, one can estimate cms^ae.v as
the ratio of the viscosity of the hot plasma close to the ablation front to the
density of the dense shell. It then turns out that viscosity can only reduce the
growth of modes with wavelengths smaller than a fraction of a micron. It is
instead ineffective on the modes with wavelengths of 10-60 /im, which are the
most dangerous for the integrity of shells with in-flight thickness AR fa 5-20 /zm.

Regarding compressibility, Bernstein and Book (1983) have shown that the
growth rate of the instability of plane interfaces with At = 1 is unaffected by
compressibility, whatever the adiabatic index 7 of the fluid. This result is relevant
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Fig. 8.9

to the instability at the ablation front, where the Atwood number is close to unity.
For different values of At, compressibility results in growth rates higher than the
classical one, but the effect is small as far as a/kc\ -C 1, ci = ( T P / ^ ) 1 ^ 2 being
the sound speed in the denser fluid. For an accelerated shell of thickness AR,
one has a ~ p/pAR so that the previous condition becomes kAR 3> 1/7, or
A -C 2ftfAR, which is marginally satisfied for the most dangerous modes for
target integrity. More details on the effect of compressibility on the ablative RTI
can be found in a paper by Piriz (2001b). At implosion stagnation the effect of
compressibility is not negligible, but still not so large as to alter qualitatively
the picture of the instability (see § 8.5.3).

8.2.7 KHI growth rate
The growth rate of the KHI is obtained from eqn 8.34 by considering fluids of
equal density, no acceleration, i.e. a = 0, and with a given tangential velocity
discontinuity (w^oi ^ "xO2)- m *n e frame moving with ux = (uxo, + UXQ2)/2 and
neglecting surface tension, we have

= kx\uxOl .— UXQ2\, (8.39)

showing that surface perturbations with wavevector parallel to the fluid velocity
grow exponentially, with rate proportional to the velocity difference. For obvious
symmetry reason the rate a is independent of the sign of such a velocity dif-
ference. Perturbations with wavevector orthogonal to the unperturbed velocity,
instead, are unaffected. The effects of gravity and surface tension on KHI are
discussed e.g. in the textbooks by Chandrasekhar (1961) and Acheson (1990).

We can now give a simple explanation of the mechanism of KHI. Let us con-
sider a small disturbance of the horizontal surface separating two counterstream-
ing fluids; see Fig. 8.9. According to Bernoulli's equation 8.8, in steady state the
sum (u2/2)+p/p is constant along each horizontal streamline. It follows that the
fluid pressure is lower (higher) where the velocity is higher (lower). Therefore
the pressure increases in regions such as those labelled "a" in the figure, where
the flow tube widens and decreases in regions "b" where the flow tube shrinks.
Such a pressure imbalance enhances the initial surface deformation, resulting in
instability.

8.2.8 Time evolution
According to the previous discussion, unstable RTI and KHI modes grow expo-
nentially in time. However, the initial surface perturbations do not necessarily
coincide with pure modes, which have initial amplitude and velocity related by
Co = Co/c- Here, we study how a general single wavelength perturbation evolves
in time. A case of particular interest is that of static initial perturbations with
Co = 0. The results of this section will be exploited later, in the analysis of
the RTI of a fluid layer of finite thickness (§ 8.2.9 ), the Richtmyer-Meshkov
instability (§ 8.2.10), and the response to transient perturbations (§ 8.2.11).

From now on we restrict ourselves to two-dimensional perturbations, i.e. con-
sider an x,y slab geometry with the flow independent of the y coordinate. We
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FIG. 8.9. Mechanism of KHI growth. Pressure imbalance due to surface defor-
mation positively feedbacks to the deformation, causing instability.

also set UXQ = 0, but allow for time dependent acceleration a(t). Performing
Fourier transform in x of eqns 8.11 and 8.13, we obtain

[p(dt<p + a

(8.40)

(8.41)

(8.42)

Next, we differentiate eqns 8.40 and 8.41 with respect to time, solve for the
perturbed potential, and insert the result into eqn 8.42, thus obtaining a second
order ordinary differential equation for the time evolution of the amplitude £:

&ti - Atak -

If acceleration a is constant, we have

k3T
P\ +P2

= o. (8.43)

(8.44)

where <r(k) is time independent and given by eqn 8.35. By solving eqn 8.44 with
initial conditions C(t = 0) = Co and C(i = 0) = Co, we find that the amplitude of
a sinusoidal perturbation with mode number k, initial amplitude Co and initial
velocity Co evolves in time according to

= C (8.45)

Notice that the growth is purely exponential only if Co = Co/^i corresponding to
the evolution of an eigenfunction of RTI. Equation 8.45 can be used to test the
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(a) (b)

FIG. 8.10. RTI of a fluid layer, accelerated by a pressure p applied on the
left-hand side.

accuracy of numerical codes. For sufficiently large time, such that at
have exponential growth:

1, we

Fig. 8.10

(8.46)

with growth rate a and effective initial amplitude £eff = (£o + C,Q/O)/2.

8.2.9 RTI layers of finite thickness and feedthrough

So far we have dealt with semi-infinite fluids, but, in fact, in ICF we want to
accelerate relatively thin shells. The stability of a fluid layer accelerated by uni-
form pressure applied to one of its surfaces is discussed in this section, following
Taylor's original presentation (1950).

We refer to a fluid layer of thickness Az delimited by the boundaries (a) at
2 = 0 and (b) z = Az; a pressure is applied on surface (a), causing constant
acceleration a > 0 (see Fig. 8.10). As usual, we assume 2D sinusoidal pertur-
bations z = C(x>t) = C(̂ )cos(A;a;) with wavenumber k — 2ir/X and omit the
circumflex, so that £, ip, etc refer to the amplitude of the perturbed quantities.
According to the discussion for semi-infinite fluids, we expect that surface (a),
where the acceleration is directed from vacuum to fluid is unstable, while sur-
face (b) is stable. We shall soon see that this is qualitatively correct, but that
perturbations also grow at (b).

We assume static initial perturbations at both surfaces,

Ca(< = 0) = CaO, (8.47)
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Cb(< = 0) = Cbo, (8-48)

Ut = 0) = Cb(t = 0) = 0. (8.49)

Following the results of §8.2.4, we write the potential perturbation as

h " 4 z - 2 ) . (8.50)

In order to get the equations for the evolution of <f>a(t) and <fb(t), we write the
kinematic and dynamic interface conditions at both surfaces of the layer. We then
differentiate the dynamical equations and substitute dtCi,2 from the kinematic
equations, thus getting

= 0, (8.51)

= 0. (8.52)

The solutions of these equations, satisfying the initial condition u = 0 in the
whole fluid layer, are

(8.53)

<pb(t) = tpbQ sin at , (8.54)

where the growth rate takes the same value a — ^/gH as in the case of the
interface between a semi-infinite fluid and vacuum. Inserting eqns 8.53 and 8.54
into the general expression of the potential (eqn 8.50) we have:

= <paOe~kz sinh at + £boe~fc(A2~2) sin<rt. (8.55)

We see that the first term in eqn 8.55 is maximum at surface (a), and grows
exponentially. The second term, instead oscillates, and is maximum at surface

We are now ready to compute the time evolution at the two surfaces of the
layer. Using £ = f udt — f dz<pdt, and imposing the initial conditions 8.47 and
8.48 we get:

C ^ l T Ch\~%lT e~kAZ co- at, (8.56)

cos at, (8.57)

and for sufficiently large t, such that the hyperbolic functions dominate over the
circular functions:

^ i l e - ^ A ? cosh <*>
Cae-fcAi. (8.59)

Equation 8.58 shows that the perturbation of surface (a) grows as the unstable
interface between a semi-infinite fluid and vacuum, but with the front factor also
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depending on the initial perturbations at the opposite side of the foil and on
the dimensionless foil thickness kAz. At surface (b), the perturbation grows at
the same rate as at (a), but with the amplitude reduced by a factor exp(—kAz).
Such a phenomenon of transmission of a perturbation from an unstable surface
to a stable one is known as feed-through and is important for ICF. Perturbations
grown at the unstable ablation front are fed to the inner surface of the solid
DT fuel during inward acceleration, where they seed the instability occurring
at implosion stagnation. Feed-through is, however, negligible for perturbations
with wavelength much smaller than the thickness of the shell.

8.2.10 RMI growth rate

The classical RTI refers to constant acceleration, while impulsive acceleration
can induce the Richtmyer-Meshkov instability (RMI), which is also of interest
to ICF. For instance, just at the beginning of the irradiation of an ICF target, a
shock wave is launched through the shell and causes sudden time-dependent ac-
celeration. The simplest treatment of RMI is provided by the so-called impulsive
model (Richtmyer 1960), which solves eqn 8.43 in the limiting case a(t) = AuS(t),
where S(t) is the delta function and Au is the velocity increment caused by the
transit of the shock at time t = 0. Neglecting surface tension and assuming an
initial sinusoidal perturbation of wavenumber k and amplitude £o, integration of
eqn 8.43 gives

dtC - CoAkAu = 0 (8.60)

and, integrating once again,

C(*) = Co(l + ffRM<); o-RM = AtkAu. (8.61)

Here, the Atwood number At refers to the value taken just after the transit of the
shock. Equation 8.61 shows that the perturbation amplitude varies linearly in
time; this is easily explained by the observation that, once the shock has crossed
the interface, the mechanism driving the instability ceases and one only observes
an inertial evolution. Contrary to RTI, RMI occurs for any value of the Atwood
number, that is both for a shock propagating from a light material to a denser one
or vice versa. If At < 0, i.e. when the shock propagates from the denser material
to the lighter one, the instability reverts the sign of the perturbation amplitude.
Despite its apparent simplicity, the use of eqn 8.61 is not straightforward, since
there is no precise rule to define the initial perturbation amplitude £o • For j4t > 0
Ricthmyer chose £o equal to the amplitude immediately after shock transit. For
At < 0, Meyer and Blewett (1972) have shown that better results are obtained by
using for Co the average value of the pre- and post-shock perturbation amplitudes.
This is issue is discussed in the review paper by Holmes et al.j(4<\ci<{} _

Experiments and numerical simulations confirm that small perturbations
grow linearly in time. However, the theoretical growth rates agree with experi-
ments and simulations only for a limited range of values of the shock strength
and of the density ratio. Here, compressibility plays an important role and can-
not be neglected. At present, the field is actively investigated, just to clarify
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these issues. The reader is referred to the quoted paper by by Holmes et al.,
which also includes extensive reference to alternative theoretical approaches to
RMI, and compares analytical results with experiments and simulationsJAs far
as ICF is concerned, RMI is certainly less dangerous than RTI. It grows linearly
in time, while RTI grows exponentially in time. However, RMI can be important
in generating seeds which are amplified by RTI later on.

8.2.11 Nonuniform acceleration

Laser and particle beams driving fusion capsules are not perfectly uniform and
generate spatially nonuniform driving pressures and hence nonuniform accelera-
tion. The effects on the evolution of an unstable interface can be analyzed by a
simple extension of the model used so far.

Let us consider an initially flat interface driven by a pressure which causes
the nonuniform acceleration OQ + a(t) cos kx. The amplitude of the perturbation

is governed by
4C-T2C = a, (8.62)

with a = (Ataok)1'2. This is eqn 8.43 with T = 0 and a describing the acceler-
ation perturbation. The general solution of the inhomogeneous equation 8.62 is
given by

= — I e I ae at — e /
2<r L Jo Jo

aeat dt\ . (8.63)

Two cases are of particular interest to ICF. The first one concerns the effect
of time-independent pressure nonuniformities, as they might be produced by
asymmetries in the irradiation pattern. In this case eqn 8.63 becomes

<(*) = (a/<r2) [cosh(<rt) - 1]. (8.64)

For long enough time such that at S> 1, one has ( ~ (5/<r2) cosh(at). Comparison
with eqn 8.45 shows that the effect of the nonuniform acceleration is equivalent
to that of an initial surface perturbation with amplitude £o = a/a2 — a/Ataok.

A second situation relevant to ICF is that in which the pressure nonuniformity
only occurs for a short time interval At, e.g. at the beginning of irradiation. In
this case, At <C !/<?, we can approximate the perturbed acceleration by an
impulsive function a, = AuoS(t), and eqn 8.63 becomes

C = (Auo/<r)sinh{<7*). (8.65)

Comparison with eqn 8.45 shows that the impulsive acceleration is equivalent to
an initial velocity perturbation £o = A«o.

In conclusion, eqns 8.64 and 8.65 allow us to take into account pressure
nonuniformities by neglecting the perturbed acceleration a on the right-hand
side of eqn 8.62 and simply introducing instead suitable initial conditions in the
corresponding homogeneous equation.
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8.3 RTI in fluids with arbitrary density profile
In many important cases, including ICF targets and exploding supernovas, RTI
does not involve sharp interfaces between homogeneous fluids, but fluid equilibria
with the density gradually changing in the direction parallel to acceleration. Here,
we follow the presentation of Chandrasekhar (1961) and consider fluids in which
the density may change in space, still keeping the condition of incompressibility.
This allows us to study the stability of stratified fluids and to get a rather
general condition for instability. In the next section, when studying the stability
of an ablation layer we shall further improve the model, with the assumption of
isobaricity replacing that of incompressibility.

Considering again 2D x,z perturbations and taking gravity in the negative z
direction, g = — aez, the relevant conservation equations can be written as

0, (8.66)

dux ( dux dux \ dp

8.3.1 Linearized perturbation equations

Assuming small perturbations around an equilibrium characterized by uxo =
UZQ = 0, p{z,t = 0) = po(z), and using the tilde to denote perturbations,
eqns 8.66 - 8.69 become

(8.70)

(8.71)

(8.72)

(8.73)

Fourier transform of these equations in a; and t (all quantities with tilde being
proportional to e'kxeat) gives

<rp=-« z ^5 . , (8.74)

<rpQUx — —ikp, (8.75)

-^-ap, (8.76)
dz

dp
~di

dux

« 2

Pa

Pa

+

dpo
dz

dux

~dT
diiz
~dT
duz

~dz~

fl
— U,

—

—

dp
dx'
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ikux + ^ j - = 0. (8.77)

We now combine eqns 8.74-8.77 into a single equation for uz. We first multiply
eqn 8.75 by ik and use eqn 8.77 for ux, yielding

We then substitute eqn 8.74 for p into eqn 8.76:

?jP = _ f f A , f i ,+ ° f i ^ (8.79)
dz a dz

Finally, by eliminating p in eqns 8.78 and 8.79, we obtain the desired evolution
equation for uz:

JL ( ^±] _ A2~ _ _tla
dfo~ ,8 8QN

Since velocity perturbations have to vanish at large distance from the interface,
we look for solutions such that uz —I 0 as z —» ±oo. An interesting result is
obtained by multiplying eqn 8.80 with w2, giving

, , 2 - 2 dP® ~2 / o Q-i \

which can then be integrated over z from —oo to oo and solved with respect to
<r to yield

/
°° dpo _2 ia-r-uzdz

" - = *" ^ T T T ^ T - " (8-82)

Notice that the integral of the first term on the left-hand side of eqn 8.81 is zero
since perturbations must vanish at infinity. In eqn 8.82 we have kept a under
the integral to include the case of space-dependent acceleration, which will be
useful later in this section. The explicit expression 8.82 for the growth rate allows
us to discuss regimes of instability in qualitative terms, as we show in the next
subsection.

8.3.2 General instability condition

According to eqn 8.82 the condition for instability, i.e. the existence of at least
one value of k for which <r(k) is real and positive, is equivalent to the existence
of values of k for which the numerator of eqn 8.82 is positive (the denominator
being always positive).

It is immediately seen that the system is stable if the product a(dpo/dz) is
everywhere negative and unstable if a(dpa/dz) is positive in some z interval.
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If a(dpo/dz) is anywhere positive, then modes exist which make the integral
positive. Hence, a necessary and sufficient condition for instability is that in
some interval of z the product a(dpo/dz) > 0, i.e. both density gradient and
acceleration have the same sign. By using eqn 8.68 to express the acceleration as
a = —(dpa/dz)/pa(z), we obtain a general condition for instability in the form

$^<0. (8.83)
dz dz

It shows that RTI occurs whenever density gradient and pressure gradient have
opposite sign. When density and pressure gradients are not parallel, the condition
for instability is Vpc Vpo < 0. The form 8.83 is particularly useful and physically
transparent in applications to ICF and to astrophysical problems.

8.3.3 The classical RTI growth rate

Let us now derive the classical growth rate 8.36 from the general expression 8.82.
For the configuration of § 8.2 with two superimposed homogeneous fluids 1 and
2, such that po(z) = pi for z > 0 and pa(z) = p\ for z < 0. The condition of
continuity of the velocity component normal to the unperturbed boundary is

lim uz = lim uz = uz0. (8.84)
z * 0 + 2 v O -

In each of the two regions 1 and 2 the density is uniform, and one has dpo(z)/dz —
0; eqn 8.80 then becomes, for z ^ 0,

- k2uz = 0. (8.85)

The solution satisfying the boundary conditions at infinity and the continuity
conditions at the interface is

oe** z<0. ( 8 - 8 6 )

Notice that ux = (i/k)dzuz, dzu2 and dzux are not continuous at the interface.
They would have been continuous had we taken viscosity into account.

The linear growth rate is now found by inserting the velocity perturba-
tion 8.86, the densities, and the density derivative dpo/dz = S(z)(p2 —pi) into
the general expression 8.82. The classical growth rate 8.36 is then immediately
recovered.

8.3.4 Density gradient

We now turn to the case of a stratified fluid, having a region with variable
density p(z) joining two homogeneous regions with different densities pi and
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P2, respectively. For a simple evaluation of the growth rate, following Le Levier
(1955), we take the model density profile

z<0,
- (Ap/1) exp(-2z/L) z > 0,

where Ap — p2 — pi. Using this profile in eqn 8.82 and assuming that the per-
turbation eigenfunctions are still well approximated by those of eqn 8.86 for the
sharp interface, one finds

(8.88)

with At = Ap/(p2 + pi). This reproduces the classical RTI rate in the limit of
long perturbation wavelength, kL -C 1. In the opposite limit of short wavelength
kL 3> 1, it gives a — y/aAt/L — \/a/2Lm\n, where Lmin = mm[po/(dpo/dz)] =
L/2At is the minimum value of the density-gradient scale-length. Therefore,
short wavelength modes have a growth rate independent of the wavelength and
substantially smaller than in the case of the sharp interface. Equation 8.88 is
an approximate result, because we have used the eigenfunction 8.86 derived for
step-like profiles. Self-consistent calculations (Munro 1988) have shown that in
the limit kL ^ 1 the growth rate is <r ~ \/a/Lmin which is a factor y/2 larger
than the present estimate. For practical application in ICF target design, we
may use the approximate formula (Lindl 1997)

which has the correct limits for large and small k.

8.4 RTI at an ablation front

In this section we discuss RTI at a laser- or radiation-driven front. The very
important result in this case is that ablation reduces the growth of RTI modes
and even fully stabilizes short wavelength modes. This is predicted by rather
sophisticated theory and demonstrated by difficult and elegant experiments. Be-
fore entering the detailed treatment, we give a simple argument, which makes
ablative stabilization plausible. It is due to Lindl and was reported by Kilkenny
et al. (1994). It is based on the observation that the eigenfunctions of classical
RTI grow in time as exp(<rRT<) and decay in space as exp(—A:|2|), where \z\ is
the distance from the unstable interface (see eqn 8.27). In the ablative RTI the
perturbation grows by a factor exp(crKrAt) in the time interval At. Due to ab-
lation, however, the interface moves inside the dense material with an ablation
velocity «a. Therefore in the time interval At the interface penetrates to depth
Az — uaAt inside the dense material and samples an eigenfunction which is
smaller by a factor exp(—kAz) = exp(—kuaAt). Therefore, the effective growth
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using p = pTnT. We then eliminate the time derivative of the density by using
the continuity equation 8.66 in the form —dp/dt = pV • u + u • V/>, thus getting

u ' V p - ( 8 - 9 3 )

Substituting this last equation into eqn 8.91, we obtain

- v - q ( 8 9 4 )

By assuming isobaricity, we set the left-hand side to zero and take the pressure
p = pa as a constant on the right-hand side; here, we use subscript "a" to refer
to quantities at the ablation front. In this isobaric approximation (Kull and
Anisimov 1986) the energy conservation equation reads

7
(8.95)

We now relate the heat flux q = —\VT to the flow variables. For the thermal
conductivity we take

X = XoT", (8.96)

which applies to both electron heat diffusion, with v = 5/2, and to radiative
heat diffusion, with v > 3 (see § 7.1.2). In typical cases energy is transported
simultaneously by electrons and by photons. However, it turns out that in most
cases a power law 8.96 is still an acceptable approximation, be it with values
of v different from those quoted above. When radiative effects are important
in direct drive targets, Betti et al. (1998) find that one has v < 2, contrary to
naive expectations. In passing, we mention that the derivation below also applies,
when the conductivity is expressed in the more general form \ — XoT"p~f =
XoTu(prBT)~11. Here we set // = 0. Using the isobaric approximation, we then
write the thermal flux as

Sr> (8-97)

where Ta is the temperature and \a. ls *n e conductivity at the ablation front
and p = p/Pn < 1 is the density normalized to its value at the ablation front.
Equation 8.95 can then be written in the form

= 0, (8.98)
\ r •-/

where
Lo = 7 X a -r- (8.99)

is a characteristic scale-length.
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Fig. 8.12

Summarizing, in 2D slab geometry and in the isobaric approximation, the
fluid equations in the accelerated frame of reference are

dux

duz
p~at

-£ + V • (pu) = 0,
dux _ dux dp

duz

V - ( u + Ma

duz

dz
dp
dz

(8.100)

(8.101)

(8.102)

(8.103)

Notice that we have kept terms with pressure gradients in the momentum equa-
tions 8.101 and 8.102, because there they are of the same order as the terms on
the left-hand sides.

8.4.2 Qualitative discussion in terms of the Froude number

Important features of the ablative RTI can be discussed qualitatively, based on
the analysis of the equilibrium profiles of the ablating fluid (Betti 1996). Indeed,
we expect that the general condition for instability (Vp • Vp < 0; see eqn 8.83)
and the growth reduction due to a density gradient (see eqn 8.89) still apply to
the ablative RTI. But now mass, momentum and energy flow in addition reduce
the instability growth. Furthermore, we expect that RTI modes are located in
the layer where the density gradient scale-length is minimum.

We start from the density profile. By integrating eqn 8.103 and using the
continuity equation 8.100, involving pu = paua, we find that the density gradient

dp
dz La

(8.104)

only depends on LQ and the exponent v. Corresponding profiles for different
values of v are shown versus the normalized space coordinate Z/LQ in Fig. 8.12.
Equation 8.104 also shows that the local scale-length is L = LQ/pu(\ — p) has a
minimum value

+ 1

which is several times larger than Xo for v > 1. Equation 8.104 cannot be solved
in closed-form, but two asymptotic limits of great interest can be obtained for
the overdense region and the blow-off plasma. We find

for z > Lo,

for z <C —VLQ
(8.106)

To analyse the pressure profile, we consider momentum conservation along z
expressed by eqn 8.102, which at equilibrium reads
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FIG. 8.12. Isobaric ablation model. Normalized density profiles around the
ablation front for Lo = 0.1 pm and different values of v After Betti et al.
(1996), with permission.

duz

''~dz~
dp

= -Tz-pa- (8.107)

An expression for the velocity is found from eqn 8.100 for mass conservation
in the form uz = uapa/p — na/p. Here ua is the ablation velocity, which is the
velocity of the exhaust material at the ablation front measured in a frame moving
with the front itself. Equation 8.107 can then be written as

f (8.108)

where we have used the relationship duz/dz = — u&p 2(dp/dz) and eqn 8.104,
and have introduced the Froude number

aL0

The equivalent expression

T-

(8.109)

(8.110)

shows that the Froude number can be thought of as the ratio of the energy
fluxes associated to hydrodynamic flow and to thermal conduction, respectively.
The Froude number vanishes in the limit in which energy flux is dominated by
thermal conductivity.

For qualitative stability analysis, the location of peak pressure is particularly
important. It can be found by setting the pressure derivative in eqn 8.108 to zero.
We thus see that peak pressure occurs at the location where the normalized
density takes the value pp, such that pp~2(l — PV)^F = 1. For large Froude
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FIG. 8.13. Density and pressure profiles around the ablation front for large (a)
and small (b) Froude numbers T. RTI unstable regions (where Vp • Vp < 0)
are indicated by shaded areas. Short-wavelength modes, centred around the
minimum of the density-gradient scale-length are unstable when they fall
in the shaded area. Decreasing the Froude number makes short wavelength
modes unstable. Adapted after Betti et al. (1996), with permission.

Fig. 8.13

numbers, ".F 3> 1, i.e. when thermal conductivity plays a relatively minor role,
the peak pressure is found at pp = 1 — T~x ~ 1, i.e. close to the ablation
front (see Fig. 8.13a). As T decreases, the peak pressure moves away from the
ablation front. In the limit of T -C 1, the pressure increases indefinitely when
moving away from the ablation front.

We have thus found that as the relative importance of the thermal conductiv-
ity increases, the peak pressure moves away from the ablation front towards the
low density plasma. This widens the region of ablated plasma where Vp • Vp < 0
(see Fig. 8.13b) and RTI modes are unstable. Therefore, while in principle both
hydrodynamic flow and thermal conduction reduce RTI growth, this profile mod-
ification induced by thermal conduction can reduce substantially their stabilizing
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effect.
We can now discuss the stability of the ablation front in terms of the Froude

number. We consider first the case T ;$> 1 (see Fig. 8.13a). Since the peak
pressure is close to the ablation front, the classical unstable region where Vp •
Vp < 0 is very small and does not include the region of steepest gradient. In
addition, for large values of T = u^a/Lo > 1 we expect important stabilizing
effects due to the ablative flow. All this suggests that in this case modes with
wavelength comparable to or smaller than LQ and therefore satisfying kLo > 1
are stable.

In the opposite case of T -C 1, a large classically unstable region exists, which
now includes the region of steepest gradient (see Fig. 8.13b). In this case, ablation
and density gradients cannot stabilize modes with wavelength comparable to
the scale-length LQ. Indeed, stabilization is only found to occur at much shorter
wavelengths.

8.4.3 Perturbation equations

In the following, we give the equations for the numerical stability analysis of the
problem and present results in graphical form. The subsonic nature of the flow
around the ablation front allows us to use the isobaric approximation for the
equation describing flow perturbations (Kull and Anisimov 1986). As usual, we
take perturbations proportional to e'kxeat. Linearizing eqs 8.100-8.103 around
an equilibrium solution with UQ = i"o(2)ez, Po — Po(z) and a0 = aez, we write
in dimensionless form

{p<rn-di)n+^l + pV-v = 0, (8.111)
knL

ii-paa + ds)vx + * = 0, (8.112)

ds* - (dB - <rnp - - L ) fi, + fi (-^ _ J - } = 0, (8.113)
V knL/ \«n> knLpy

] = 0 , (8.114)

where z = kz, V = k~lV, p = po(z)/pa, L — L/LQ, and L — p/(dp/dz)
are known functions of the coordinate z, T = u\/aLo is the Froude number
introduced above,1

kn — kL0, <rn = tr/kua (8.115)

are dimensionless wavenumber and growth rate, respectively. Here n = p/p,
vz = M2/Ma, vx — ux/ua, and 5- = p/p a«| are the four dimensionless unknowns.
Equations 8.111-8.114 can be combined into a single fifth-order differential equa-
tion for $ = knh/pT+1:

[di (8t - <rnp) 3t - {di - <rnp)\ knj- [(& - <r

1 Notice that the Froude number T used here is the reciprocal of the parameter F introduced
by Kull (1989).
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K = 0. (8.116)

Fig. 8.14

Fig. 8.15

This is an eigenvalue equation, the eigenvalue being the dimensionless growth
rate

<ra = <rn(fcn) JF, u), (8.117)

which only depends on the dimensionless wavenumber kn and on the parameters
J- and v.

Equation 8.116 cannot be solved analytically to give a closed form disper-
sion relation. Accurate solutions have been obtained by numerical methods by
Kull (1989), who extended pioneering work by Takabe et al. (1985). Recently,
eqn 8.116 has been solved by sophisticated analytical treatments based on asymp-
totic matching techniques and WKB methods (Sanz 1994; Betti et al. 1996).
Results are summarized in the next subsection.

It is also worth mentioning that many authors have developed simplified
analytical treatments of the ablative RTI, based on sharp boundary models.
Such models consider the perturbation of the interface separating two homoge-
neous fluids, with boundary conditions approximately taking into account mass
and energy flows associated to ablation. Although less rigorous then the self-
consistent theory, sharp boundary models allowed to gain understanding into
ablative RTI. They were pioneered by Bodner (1974), who derived a dispersion
relation (<r = \fa~k — kua), showing for the first time the stabilizing effect of
ablation. Recent developments of sharp boundary models of the linear ablative
RTI are summarized by Piriz (2001a). Sanz et al. (2002) have also shown that
sharp-boundary models can be also used to address nonlinear ablative RTI. They
have developed a model leading to a system of two properly matched Laplace
equations. Its computational solution is straightforward and fast, and allow to
recover the main features of nonlinear RTI evolution.

8.4.4 Results of self-consistent treatments

A general dispersion relation for the ablative RTI, which fits analytical solutions
of eqn 8.116 for small and large values of T and for the whole range of v of
practical interest has been proposed by Betti et al. (1998), but it is quite lengthy
and is therefore not reproduced here. Results are more transparent in graphical
form. In Fig. 8.14 we plot the normalized growth rate versus the normalized
wavenumber for different values of Froude number and v. It is seen that short
wavelengths are stabilized, the stabilization being more effective for large values
of the Froude number, in qualitative agreement with the discussion of § 8.4.2.
Figure 8.14 shows the existence of a cut-off wavenumber, above which all modes
are stable. The dependence of the cut-off wavenumber on the Froude number is
presented in Fig. 8.15.

Betti et al. (1998) have also shown that the dispersion relation can be ap-
proximated in the form

)Valk - for T (8.118)
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F I G . 8.14. Stability results from the isobaric ablation model with self-consistent
steady-flow profiles. Instability dispersion relation <rn = cn(kn) (a) for
v = 2.5 with Froude number T varying between 0.01 and 50; (b) for T — 5
and different values v. Curves for v > 2.5, not shown here, almost overlap
with the curve for v = 2.5. After Kull (1989), with permission.

<T = •
ak
kLT1

(8.119)

where a\, a?, j3\ and fc are fitting functions depending only on T and v. They
are presented in graphical form in Fig. 8.16. The same figure also shows the
regions of best fit of each of eqns 8.118 and 8.119.

Equations 8.118 and 8.119 are known as Takabe's formula and modified Tak-
abe's formula, respectively. Equation 8.118, with Pi ~ 3, was first proposed by
Takabe et al. (1985) to fit results of a numerical eigenvalue solution of a model
of the ablative RTI assuming spherical geometry and steady coronal flow. This
formula provides simple, useful expressions for the cut-off wavenumber

Fig. 8.16

a 2 a l a 2

(8.120)

and for the maximum value of the growth rate
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FIG. 8.15. Normalized cut-off wavelength vs Froude number T for conductivity
exponent v = 2.5, as predicted by the isobaric model with self-consistent
steady-flow profiles. After Kull (1989), with permission.
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FIG. 8.16. Coefficients a\ and /?j, and a-i and fa of the fitting formulas 8.118
and 8.119 versus the Froude number T, for different values of the effective
conductivity exponent v. The solid part of each curve indicates the region of
best fit of either eqn 8.118 or 8.119. After Betti et al. (1998).
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A

h

direct-drive
(plastic ablator)

0.97
1.5

direct-drive
(DT ablator)

0.97
2.5

indirect-drive

1
1-1.5

Table 8.1 Values of the coefficients a.\, oti r\\, and t)2 appearing in eqn 8.119,
for ICF targets designed to achieve ignition.

la2 a
(8.121)

which occurs at k — km = kc/4. Notice that eqn 8.120 confirms the qualitative
prediction made in § 8.4.2 about modes with kLo » 1: indeed they are stable for
T > 1 and unstable for T < 1.

Equations 8.118 and 8.119 summarize the present understanding of the linear
theory of the ablative RTI. However, their use is not straightforward. Indeed, first
they require the knowledge of T, v, wa and £„,;„, while in the experiments the
independent variables are the target and beam parameters. Second, the model
used here is based on the assumption that energy transport can be described by
a single diffusive process.

Despite these limitations, detailed comparison with 2D numerical simula-
tions confirm the approximate validity of these results, provided the values of
the relevant quantities T, «a,

 a, v £min are properly evaluated. To this purpose,
the standard procedure (Betti et al. 1998) consists in performing accurate ID
numerical radiation-hydrodynamic simulations, including both flux-limited elec-
tron conductivity and multi-group radiation transport, to find quasi-equilibrium
profiles of the flow quantities. These can be used to determine effective values
of «a , a, Lo (and hence of T) and of v and i m j n . The parameters an and /?i or
<*2 and fa are then determined as functions of T and v by using the curves of
Fig. 8.16.

The values of a.\ and 0i ( or OLI and /?2) for ignition-scale ICF targets are given
in Table 8.1. It is seen that in all cases <*i (or a-i) is close to one. The parameters
/?i and 02, instead, depend on the driving beam and on the ablator material. In
general, /3j (or fa) is smaller for indirect drive than for direct-drive. We shall
see, however, in § 8.8 that the relevant quantity measuring the effect of ablative
stabilization will turn out to be the product of fa times the fractional ablated
mass. This last quantity is larger for indirect drive than for direct drive so that
indirect-drive targets are predicted to be more stable than direct-drive targets.
Concerning direct-drive targets, the largest values of /? apply to DT ablators.
This has lead to the design of targets similar to that illustrated in Chapter 3,
but with the outer CH layer replaced by DT or foam-filled DT (Bodner et al.
2000; McKenty et al. 2001). Table 8.1
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Fig. 8.17

Fig. 8.18

8.4.5 Comparison with experiments and simulations

Since the beginning of ICF research control of implosion instabilities was recog-
nized as a key issue, and RTI was addressed both analytically and numerically.
Lindl and Mead (1975) performed the first 2D simulations of the RTI of the
outer surface of a laser-driven shell, showing growth smaller than for classical
RTI. These pioneering simulations, however, could not attain the resolution re-
quired to investigate complete stabilization. In the early 1980s many authors
studied the instability of laser accelerated plane targets, discussing interesting
nonlinear effects {see, e. g., McCrory et al. 1981; Evans et al. 1982). In the same
years, experiments provided the first evidence for RTI in laser-driven targets
(Cole et al. 1982; Grun et al. 1982). The quantitative study of ablative stabiliza-
tion, however, required higher resolution, in both experiments and simulations.

2D simulations proving ablative stabilization at short wavelengths were pub-
lished in 1990-91 (Tabak et al. 1990'Gardner et al. 1991). In the following years,
RTI growth rates were measured by highly sophisticated experiments. In the
remainder of this subsection, we discuss some of these important experimental
and numerical results.

The set-up of a typical experiment is shown in Fig. 8.17(a), after Remington
et al. (1991). It refers to the study of the RTI of a radiation-driven plane target.
The X-rays produced in a hohlraum (see Chapter 9) drive a plane foil with an
imposed sinusoidal corrugation. Harder X-rays, produced by a backlighter beam
(see the top of the figure), are used to probe the accelerated foil. RTI growth
is then measured by studying the modulation of the hard X-rays transmitted
through the perturbed foil. This allows to obtain space- and time-resolved data
on the foil column density / pdz. A beautiful example is shown Fig. 8.17(b),
where X-ray exposure modulations (related to / pdz modulations) are plotted
versus space coordinate at different times. One clearly sees the growth of the
modulation. At first modulations are symmetric and roughly sinusoidal. At later
times, however, they become asymmetric and the characteristic bubble-and-spike
structures appear. The relatively large initial amplitude of the corrugation, how-
ever, did not allow to measure linear growth rates.

An important experiment comparing ablative RTI and classical RTI was per-
formed by Budil et al. (1996). Two targets were irradiated by identical radiation
pulses, producing the same acceleration in both cases. One target was a foil of a
single material with a corrugation on the laser side to seed a well defined single-
wavelength mode of ablative RTI. The second target consisted of two layers of
different materials with the denser one on the side opposite to the laser. The
interface between the two materials is unstable to classical RTI. Such an inter-
face was sinusoidally deformed. Different wavelengths were tested for both kinds
of targets, and the time integrated growth of the modulation was measured. As
shown in Fig. 8.18, substantially different growth curves were obtained in the
two cases, clearly showing the difference between ablative and classical RTI.

The measurement of linear growth rates requires control of laser and target
parameters to make sure that unperturbed flow parameters, such as accelera-
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(a) BackJighter beam

(b)

100 200 300 400 500

Position (channels)

FIG. 8.17. Experiment on RTI of radiation driven foils with imposed sinusoidal
perturbation of relatively large amplitude, (a) Experimental set-up, (b) Mea-
sured exposure curves versus time for an accelerated thin foil with an initial
sinusoidal perturbation with 1.9 /im amplitude and 50 /im wavelength. Each
curve represents the average over a 400 ps time interval and is offset ver-
tically from bottom to top in order of increasing time. The dashed curves
represent an estimate of the average long-range structure due to backlighter
nonuniformity. After Remington et al. (1991). Reprinted with permission.
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FIG. 8.18. Classical vs ablative RTI growth factors as measured in an exper-
iment by Budil et al. (1996). The figure shows the growth factors vs the
wavelength of the perturbation. Growth factors are normalized to the mea-
sured classical value at A = 100 fim. Curves are results of 2D simulations.
Reprinted with permission.

Fig. 8.19

tion, are constant in time and that perturbation growth is exponential in time.
The growth rates are then obtained by the following procedure. First, mode am-
plitudes at given times are computed by Fourier transforming X-ray exposure
curves such as those shown in Fig. 8.17(b). This allows to obtain the time evo-
lution of the modulation and to check that the amplitude of higher harmonics
stays well below that of the imposed mode of perturbation. Finally, growth rates
are obtained from the time derivatives of such curves. An example is shown
in Fig. 8.19. It refers to 20 (im thick plastic foils, driven by laser pulses with
wavelength of 0.53 urn and intensity of 7 x 1013 W/cm2. The foils have single-
mode modulations with different wavelengths A and different initial amplitudes
rj0. The measured foil acceleration is a = 6 x 1015 cm/s2, and the ablation ve-
locity is about 105 cm/s. Frames (a)-(d) show the evolution of the modulation
for different values of A and T)0. A stage of nearly exponential growth is clearly
observed. Growth rates vs wavelength are plotted in Fig. 8.19(e). The growth
rates are smaller than for classical RTI and agree with 2D simulations. However,
the region where full stabilization is expected could not be accessed, because the
required space resolution exceeded that experimentally achievable.

Short wavelength stabilization has instead be demonstrated for radiation
driven targets by Budil et al. (2001). They irradiated 25 /im thick aluminum
foils by a pulse of thermal radiation with temperature Tr of about 100 eV. The
foils had single-mode modulations with wavelength in the range 10-70 //m. The
evolution of foil modulations are shown in Figure 8.20. One sees that pertur-
bations with wavelength of 10 or 12 fim do not grow at all, while those with
A = 16 //m grow very slowly. Measured modulation evolutions are well repro-
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FlG. 8.19. Ablative RTI of a plastic foil driven by a laser pulse. Experiments
where performed on foils with initial sinusoidal corrugations, (a)-(d) Ampli-
tude of the modulation of the fundamental mode of optical depth for different
wavelengths A and initial perturbation amplitudes T)Q. (e) Average growth
rates for different wavelengths compared with the results of simulations and
with the classical values. Reduction of the growth rate to 50% of the classical
growth rate is observed for A = 20 fim and A = 30 fj,m. After Glendinning et
al. (1997), with permission.

duced by 2D numerical simulations. Fig. 8.20
The above results demonstrate ablative stabilization and good agreement

between experiments and simulations. To conclude this subsection, in Fig. 8.21
we compare numerical simulations with theoretical models. Figure 8.21(a) shows
data from one of the first studies finding full stabilization at short wavelength
(Tabak et al. 1990). It refers to a direct-drive target and shows that experimental Fig. 8.21
results are reproduced by Takabe's formula 8.118, with a\ = 0.9 and /3i =
3. Figure 8.21(b), instead, refers to an indirectly driven target (Budil et al.
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FIG. 8.20. Ablative RTI of radiation driven foils with single wavelength initial
perturbations. Growth of the modulation of the optical depth for different
values of the wavelength A. Symbols with error bars represent the amplitude
of the exposure modulation. The curves in the figures are results of radi-
ation-hydrodynamics simulations perfomed by means of the 2D LASNEX
code. After Budil et al. (2001), with permission.
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F I G . 8.21. Examples of dispersion relation for ablative RTI obtained by 2D
numerical simulations, (a) RTI of a laser-driven CH foil, from LASNEX sim-
ulations by Tabak et al. (1990). The foil is 20 fim thick and is irradiated by a
light pulse with intensity / = 2 x 1015 W/cm2 and wavelength A = 0.26 fim.
The dashed curve is Takabe's formula8.118, with fa = 3. (b) RTI of a 25 fim
thick aluminum foil irradiated by thermal radiation with drive temperature
TT ~ 100 eV; after Budil et al. (2001), with permission.
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2001), with the same parameters as in the experiment of Fig. 8.20. We see that
both Takabe's eqn 8.118 and Betti's (or modified-Takabe) eqn 8.119 show the
same trends as the numerical results, but do not reproduce the simulation data
quantitatively.

8.5 Stability of spherical boundaries
In ICF the Rayleigh-Taylor instability occurs at spherical interfaces rather than
at plane boundaries. While convergence effects are negligible at the ablation
front, because ablative drive takes place during early stages of implosion when
the shell radius is still large, they can be important at the inner surface of the
shell when it stagnates at the centre.

In this section, we outline a simplified RTI treatment of an imploding spher-
ical interface and derive two results relevant to ICF, namely i) shell oscillations
and ii) the linear growth rate for RTI at implosion stagnation. We notice that
results presented here are also relevant to many areas of science and technology
dealing with collapsing bubbles. These include, e. g., sonoluminescence (Brenner
el al. 2002), damage of hydraulics machines, and medical application of bubbles
[see, e.g. Lohse (2003)].

8.5.1 Perturbation equation for a cavity

In this subsection and in the following one we study the evolution of perturba-
tions of an empty spherical cavity. Notice that in the plane ideal RTI we consider
stability of an equilibrium state or of a steady state. However when considering
converging flows we have to consider the evolution of perturbations of a sym-
metrical flow, where the unperturbed radius R(t) is an assigned function of time.
We then write

r(6,<t>,t) = R(t)+C(6,<!>,t), (8.122)

where r is the actual radial coordinate of the perturbed cavity, C is the perturba-
tion amplitude, and 9 and <j> are spherical coordinates. In this subsection we shall
use potential theory for incompressible flow as in § 8.2. The perturbed potential
must then satisfy the Laplace equation 8.5. It is solved in spherical geometry by
a superposition of modes

0,ocfj-ifl(*). i = 1,2,..., (8.123)

where j = I + I at j = —I, and Pi is the spherical harmonic of order /. Since
we are interested in the region r > R we have to take j = I + 1 such that (pi
stays finite for r\ —» oo. In addition, the perturbed quantities have to satisfy the
kinematic and dynamic boundary conditions at the interface. Here, we omit the
detailed treatment, which can be found in the original papers by Bell (1951) and
Plesset (1954), and rather quote the main results. It is found that the amplitude
Q of the /-th perturbation mode evolves according to

did + 3 |d tO - (Z - l ) | 0 = 0. (8.124)
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The same equation with front factor 2 instead of 3 in the second term on the
left hand side applies to cylindrical geometry. Equation 8.124 is known as Bell-
Plesset equation. A more transparent equation is obtained by introducing the
mass variable m — pR?/k, and the wavenumber

k = (I + 1)/R. (8.125)

This gives

dt(mdtCi) ^mRkQ = 0. (8.126)

Equation 8.126 differs from the equivalent eqn 8.44 for plane geometry, in having
a mass varying in time, and in the factor (l — l)/l. Equation 8.125 makes apparent
that in converging geometries the wavelength A = 2n/k of a given perturbation
changes as the radius of the cavity changes.

8.5.2 Stability of a spherical cavity. Cavity oscillations.

We are now ready to discuss, in qualitative terms, some features of the stability
of a spherical cavity. In this context, an important quantity is the amplitude of
the perturbation relative to the radius of the cavity, i.e. Q/R. The convergent
flow leads to amplification of £; /R even in a cavity collapsing at uniform velocity
R = —U. In this case, R — 0, and then eqn 8.126 simply states conservation of
rndtO- For a static initial perturbation (i.e. £/ = £io and dtC. = 0 at t — 0) of a
cavity with initial radius RQ, the amplitude of the perturbation remains constant,
but its ratio to the cavity radius grows proportionally to the convergence ratio
Ro/R. If dtC\t=o = Co i- 0, instead, then

d) (812r)

showing that even the absolute value of the perturbation is now amplified and
diverges as the cavity collapses. Notice that this effect is independent of the mode
number.

To examine a case in which the cavity is accelerated inwards, we refer to the
so-called ballistic motion of an imploding cavity, i.e. to an implosion occurring
at fixed kinetic energy. This is described by (Kull 1991)

R/R = -(2/5)/(<c - t), R/R = -(6/25)/(*c - *)2, (8.128)

where tc is the time at which the cavity collapses. In this case the solution of
eqn 8.124 is

_(Bo\i

Oo cos(£s) - - + -T--T- — T — I , (8.129)
\ i Ho t,o / <

where
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= \n[Ro/R{t)]- (8-130)

We see that in addition to the amplification of the perturbation by a factor
(Ro/R)1/4, the cavity undergoes oscillations depending on the product £(l)s(t),
which is a function of both mode number and time.

A more general criterion for the stability of an imploding spherical or cylin-
drical shell, implying that the solution of eqn 8.126 (or the analogous equation
for cylindrical geometry) remains finite, was presented by Birkhoff (1954). It
reads

R<0 and R(a*R/dt3) + (26 - 1)RR < 0 (8.131)

with 6 = 3 or 2 for spherical and cylindrical geometry, respectively. The first con-
dition holds in general and just states that the interface is Rayleigh-Taylor stable
if the acceleration is directed from the fluid to the void. The second one, instead,
is specific to the converging geometry. An interesting point is that incompressible
converging flows (R < 0) with constant inward acceleration (R = Ro < 0) are
unstable, even in the case when there is no RTI.

8.5.3 Classical RTI at implosion stagnation

In the previous subsections we have considered the stability of imploding void
cavities. In fact, in ICF and other applications one deals with a spherical interface
separating two fluids of different densities. Here, we show that the linear growth
rate of the perturbations of a stagnating spherical interface is well approximated
by the expression for the classical RTI of a plane interface.

A classical treatment of the problem is due to Bell (1951) and Plesset (1954),
who considered the implosion of the spherical interface separating an outer in-
compressible fluid with density p2, filled with another incompressible fluid with
density pi. Of course, the assumption of incompressibility of the filling gas re-
quires the presence of a sink or a source at the origin. Despite these evidently
rough assumptions, the model proves quite accurate, as it is confirmed by nu-
merical studies. The equation for the evolution of the perturbations now reads

^ 0 - 0, (8.132)

from which eqn 8.124 is recovered when pi — 0. We stress that the interface
trajectory is prescribed and therefore R(t), R(t), and R(t) are known functions
of the time.

Important insight is obtained from an approximate solution of eqn 8.132. By
introducing the new variable

yi = (R/Rof'%, (8.133)

with Ro being an arbitrary value of the interface radius, eqn 8.132 transforms
into the equivalent equation

G,(t)m=Q, (8.134)
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where

- AR? R[2+

Equation 8.134 can be solved in the WKB approximation (see § 1.2.3 and the
references therein quoted) which gives

t r
One sees that the perturbation grows nearly exponentially in time, if G1/<2 has
an imaginary part, i.e. if the real function G is negative.

The solution becomes particularly simple and enlightening just in the case of
greatest interest for ICF, i.e. that concerning instability at the time of stagnation
(see Fig. 8.1). In this case R ~ 0-, and for relatively large values of I, Gi ~
—lAtR/R = — RkeffAt, where keff — l/R is an effective wavenumber and At =
(P2 —pi)/(P2 + Pi) is the instantaneous value of the Atwood number. For a dense
stagnating shell, At > 0, and then perturbations grow in time according to

3/2
/ y J / (8.137)

Neglecting the weak time dependence of the front factor, the perturbation grows
exponentially with a growth rate

(8.138)

equal to the classical RTI expression 8.36.
Recently, Amendt et al. (2003) have modified the Bell-Plesset model, in-

cluding the effect of compressibility of both fluids. It is interesting to notice
that, while compressibility is in general important, its effect on RTI at stag-
nation turns out to be small. Indeed, according to their treatment, the growth
rate at stagnation is simply obtained by multiplying eqn 8.138 by the factor
{1 + (&c/l)\p2/{p2 — Pi)]}1^2! where ac = —{R/R)(p2/P2) is a dimensionless
compressibility parameter, typically in the range of 2-3. For I ~3> 1 the correc-
tion to the Bell-Plesset growth rate is therefore negligible.

Numerical solutions of the perturbations equations, including the effect of
compressibility and using the radial motion R(t) obtained from self-similar im-
plosion solutions, indeed confirm the accuracy of eqn 8.138 (Hattori et al. 1986).

8.5.4 Ablative RTI of decelerating ICF shells

The RTI occurring during deceleration and stagnation of an ICF target differs
from classical RTI discussed in the previous subsections. Indeed the heat flow
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and the flow of a- particles from the central hot spot cause ablation of the
decelerating dense shell. Although this effect has been known for a long time
(and is discussed, e.g., in Chapters 3 and 4), only recently Lobatchev and Betti
(2000) have pointed out that it stabilizes RTI. They have shown that the linear
growth rate of the relevant deceleration-phase ablative RTI is well approximated
by the same expression 8.119 which applies to the RTI of a beam-driven ablation
front. We then have

where we have used k = l/R. Here Lm is the minimum density scale-length at
the hot spot surface, «a;n is the ablation velocity of the inner shell surface and
pm — 1-5 is a numerical coefficient. Further details can be found in a paper by
Atzeni and Temporal (2003), who analyze the stabilizing role of the different
transport mechanisms. In concluding this section, it is worth mentioning that
recent progress in diagnostic techniques have allowed for the first direct exper-
imental measurements of the time evolution of the deformation of an ICF shell
during the stages of deceleration and stagnation (Smalyuk et al. 2002).

8.6 Nonlinear evolution of single-mode perturbations
In the previous sections we have discussed the behaviour of small amplitude
perturbations. In the case of plane interfaces we considered modes of sinusuoidal
shape. As shown in Fig. 8.4, larger disturbances have substantially different
behaviour. Their shape is no more symmetrical, and the time evolution is no
more exponential. In this section, we study the nonlinear evolution of a single
wavelength perturbation. First, in § 8.6.1, we study analytically the evolution of
a rising bubble. We will compute the speed of the bubble vertex and the bubble
radius of curvature at all stages of the evolution. The asymptotic behaviour of
RTI and RMI bubbles and spikes for any value of the Atwood number At is then
studied in § 8.6.2. The results of § 8.6.2 allow to derive a simple criterion for
growth saturation, which is presented in § 8.6.3. Finally, in § 8.6.4 we discuss
qualitatively the difference between 2D and 3D perturbations.

Notice that bubble penetration into the heavy fluid is relevant to RTI at the
outer surface of an ICF target: during acceleration, it is just the penetration of
the light plasma bubbles into the accelerated solid layer that could lead to shell
rupture. Spikes of the dense shell material can instead penetrate into the hot
spot during the unstable collapse stage, degrading ignition.

8.6.1 RTI bubble evolution for At - 1

Here, we discuss bubble evolution, following an elegant treatment presented by
Layzer (1955). We use the potential flow model of an incompressible fluid and
refer to a semi-infinite fluid (At = 1), subject to downward directed gravity or to
upward directed acceleration a and supported by a uniform pressure. We further
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assume 2D x-z slab geometry with periodic boundary conditions in x having
wavelength A = 2ir/k and take a reference system moving with the bubble vertex,
which has height h\,(t) relative to the position of the unperturbed boundary. By
definition, uz — 0 at the vertex (* = z = 0), which moves with the fluid. The
bubble surface is described by z = £(x,t).

The model is based on the ansatz for the velocity potential

<p(x, z,t) = <pi(t) [e~kz cos(kx) - 1 + kz) , (8.140)

which is certainly a solution of the Laplace equation V2v? = 0 and has the
velocity components

ux = dx<p = ~kipi{t)e-kz sm{kx), (8.141)

uz = dz<p - k<pi(t) [e-fc2
 COS(A;J;) + l] . (8.142)

They satisfy the boundary conditions, at least ux — 0 at x = ±A/2, u2 = 0 at
the vertex (x — z = 0), and

lim u2 = k<pi(t) = -hh, (8.143)
3-+OO

far ahead of the front, where the fluid mass moves with the negative velocity
of the reference frame. Potential 8.140 may be considered as the first term of a
Fourier expansion of the real potential. It does not fully satisfy the equations

[6tC + ux8xC - ««Uc ( x > t ) = 0, (8.144)

\dtf + u2/2 + (a + hb)z] = 0 (8.145)

everywhere at the interface z = C(x,t), but we use them in the neighborhood of
x = z = 0 to determine the velocity and curvature of the bubble at the vertex.
Equations 8.144 and 8.145 are derived from eqs 8.14 and 8.8, respectively; the
integration constant of eqn 8.8 has been evaluated at the vertex and is C(t) = 0.

Making use of eqns 8.140-8.143, the interface equations 8.144 and 8.145
become, respectively,

- 0 (8.146)

and

hh(l - e - ^ cos kx) + ^hlk(l - 2e~kc cos kx + e~2fcc) + «K = 0. (8.147)

Following Layzer (1955), we look for solutions satisfying them in a neighborhood
of the bubble vertex (i.e. the origin x = z = 0 of our coordinate system). To this
purpose, we expand the equation for the bubble surface as

{kxf + O[(*x)s], (8.148)
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where C^ is a normalized curvature radius. Consistently, we expand cos(kx),
sin(fca;), exp(kx) exp(&£), etc. in eqns 8.146 and 8.147 up to second order in kx.
This leads to

- 3CC) = 0, (8.149)

a1 - C( 1-CC
= 0. (8.150)

-Ti"111111Lii HI 0 T*in For hb « l/k, eqn 8.150 reduces to hb = aC( - kahb, i.e. hb oc
exp(Vkat) which reproduces the classical RTI linear solution. In the opposite
limit of a large bubble amplitude, eqns W a n d 8.150 show, instead, that the
bubble rises with constant normalized curvature Cf(£) = C™ = 1/3 and constant
velocity

ug3 = hi* = y^-f~ = Jjr- = 0.23VaA. (8.151)

A similar analysis (Layzer 1955) shows that the asymptotic rise velocity of a
cylindrically symmetric bubble of diameter D is

(8.152)s-cyl _

It is important to observe that larger bubbles rise more rapidly (wĵ  oc
than smaller bubbles, while in the linear regime they had smaller growth rate,
according to <r oc A"1/2 (see Fig. 8.22).

Further information on the time evolution of bubble curvature and velocity
can be obtained as follows. Equations 8.149 and 8.150 can be integrated once
analytically, for initial conditions C^(t = 0) = Co, hb(t = 0) = ho, and hb(t =
0) = ho. Integrating eqn 8.149 by parts, we get

(8.153)

where A\ = 1 — ZCQ. Integration of eqn 8.150 is less straightforward. Setting
s = hi, one has hb = dhb/dt = hb{dhh/dhb) - (l/2)d'hl/dhh = (l/2)ds/dhb.
Equation 8.150 then becomes

ds_
dh 1-Q

; = 2a- (8.154)

which is a first order linear equation for s(hb). It can be solved by the method of
integrating factors, multiplying each term by exp[(2khb)/(l — C()]. After some
algebra one finds (Kull 1983)

(2a/3*)(l -G)-G - h0) -

AtG
(8.155)

where G = exp[—3k(hb - h0)]. Fig. 8.22
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FIG. 8.22. Bubble rise velocity vs time for different bubble wavelengths and
the same initial conditions: smaller bubbles have faster linear growth, but
smaller asymptotic velocity. Here time is normalized to t\ — l/y/\aki), with
jfci = 2 J T / A I .
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aX

6TT
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1 3 + A A

6n 1 + A f
_ , / -3C0 + 3

1 3 - A A
6TT 1 - A *

Table 8.2 Asymptotic bubble and spike behaviour for RTI and RMI (in Carte-
sian geometry). Co is the normalized bubble curvature immediately after shock
transit through the interface.

8.6.2 Asymptotic bubble and spike behaviour for arbitrary A

The expressions of the asymptotic RMI and RTI bubble and spike velocities are
listed in table 8.2 for arbitrary values of the Atwood number A - For A = 1, the
RTI bubbles are described by the model discussed in the previous subsection;
RMI bubbles and RTI and RMI spikes are dealt with by similar treatments
(Zhang 1998). All results of Table 8.2, except that for the asymptotic velocity of
an RMI spike for A = 1 are recovered by a simple model. Here we follow Alon et
ai.(l995)and Shvarts et al.(200). A critical discussion of the model can be found
in a review article by Dimonte (2000).
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For the RTI bubble, one applies Newton's law to the fluid volume V just
above the interface

^ - = fa ~ Pl)aV - CdragP2«^, (8.156)
at

expressing the fact that the bubble is accelerated upwards by the buoyancy force
due to the difference in density between the two fluids and slowed down by
the drag exerted on it by the heavier fluid. Here, as in previous sections of this
chapter, p? and pi^t jdxaz> are the densities of the two fluids. The two terms in the
parenthesis on the left hand side are interpreted by Shvarts et al. (2001) as added
mass and inertia, respectively. The drag contribution is F& = — Cdrag/̂ Wb'S)
where Cdrag is a numerical coefficient and S is the area of the bubble cross-
section. Estimating V/S ~ A, we have

For At = 1, we recover eqn 8.151, setting Cdrag = 6TT.
Equation 8.156 with a = 0 can also be used to evaluate the asymptotic

behaviour of the RMI bubbles, for which we get

..as RM _ 1 ^ + At x , / Q , r S v
«b - 7; , 1 , A/*, (8.158)

l^drag !• + At

For the spikes, instead, one can write

(2P1V + PiV)^- = -(^ - Pl)aV + CdragPlu
2

sS, (8.159)

which yields the expressions for the asymptotic acceleration u = —a of the At = 1
RTI spike, and for the asymptotic velocities of RMI and RTI spikes printed in
the last line of Table 8.2. We see that RTI spikes fall at constant acceleration for
At = 1, and at constant velocity for At < 1. RMI spikes, instead, fall at constant
velocity for At = 1, while their velocity vanishes <x 1/t for At < 1.

8.6.3 Saturation amplitude of a single RTI mode

Applications of RTI theory require a simple criterion for saturation, indicat-
ing the maximum amplitude of the perturbation which can still be dealt with
by linear theory. A simple condition can be obtained from the results for the
asymptotic evolution of a bubble. We assume that saturation occurs when the
perturbation velocity predicted by linear theory, £ = <TRTCI equals the asymp-
totic bubble velocity given by eqn 8.157. The corresponding saturation amplitude
is

Csat = —^7=\/ - r^-T - 0 1 A \ /
2V3\M + l r

V A
More rigorously, the formation of asymmetric bubble-spike shapes and the

onset of saturation are shown by third-order perturbation theory (Jacobs and
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[ Fig. 8.23 I

| Fig. 8.241

Catton 1988); the result is that an initial perturbation £o{x,t) = Ciocos(&a:) of
an interface with At = 1 evolves according to

n) cos<2kx + - (
8

cos Ux (8.161)

Fig. 8.25

Here Q11 n = £io cosh(<7n.T )̂ is the amplitude of the fundamental mode as given
by the linear theory and CTRT is the classical RTI growth rate. Equation 8.161
shows that the second order term makes the shape asymmetric, since the height
of the rising vertex is £i —kC^/2 and the depth of the falling vertex is £i +k^/2.
The third order term not only generates a third harmonic, but also reduces
the growth rate of the fundamental mode. We see that for Ci/A = 0.1, i.e.
k£i = 0.27T, the amplitude of the fundamental mode is reduced by about 10%
and the second harmonic and the third harmonic are about 1/3 and 1/10 as
large as the fundamental one, respectively. At this stage, linear theory is no
more applicable.

8.6.4 3D vs 2D nonlinear RTI evolution

Actual surface perturbations are three-dimensional. We have seen in § 8.2.5 that
the linear evolution of a single wavelength perturbation of a plane surface de-
pends only on the wavenumber, which allowed us to restrict ourselves to 2D per-
turbations without any loss of generality. The case is different, however, when
the amplitude of the perturbations grows. We have indeed already seen (see
eqns 8.152 and 8.151) that the asymptotic rise velocity of a 2D slab bubble is
smaller than that of a cylindrically symmetric bubble with the same cross sec-
tion. Most insight in the evolution of 3D perturbations has been obtained from
numerical simulations. Here we summarize some findings of general interest.

First of all, one observes topological differences. In 2D, the perturbed surface
appears as a sequence of bubbles and spikes, with each spike fed by fluid coming
from the top of two adjacent bubbles. In 3D, instead, each bubble (spike) is
adjacent to several spikes (bubbles). The formation of bubbles and spikes is
shown in Fig. 8.23. The figure shows the results of a 3D simulation performed by
a code developed by M. Temporal at INFN Legnaro in collaboration with ENEA-
Frascati. Deeply in the nonlinear regime, the shape of a deformed interface is
therefore substantially different from that obtained from 2D simulations. An
example is given in Fig. 8.24, which also refers to a single mode 3D perturbation
of a plane interface. Typically, 3D bubbles have a larger boundary area to feed
the spike than in the 2D case. This explains why cylindrical bubbles saturate at
larger amplitude than 2D Cartesian bubbles (see § 8.6.1).

Simulations also show that in both classical and ablative RTI the mushroom
structure owing to KHI is much smaller in 3D than in 2D (see Fig. 8.25). Spikes
are then thicker and grow faster in 3D than in 2D (Yabe et al. 1991). An explana-
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F I G . 8.23. Growth of a single mode 3D perturbation, with kx = ky.

FIG. 8.24. Plane interface between two fluids, for a single mode 3D perturba-
tion during the nonlinear stage. The Atwood number of the interface is 0.5.
The interface is seen form the bubble side. After Hecht et al. (1995), with
permission.

tion for this effect has been given in terms of a secondary instability developing
around the already deformed interface (Dahlburg and Gardner 1990). Vortex
rings appear in both 2D and 3D, but while in 2D they are confined in a plane,
in 3D they can tilt and stretch. The altered flow pattern generated by dynamic
tilting serves to pump additional mass into the sides of the growing spike. Vortex
stretching and tilting can also trigger turbulent behaviour.

In conclusion v the asymptotic nonlinear evolution of single-wavelength per-
turbations is faster in 3D than in 2D. Concerning applications to ICF, however,
one should recall (see the discussion of § 8.1.2) that RTI growth has to be limited
to the early nonlinear stage in this context, where differences between 2D and
3D evolution are small.
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FIG. 8.25. Nonlinear stage of the single-mode RTI of a plane interface with
Atwood number At = 0.54. (a) 2D plane perturbation; (b) 3D perturbation.
After Yabe et al. (1991), with permission.

Fig. 8.26

8.7 Nonlinear evolution of multi-mode perturbations
8.7.1 Preview and relevance to ICF targets design

Real surfaces are characterized by perturbations having a broad Fourier spectrum
of modes. As far as the amplitude of the unstable perturbations is small, one
can use linear theory and compute the evolution of the global perturbation. It
results from the superposition of independent modes, each characterized by its
own growth rate. Beyond the linear stage a number of new features are observed,
which do not occur in the nonlinear growth of a single mode. For instance, we
may refer to Fig. 8.5, showing frames from a 2D simulation of the classical RTI of
an interface with an initially flat shape and velocity perturbation consisting of 19
sinusoidal modes, having dimensionless wavelength An = 1/n with n = 41, 42,...,
59. The velocity perturbations have random initial amplitudes in the interval 0 <
Cn (t = 0) < 2 x 10~3. In this simulation, lengths are normalized to the wavelength
of the fundamental mode and times to the reciprocal of the classical RTI growth
rate of the fundamental mode. We observe that the perturbed interface first
shows a large number of bubbles and spikes of small scale and relatively simple
structure and later a smaller number of much larger bubbles and complex flow
patterns. The region of fluid affected by the instability grows in time. At later
times a nearly chaotic behaviour occurs, leading to turbulent mixing.

The evolution, observed in Fig. 8.5 for the classical RTI of superimposed
fluids, in principle occurs for ablative RTI, too. An example is shown in Fig. 8.26,
referring to a 2D simulation of RTI of an ablatively driven foil with initial random
perturbation. As seen from frame (a), the initial perturbation has relatively
large amplitude, so that the evolution soon becomes nonlinear. After a stage
of coexistence, bubbles compete. Small bubbles are washed downstream, while
larger bubbles run through the target.

It appears that mode coupling and bubble competition are general features
of nonlinear evolution. However, these two effects do not play a significant role
in ICF targets designed to achieve ignition. There are two main reasons for this,
discussed in detail by Haan (1991). First, modes with very short wavelength,
which saturate and couple nonlinearly very soon in classical RTI, are stable
in ablative RTI. In addition, we have already seen that successful implosion
of thin ICF shells requires that the amplitude of the potentially most damaging
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frrffari random p&turti&fion Perturbation growth Coexistence

Bubble competition begins Smdlbubbtes washed dovwistraam Bubbles run through slab

FIG. 1.26. Ablative RTI of a laser-accelerated foil with initial random pertur-
bation. The foil is irradiated by a laser pulse coming from the right-hand
side. After Oron et al. (1998), with permission.

modes can only slightly exceed their respective saturation thresholds. This means
that the fully nonlinear stage of evolution must be avoided anyhow in ICF. On
the other hand, saturation of linear growth and the early stages of nonlinear
evolution are important in IGF target design. These topics are discussed in the
next subsections.

$.7.2 Growth saturation of a full spectrum of modes
When dealing with a full spectrum of modes, an important question concerns
the amplitude at which each individual mode saturates. Here we closely follow
the beautiful presentation by Hoffman (1995), who discussed the treatment due
to Haan (1989). We start by observing that a group of modes with nearly equal
wavevectors can combine constructively over a region of the interface, produc-
ing a structure whose amplitude is much larger than the amplitudes of each of
the individual modes. We expect that such a structure saturates when its net
amplitude is a fraction C$ « 10% of its effective wavelength, as in the case of
a single sinusoidal mode (At = 1 is assumed here). At this stage, however, the
individual modes composing the structure have amplitudes much smaller than
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10% of their wavelength, which means that they saturate earlier than we would
expect for the single mode saturation. The key point of the model for the evalu-
ation of saturation amplitudes is that one cannot distinguish a pure mode from
a superposition of many modes, unless one performs a measurement over a large
spatial region, having a width sufficient for dephasing of individual modes.

Haan's model applies this principle to a broad spectrum and makes the basic
assumption that the modes k' interacting constructively with a given mode k are
those satisfying |k — k'| < f|k|, i.e. are contained in a circle of radius ek centered
on k. We call JV/t = N(e, k) the number of such modes. Here e is a parameter with
a numerical value of about 0.3. These modes combine to produce a perturbation
with approximate wavelength A = 2ir/k and root-mean-square amplitude £rms-
It will saturate when it reaches a peak amplitude v2C-ms = C(X, i.e. when
&Crms = V^jrCf. Assuming that modes have random phases and nearly equal
amplitudes, one obtains

= £
To compute Nk we refer to a plane interface with dimensions L x L, where the
allowed components of k' have k'x = 2irn/L and k'y = 2irm/L with n = 1, ...,oo
and m = 1,..., oo. The number of modes is then given by twice the product of the
area of the circle n(ek)2 times the density of states (L/2ir)2. Using this result we
find that at saturation the amplitude of the mode with wavenumber k satisfies

\ (8.163)

which can also be written as

It shows that higher modes saturate at an amplitude smaller by a factor X/L
than that given by the single mode criterion, eqn 8.160.

Equation 8.164 can easily be generalized to spherical geometry by setting
L = 2R and A = 2irR/l, where I is the spherical harmonic mode number, which
gives

<fat * 2 ^ . (8.165)

Fig. 8.27 I In Fig. 8.27 saturation levels predicted by eqn 8.165 are compared with those
obtained from the single mode criterion Q — 0.1A/ = 0.2irR/l. Again, a large
difference is observed at large /. In practice, the saturation amplitude employed
in simple RTI growth evaluations is the smallest between single- and multi-mode
values.

8.7.3 Model for weakly nonlinear evolution after saturation

A simple model, developed by Haan (1989), describes the evolution of the pertur-
bations in the early stages after saturation. It can be applied when second-order
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FIG. 8.27. Saturation amplitudes versus mode number I as predicted by the sin-
gle mode treatment (eqn 8.160) and by the multi-mode criterion (eqn 8.165)
for a spherical interface with radius R = 1 mm.

mode coupling has negligible effects (see the discussion at the end of § 8.7.1).
This model is widely used by ICF target designers to estimate the overall growth
of the perturbation at the outer surface of a capsule.

The model is built on two elements. The first one is the saturation crite-
rion discussed in the previous subsection. The second is the assumption that
after saturation each mode grows independently of the other modes with a rate
analogous to that of Layzer's periodic bubbles (see § 8.6.1).

According to this model, the growth velocity of a perturbation with wavenu-
ber k is given by linear theory if the amplitude of the perturbation has not yet
achieved the saturation threshold £|a t, while it is constant afterwards:

dt for v. /-sat
(8.166)

where ffk = cr(k) is the relevant linear growth rate. For constant growth rate <ru,
eqn 8.166 can be integrated analytically, which gives

Ck(t) =
<kn (*) = Cofe expfot) for t <

(8.167)

where i |a t = (l/<Tk) ln(C^at/Co) is the time at which saturation occurs. Equa-
tion 8.167 can be written in the alternative form
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FIG. 8.28. Three-dimensional simulation of turbulent mixing due to the non-
linear evolution of a Rayleigh-Taylor unstable interface. The frames show the
shape of the interface at three different times (in units of ), as seen from
the bubble side. After Youngs et al. (1994); reprinted with permission.

(8.168)

which is widely used by ICF target designers.
Simulations have shown that this model is reasonably accurate for describing

the instability up to some time after saturation and that it is well suited to the
treatment of the instability of the outer surface of the ICF capsules. Improve-
ments to the model have been proposed (Ofer et al. 1996; Town et al. 1996) to
account for mode-coupling and for other more advanced features.

8.7.4 Turbulent mixing

The complexity of the later stages of the evolution of multimode RTI is shown by
experiments and simulations. Examples are given by the last frame of Fig. 8.5
and by Fig. 8.28. Here we observe that, as time goes on, larger and larger struc-
tures appear and dominate the flow. Patterns become more and more complex
and chaotic: we refer to this process as to turbulent mixing. While such features
do not allow for any simple analytical treatment, important aspects are quali-
tatively described by dimensional arguments. These concern, in particular, the
time evolution of the width of the turbulent mixing layer. It is defined by the
quantities h+ and A_ which measure the penetration of the bubbles into the
heavier fluid and of the spikes into the lighter fluid, respectively.

If boundary conditions are not important, i.e. if the size of the whole system
is larger than the largest flow structures, and memory of the initial conditions
is lost, the flow is fully characterized by the acceleration a, the two densities pi
and />2j and time t. Dimensional analysis (see § 6.5) shows that there is only one
dimensionless parameter, which may be chosen as the Atwood number At, and
that all characteristic lengths such as bubble size X(t) and thickness h(t) of the
turbulent mixing layer will scale proportionally to at7. This leads to the similarity
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laws X(t) = f\(At)at? and h± = fh±(At)at2 with factors f\ and fh± depending
only on At. Such a self-similar description, first suggested by Youngs (1984) to
explain the experimental results of Read (1984), accounts for the emergence of
larger and larger structures in time and qualitatively agrees with large sets of
experimental and simulation data. In particular, the experimental data on the
width of the mixing layer, reviewed by Dimonte (2001), are reproduced by

h±(t)=a±Atat2, (8.169)

Here, a+ = 0.06-0.07 for immiscible fluids and a+ = 0.04-0.044 for miscible
fluids. The quantity a_ depends on At. Experimental results are fitted by by
a_ = (1 + At)a+ (Dimonte 1999), for At < 0.9. For At ->• 1, instead, one
expects a_ —¥ 0.5. When the initial perturbation spectrum does not contain
short wavelength modes, mixing develops after a well defined stage of linear
evolution. In these cases, the width of the mixing layer is .still well approximated
by eq 8.169, but with time t replaced by t — to where to is a characteristic time x

marking the onset of turbulence (Atzeni and Guerrieri 1993).
For RMI, where there is no steady acceleration, one cannot form a quantity

with the dimension of a length using dimensional quantities characterizing the
flow. It then turns out that the thickness of the mixing layer depends on the
initial conditions. It scales with time oc £fl, with the exponent 6 depending on
the Atwood number. Theoretical treatments and experimental results on mixing
by RMI can be found, e.g., in the papers by Dimonte (1999, 2000) and by Shvarts
etal. (2001). )KHI can also cause turbulent mixing. An interesting reference here J
is Brown and Roshko (1974).

8.8 RTI and target design

In this section, we apply the results obtained on RTI so far to ICF target design.
RTI and related instabilities cause deformations of the shell's outer and inner
surfaces with amplitudes £out and £in, respectively. Ignition of an ICF target
requires that the fuel shell with thickness AR(t) maintains its integrity dur-
ing implosion and a central hot spot with radius ify, is created at stagnation.
Therefore, it is required that

<°ut(<) < AR(t) (8.170)

at any time t during implosion and

C(t)<&Rh, (8.171)

at implosion stagnation.
We now use the results of linear and weakly nonlinear theory to estimate the

constraints that inequalities 8.170 and 8.171 set to target and beam parameters.
Following Lindl (1997), we consider ablative RTI, feed-through, and inner RTI.
On the other hand, neglect cavity oscillations. Effects due to RMI and imprint
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(see § 8.8.4) can be included by means of suitable initial conditions. We assume
that initial perturbations have a wide spectrum and random phases, so that the
amplitudes appearing in eqns 8.170 and 8.171 can be estimated as

where I is the spherical mode number.

8.8.1 Perturbation growth at the ablation front

According to linear theory, the amplitude reached at time to by a perturbation
of mode I at the ablation front is

C,°ut = CfoutG,out- (8.173)

Here, C/QUt is the initial amplitude, due to target imperfections and beam imprint,

(8.174)

is the growth factor, and at is the linear growth rate of mode I. For the latter
we use eqn 8.119, derived from linear theory of ablative RTI (see § 8.4). Setting
k = l/R to account for spherical geometry, we obtain

( 8 - 1 7 5 )

where c*2 ~ 1 and values of/?2 have been given in § 8.4.4. In order to compute the
integral in eqn 8.174, we assume that the shell implodes at constant acceleration
from R = RQ to R = i£o/2, which takes a time <0 =' yRa/a. We also assume
that the largest value of (,out/AR is achieved just at t = to- Furthermore, we
parametrize

Lmin = hAR, (8.176)

ua = f2AR(t0)/t0, (8.177)

where /1 and fi are numerical constants. The parameter f\ depends on the shape
of the density profile at the ablation front, while /2 is related to the fraction of
ablated mass and takes values of about 0.8 for indirect drive and 0.2 for direct
drive. Inserting eqns 8.175-8.177 into eqn 8.174, and evaluating the integral by
taking R and AR as constants, we obtain

Gfut~exp (8.178)
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FIG. 8.29. Growth factor for outer surface perturbations versus the spherical
mode number, for different values of the in-flight aspect ratio, and for fixed
values of the parameters / i = 0.1 and /2/?2 = 0-8.

Here, we interpret R/AR as a characteristic value of the in-flight-aspect-ratio.
It follows immediately that modes with I > lcut, with

_ R/AR ( 4/iaj R

m (8.179)

are stable.
Equations 8.178 and 8.179 show that the growth factor Gfut and the cut-off

lcut depend crucially on / 1 , on the product ^2/2, and on the in-flight-aspect-ratio
R/AR. The behaviour of G°ut as a function of the spherical mode number / is
shown in Fig. 8.29. Here the growth factor is plotted for different values of the Fig. 8.29
in-flight aspect ratio An — R/AR and for fixed values of/1 =0.1 and ^2/2 = 0.8,
typical of indirect-drive targets. The positive effect of a smaller in-flight aspect
ratio is apparent. For A\t = 40, which we can take as a reference value, the most
unstable modes have / in the range 100-300 and corresponding growth factors of
about 1000. Modes with Z < 10 grow very little. For such modes, however, one
has also to take into account the asymmetries caused by the secular growth of
the deformations, discussed in § 3.2.1.

Figure 8.30 shows the perturbation spectrum obtained by the above model
for an indirect-drive target with the same functional form of the perturbation
spectrum as that assumed by the NIF target design (Marinak et al. 2001). Such
a spectrum corresponds to an rms amplitude of about 12 nra. The calculation ^_____^
assumes R/AR = 40, /1 = 0.1, and #2/2 = 0.8. We see that modes / = 100-400 I Fig. 8.30



306 HYDRODYNAMIC STABILITY

ablation front
perturbation at

end of acceleration

outer surface
initial perturbation

1 ' " " i

1000 10000

mode number I

FIG. 8.30- Amplitude of RTI modes at ablation front, for parameters appro-
priate for indirect-drive targets and in-flight aspect ratio of 40. The final
amplitudes (thick curves) are computed from linear theory (solid) and from
the model for weakly nonlinear evolution (dot-dashed), in case the saturation
amplitude (dashed line) is exceeded.

exceed the saturation threshold 8.165; in this case the growth is computed by
eqn 8.168, and the corresponding result is shown by the dot-dashed curve. The
root-mean-square amplitude of the perturbation turns out to be about 5 fim,
sufficient for the safe implosion of a capsule with initial radius of 1 mm and
in-flight shel thickness of about 15-20 //m

8.8.2 Perturbation growth at the inner shell surface

The inner surface of the shell becomes unstable when the imploding material
starts to decelerate due to the pressure exerted by the inner hot gas. Seeds
for such an instability are provided by both defects of the inner surface of the
solid fuel with modal amplitudes C/oo a n d feed-through from the ablation front
(see § 8.2.9). The latter are caused by perturbations at the outer surface with
spherical mode I and amplitude C°ut which are transmitted to the inner surface
with amplitudes

~C?utexp(-lAR/R). (8.180)

Assuming random phases, we estimate the effective initial amplitude of mode /
as

/in-fed 1 / 2an ^ l /y in \2 , / /-in-led \ 2 ] '

RTI will amplify such a perturbation according to

(8.181)
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FIG. 8.31. Growth factors for RTI instability at both the outer and inner shell
surfaces. Parameters are given in the main text.

/-in nvn

- Qo e x P
rf{t)dt, (8.182)

where <rjn is the growth rate 8.139 of the deceleration-phase instability and in-
tegration extends from the beginning of deceleration to the instant of ignition.
To evaluate the integral we assume that the hot spot radius decreases from
Rdec to Ry, at constant deceleration, so that a(Aidec)

2/2 = Rdec ~ Rb- We then
parametrize the decrease of the radius as Rdec ~ Rh ^ /3-Kh, the gradient scale-
length as L;n = /-4-Rfc, and the ablation velocity as «a;n = fsRh/At^ec, where fa,
/ 4 , and fs are numerical constants. As representative values we may take /3 = 1,
f4 = 0.03 and # n / s ~ 0.09 (Lobatchev and Betti 2000, Atzeni and Temporal
2003). We then have

exp exp - 0 . 0 9 / . (8.183)

The resulting growth factors for feed-through and for the RTI at the inner layer
are plotted in Fig. 8.31 for Aif = 40. | Fig. 8.31

The final amplitudes of the perturbations can now be computed from eqn 8.182.
A representative example is shown in Fig. 8.32. The computations assume for
the DT surface spectrum the same functional form as used by NIF designers
(Marinak et al. 2001). A root-mean-square amplitude of 0.50 //m is assumed.
Feed-through is computed assuming the outer surface perturbation of Fig. 8.30.
It is found that the most dangerous modes have / « 20, higher modes being Fig. 8.32
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FIG. 8.32. Amplitude of RTI modes at stagnation, for the same capsule as in
Figs 8.30 and 8.31. The figure shows the spectrum of the initial perturba-
tion of the ice surface, of the contribution due to feed-through, and of the
sum of the two, and (thick curves) of the final perturbation (solid: linear the-
ory; dot-dashed: including correction for nonlinear evolution when saturation
amplitudes are exceeded).

Fig. 8.33

attenuated by feed-through and damped by the finite density gradient and ab-
lation. The root-mean-square amplitude of the final perturbation is found to
be about 5.6 //m. Since typically Rh = 30-40 fim, the computed perturbation
should not hinder achievement of ignition.

8.8.3 Target stability analysis by models and fluid codes

Target design proceeds through several iterated steps, leading to a detailed point
design of a capsule and including the analysis of the sensitivity to parameter
changes. Concerning constraints set by instabilities, estimates are obtained by the
model described in the previous subsections, but further analysis requires more
accurate tools. The most advanced three-dimensional codes can now simulate
the evolution of a wide spectrum of mode of a large sector of a capsule. A
picture produced by the sophisticated 3D code HYDRA is shown in Fig. 8.33
(Marinak et al. 1996) and gives an idea of the level of detail achievable. Progress
in computers, modeling, and programming allows even higher resolutions. A
survey of state of the art simulations, as well as of the procedure followed to
assess target sensitivity to instabilities, is given in a recent paper by Marinak
et al. (2001). However, a single 3D run takes hundreds of hours on a massively
parallel computer, and still it cannot resolve very short wavelengths. Parametric
analysis requires tools easier to handle. Designers therefore use in combination
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FIG. 8.33. 3D simulation of a capsule imploded by a thermal radiation pulse
generated by the 10 beam laser NOVA. The picture shows the shape of the
fuel-pusher interface at a time close to maximum compression. After Marinak
et al. (1996), with permission.

1-D codes, 2D codes, and instability models.
Very accurate and yet reasonably fast 1-D computations allow to study basic

capsule performance and to characterize the unperturbed flow, thus providing
time-dependent values of such parameters as the in-flight aspect ratio, the char-
acteristic scale-lengths, the acceleration, etc. required to compute the instability
growth rates. The parameters they generate can also be fed into instability mod-
els, which solve numerically some simplified system of perturbed fluid equations
to give the time evolution of the amplitude of the perturbation. Next, the effects
of the perturbations on target performance can be approximately computed by
1-D simulations in which some shell layers are artificially mixed as to mimic the
effect of RTI perturbations and mix.

2D simulations are particularly useful to compute self-consistently the time
evolution of a perturbation with assigned spectrum, either single- or multi-mode.
Of course, they have accuracy intermediate between the above rough models and
3D calculations. Notice, however, that present calculations of a whole target do
not yet achieve the resolution required to study the highest-i unstable modes.
This applies in particular to direct-drive, where ablative stabilization is effective
at shorter wavelengths than in indirect-drive.

The design process eventually leads to specifications concerning target quality
(surface roughness, homogeneity, etc.) and beam nonuniformities and imprint.
Since targets must tolerate such imperfections with some margins, ignition ex-
periments are designed to deliver 50-100% more energy to the fusion capsule
than the minimum value computed by assuming perfectly spherical symmetry.
We have seen in the previous subsection that a compromise has to be reached
between the choice of the in-flight aspect ratio and surface as well as imprint
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specifications. A smaller in-flight aspect ratio allows for rougher targets, but
leads to lower energy gain and/or higher driver energy.

8.8.4 Reducing target sensitivity to RTI

Here, we mention a few options for relaxing instability constraints and widening
the design parameter space. They are currently investigated, in particular, in
order to the design of direct-drive targets.

A key issue for direct-drive is the so-called beam imprint, that is the target
perturbation caused by the nonuniformity of the beam during the early stage of
irradiation. Indeed laser beams are intrinsically noisy. Time-integrated homoge-
neous irradiation can be achieved by using beam smoothing techniques which mix
statistically the incoherent beamlets of light of a broad bandwidth laser (Lehm-
berg and Hobenschain 1983; Skupsky et al. 1989). Experiments performed at dif-
ferent laboratories have indeed demonstrated that integrated implosion results,
such as neutron production become approach the predictions of ID simulations
as beam uniformity is improved.

However, initial nonuniformities are unavoidable, even with the lasers having
the largest bandwidth. Several methods have beeffi proposed to reduce the effect •*
of such laser imprint. /Emery et a/.(l991) proposed to coat the target with ^c

a low density foam, to reduce the perturbations stemming from the imperfect
low intensity foot of the laser beam. In an alternative proposal, Obenschain
et al. (2002) have demonstrated that the hydrodynamic instabilities seeded by
the imprint are significantly reduced in foam targets coated with a thin high-Z
layer. In this case, the low intensity laser foot is nearly completely absorbed by
the high-Z layer. X-rays generated by this layer heat the low-Z plastic ablator
and generate buffering plasma between the dense layer and the target to be
accelerated. This layer isolates the target from the early laser nonuniformity.
When the high power main pulse irradiates the the target, the high-Z layer
expands and becomes transparent to the laser light. From this time on the target
behaves just as the reference target studied in Chapter 3.

Other possible improvements concern means for reducing the growth of the
RTI. According to eqn 8.178, RTI growth can bo decreases with the ablation ^
velocity. The latter, in turn increases as the shell density fe decreases, i.e. its
entropy is increased. On the other hand, we know that ignition and gain can
only be achieved if the fuel is kept on a low adiabat. This leads to the concept
of adiabat shaping: laser pulse and target are designed to keep the fuel on a low
adiabat while increasing substantially the entropy of the ablator. It has been
proposed to achieve adiabat shaping by irradiating the fuel shell by a shaped
pulse preceded by a short high intensity picket (Metzler et al. 2002; Goncharov
et al. 2003). This launches a strong shock through the ablator. However, as the —
laser intensity drops at the end of the picket, the shock strength decays and the
shock does not negatively affect the compression of the inner fuel.

Thio hoo lead to tho propocal incroacing the dcnaity aealc longth nt thr nbln
t\nv frnnt. has a hfimnfiriiUflfrri, nn the, linrnr fri-nwth rntr Thin n n Snmp rnntrnl X
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on such a length can be achievedby properly choosigg^he material cojapOsition
of the ablatoj^Tt'simplerjjiereeffective wavio^Ccmeve In partjfarfSf7 targets can
be desigum in suclj^arway that X-ray>-geiierated in oujer'fegions of thejsdfona
he^^fuie unstable layer, but do ndipreheat the fuel^{Obenschain et atf2002).

8.9 Bibliographical note

There exists a broad literature on fluid instabilities relevant to ICF and in par-
ticular on Rayleigh-Taylor instability. In this section we list a few pedagogical
publications of general interest, a number of review articles with direct relevance
to ICF, and some articles presenting most advanced treatments of some specific
topics.

The standard presentation of the linear theory of fluid instabilities is found in
the textbook by Chandrasekhar (1961). There, Chapters X and XI deal with RTI
and KHI in layered fluids, taking viscosity and surface tension into account; they
are concluded by interesting bibliographical notes. Instabilities in stratified fluids
are also discussed in the classical treatise on hydrodynamics by Lamb (1932):
see § 231, § 232, § 267, and § 268.

An excellent review of RTI theory was presented by Kull (1991). Of partic-
ular interest in this article is the treatment of spherical shells and of nonlinear
evolution of RTI bubbles. A historical note is also included.

Hoffman (1995) has published very clear and instructive lectures on impor-
tant aspects of RTI theory with particular reference to ICF. A simple, but rather
comprehensive tutorial was presented earlier by Sharp (1984). The book by Lindl
(1997) on indirect-drive ICF also includes a long section on RTI and target de-
sign. Interesting reviews of instabilities in ICF have been written by Bodner
(1991) and by Gamaly (1993). A book by Inogamov (1999) discusses fluid insta-
bilities in the astrophysical context with emphasis on the theoretical modeling
of the nonlinear stages of the RTI.

For a short review of experimental results on ablative RTI one can refer to a
paper by Kilkenny et al. (1994). Important results obtained after publication of
that paper have been quoted in § 8.4.5. An overview of self-consistent analytical
theories of the ablative RTI is given by Betti et al. (1996).

It is also worth mentioning papers on aspects of RTI and RMI which have not
been discussed in this chapter. The effect of self-generated magnetic fields on RTI
have been discussed by Afanasev et al. (1978) and by Evans (1986). Cohesion
effects in accelerated solids have been investigated experimentally by Dimonte
et al. (1998). Impulsive acceleration, pulsation, accretion have been studied by
Boris (1977), Rostoker (1977), Betti et al. (1993) and Book (1996), respectively.
Experiments on mixing induced by time-dependent acceleration have been per-
formed by Dimonte and Schneider (1996). The ablative RMI has been studied
analytically by Goncharov (1999) and experimentally by Aglitskiy et al. (2002).
Oscillations of fluid cavities and fluid shells have been analyzed in detail by Book
and Bodner (1987) and by Kull (1991).
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We now list papers with advanced, state of the art results on specific topics of
relevance to ICF. Concerning ablative RTI, the standard reference for numerical
eigenvalue solutions is Kull (1989), while the most advanced theoretical ones are
summarized in the review of Betti et al. (1996). Ablative stabilization is also
demonstrated by high resolution 2D numerical simulations; references here are
the papers by Tabak et al. (1990), Gardner et al. (1991) and Mikaelian (1990).
3D simulations have become feasible since the early 1990s. Yabe et al. (1991)
studied single-mode perturbations of a plane surface; Sagakami and Nishihara
(1990) and Town and Bell (1991) simulated the instability at the inner surface of
a stagnating shell; Dahlburg and Gardner et al. (1990) and Dahlburg et al. (1995)
studied the instability at a laser driven ablation front. The most sophisticated
target simulations have been reported by Marinak et al. (2001).

Overviews on mixing by both RTI and RMI have been published by Shvarts
et al. (2000,2001) and by Dimonte (2000). Other interesting references on mixing
are the papers by Alon et al. (1995), Dimonte (1999) and by Chen et al. (2000).
The status of the research on RMI is summarized in a comprehensive review
paper by Holmes et al. (1999), including many references on both theoretical
and experimental results.

Laboratory astrophysics has been reviewed by Remington et al. (1999). They
list many references to papers addressing instabilities in astrophysical objects.

References

Acheson, D. J. (1990). Elementary Fluid Dynamics. Clarendon, Oxford.
Afanasev, Yu. V., Gamalii, E. G., Lebo, I. G., and Rozanov, V. B. (1978).

Hydrodynamic instability and spontaneous magnetic fields in a spherical laser
plasma. Soviet Physics JETP, 47, 271-5.

Aglitskiy, Y., Vekikovich, A. L., Karovik, M., Sevlin, V., Pawlet, C. J., Schmitt,
A. J., Obenschain, S. P., Mostovich, A. N., Gardner, J. H., and Metzler, N.
(2001). Direct observation of mass oscillations due to ablative Richtmyjfer- /~
Mgshkov instability in plastic targets. Physical Review Letters, 87, 265001. v

Alon, U., Hecht, J., Ofer, D., and Shvarts, D. (1995). Power laws and similarity
of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all density ratios.
Physical Review Letters, 74, 534-7.

Amendt, P., Colvin, J. D., Ramshaw, J. D., Robey, H. F., and Landen, O.
L. (2003). Modified Bell-Plesset effect with compressibility: application to
double-shell ignition target designs. Physics of Plasmas, 10, 820-8.

Atzeni, S., and Guerrieri, A. (1993). Evolution of multimode Rayleigh-Taylor
instability towards self-similar turbulent mixing. Europhysics Letters, 22,
603-9.

Atzeni, S., and Temporal, M. (2003). Mechanism of growth reduction of the
ablative deceleration-phase Rayleigh-Taylor instability. Physical Review E,
67, 057401 (4 pages).

Bell, G. I (1951). Taylor instability on cylinders and spheres in the small ampli-
tude approximation. Technical Report LA-1321, Los Alamos Scientific Lab-



REFERENCES 313

oratory.
Bernstein, I. B., and Book, D. L. (1983). Effect of compressibility on the

Rayleigh-Taylor instability. Physics of Fluids, 26, 453-8.
Betti, R., McCrory, R. L., and Verdon, C. P. (1993). Stability analysis of un-

steady ablation fronts. Physical Review Letters, 71, 3131-4.
Betti, R., Goncharov, V. N., McCrory, R. L., Sorotokin, P., and Verdon, C. P.

(1996). Self-consistent stability analysis of ablation fronts in inertial confine-
ment fusion. Physics of Plasmas, 3, 2122-8.

Betti, R., Goncharov, V. N., McCrory, R. L., and Verdon, C. P. (1998). Growth
rates of the ablative Rayleigh-Taylor instability in inertial confinement fusion.
Physics of Plasmas, 5, 1446-54.

Birkhoff, G. (1954). Note on Taylor instability. Quarterly of Applied Mathemat-
ics , 12. 306-9.

Bodner, S. E. (1974). Rayleigh-Taylor instability and laser-pellet fusion. Phys-
ical Review Letters, 33, 761-4.

Bodner, S. E (1981). Critical elements of high gain laser fusion. J. Fusion En-
ergy, 1,221-40.

Bodner, S. E (1991). Symmetry and stability physics in laser fusion. In Physics
of Laser Plasma, (ed. A. Rubenchik and S. Witkowski), pp. 247-70, North-
Holland, Amsterdam.

Bodner, S. E., Colombant, D. G., Schmitt, A. J., and Klapisch (2000). High-gain
direct-drive target design for laser fusion. Physics of Plasmas, 7, 2298-301.

Book, D. L. (1996). Suppression of the Rayleigh-Taylor instability through ac-
cretion. Physics of Plasmas, 3, 354-9.

Book, D. L., and Bodner, S. E. (1987). Variation of the amplitude of pertur-
bations of the inner surface of an imploding shell during the coasting phase.
Physics of Fluids, 30, 367-76.

Boris, J. P. Dynamic stabilization of the imploding shell Rayleigh-Taylor insta-
bility. Comments on Plasma Physics and Controlled Fusion, 3, 1-13.

Brenner, M. P., Hingenfeldt, S., and Lohse, D. (2002). Single-bubble sonolumi-
nescence. Review of Modern Physics, 74, 425-84.

Brown, G. L., and Roshko, A. (1974). On the density effect and large structure
in turbulent mixing layers. Journal of Fluid Mechanichs, 64, 775-816.

Budil, K. S., Remington, B. A., Peyser, T. A., Mikaelian, K. O., Miller, P. L.,
Woolsey, N. C , Wood-Vasey, W. M., and Rubenchik, A. M. (1996). Exper-
imental comparison of classical versus ablative Rayleigh-Taylor instability.
Physical Review Letters, 76, 4536-9.

Budil, K. S., Lasinski, B., Edwards, M. J., Wan, A. S., Remington, B. A., Weber,
S. V., Glendinning, S. G., Suter, L., and Stry, P. E. (2001). The ablation-
front Rayeligh-Taylor dispersion curve in indirect drive. Physics of Plasmas,
8, 2344-8.

Chandrasekhar, S. A (1961). Hydrodynamic and Hydromagnetic Stability, Ox-
ford.



314 HYDRODYNAMIC STABILITY

Chen, Baolian, Glimm, J., Sharp, D. H. (2000). Density dependence of Rayleigh-
Taylor and Richtmyer-Meshkov mixing fronts. Phys. Lett. A 268, 366-74.

A. J. Cole, J. D. Kilkenny, P. T. Rumsby, R. G. Evans, C. J. Hooker, and M. H.
Key (1982). Measurement of Rayleigh-Taylor instability in a laser-accelerated
target. Nature, 299, 329-30.

Colombant, D. G. , Bodner S. E., Schmitt A. J., Klapisch M., Gardner J. H.,
Aglitskiy Y., Deniz A. V., Obenschain S. P., Pawley C. J., Serlin V., and
Weaver J. L. (2000). Effects of radiation on direct-drive laser fusion targets.
Physics of Plasmas, 7, 2046-2054.

Dahlburg, J. P., and Gardner, J. H. (1990). Ablative Rayleigh-Taylor instability
in three dimensions. Physical Review A, 41, 5695-8.

Dahlburg, J. P., Fyfe, D. E., Gardner, J. H., Haan, S. W., Bodner, S. E.,
and Doolen, G. D. (1995). Three-dimensional multimode simulations of the
ablative Rayleigh-Taylor instability. Physics of Plasmas, 2, 2453-9.

Dimonte, G. and Schneider, M. (1996). Turbulent Rayleigh-Taylor instability
experiments with variable acceleration. Physical Review E, 54 3740-3.

Dimonte, G., Gore, R., and Schneider, M. (1998). Rayleigh-Taylor instability
in elastic-plastic materials. Physical Review Letters, 80, 1212-5.

Dimonte, G. (1999). Nonlinear evolution of the Rayleigh-Taylor and Richmeyer-
Meshkov instabilities. Physics of Plasmas, 6, 2009-15.

Dimonte, G. (2000). Span wise homogeneous buoyancy-drag model for Rayleigh-
Taylor mixing and experimental evaluation. Physics of Plasmas, 6, 2009-15.

Emery, M. H., Gardner, J. H., Lehmberg, R. H., and Obenschain, S. P. (1991).
Hydrodynamic target response to an induced spatial incoherence-smoothed
laser-beam. Physics of Fluids B, 3, 2640-51.

Evans, R. G., Bennett, A. J., and Pert, G. J. (1982) Rayleigh-Taylor instabilities
in laser-accelerated targets. Physical Review Letters, 49, 1639-42.

Evans, R. G. (1986). The influence of self-generated magnetic fields on the
Rayleigh-Taylor instability. Plasma Physics and Controlled Fusion, 28, 1021-
4.

Gamaly, E. G. (1993). Hydrodynamic instability of target implosion in ICF.
In Nuclear Fusion by Inertial Confinement: a comprehensive treatise (ed. G.
Velarde, Y. Ronen, J. M. Martinez-Val), pp. 321-49. CRC Press, Baton Roca.

Gardner, J. H., Bodner, S. E., Dahlburg, J. P. (1991). Numerical simulation of
ablative Rayleigh-Taylor instability. Physics of Fluids B 3, 1070-4.

Glendinning, S. G., Dixit, S. N., Hammel, B. A., Kalantar, D. H., Key, M.
H., Kilkenny, J. D., Knauer, J. P., Pennington, D. M., Remington, B. A.,
Wallace, R. J., and Weber, S. V. (1997). Measurement of a dispersion curve
for linear-regime Rayleigh-Taylor growth rates in laser-driven planar targets.
Physical Review Letters, 78, 3318-21.

Goncharov, V. N. (1999). Theory of the ablative Richtmyer-Meshkov instability.
Physical Review Letters, 82, 2091-4.

Goncharov, V. N., Knauer, J. P., McKenty, P. W., Radha, P. B., Sangster,
T. C , Skupsky, S., Betti, R., McCrory, R. L., and Meyerhofer, D. D. (2003).



REFERENCES 315

Improved performance of directy-drive inert Physics of Plasmas, 10, 1906-18.
Grove, J. W., Holmes, R., Sharp, D. H., Yang, Y., Zhang, Q. (1993). Quanti-

tative theory of the Richtmyer-Meshkov instability. Physical Review Letters,
71, 3473-6.

Grun, J., Emery, M. H., Kacenjar, S., Opal, C. B., McLean, E. A., Obenschain,
S. P., Ripin, B. H., and Schmitt, A. (1984). Observation of the Rayleigh-
Taylor instability in ablatively accelerated foils. Physical Review Letters, 53,
1352-5.

Haan, S. W. (1989). Onset of nonlinear saturation for Rayleigh-Taylor growth
in the presence of a full spectrum of modes. Physical Review A, 39, 5812-25.

Haan, S. W. (1991). Weakly nonlinear hydrodynamic instabilities in inertial
fusion. Physics of Fluids B,3, 2349-55.

Hattori, F., Takabe, H., and Mima, K. (1986). Rayleigh-Taylor instability in a
spherically stagnating system. Physics of Fluids, 29, 1719-24.

Hecht, J., Ofer, D., Alon, U., Shvarts, D., Orszag, S. A., and McCrory, R. L.
(1995). Three-dimensional simulation of the nonlinear stage of the Rayleigh-
Taylor instability. Laser and Particle Beams, 13, 423-40.

Hoffman, N. M (1995). Hydrodynamic instabilities in inertial confinement fu-
sion, (ed. M. B. Hooper). In Laser Plasma Interactions 5: Inertial Confine-
ment Fusion, pp. 105-37. Institute of Physics Publishing, Bristol.

Holmes, R. L., Dimonte, G., Fryxell, B., Gittings, M. L., Grove, J. W., Schnei-
der, M., Sharp, D. H., Velikovich, A. L., Weaver, R. P., and Zhang, Q. (1999).
Richtmyer-Meshkov instability growth: experiment, simulation and theory.
Journal of Fluid Mechanics, 389, 55-79.

Inogamov, N. A. (1999). The role of Rayleigh-Taylor and Richtmyer-Meshkov
instabilities in astrophysics: An introduction. Astrophysics and Space Physics
Reviews 10, 1-335.

Jacobs, J. W., and Catton, I. (1988). Three-dimensional Rayleigh-Taylor in-
stability Part 1. Weakly nonlinear theory. Journal of Fluid Mechanics, 187,
329-52.

Kilkenny, J. D., Glendinning, S. G., Haan, S. W., Hammel, B. A., Lindl, J. D.,
Munro, D., Remington, B. A., Weber, S. V., Knauer, J. P., and Verdon, C.
P. (1994). A review of the ablative stabilization of the Rayleigh-Taylor insta-
bility in regimes relevant to inertial confinement fusion. Physics of Plasmas,
1, 1379-89.

Kull, H. J. (1983). Bubble motion in the Rayleigh-Taylor instability. Physical
Review Letters, 51, 1437-40.

Kull, H. J. (1989). Incompressible description of Rayleigh-Taylor instabilities
in laser-ablated plasmas. Physics of Fluids B, 1, 170-82.

Kull, H. J. (1991). Theory of the Rayleigh-Taylor instability. Physics Reports,
206, 197-325.

Kull, H. J., and Anisimov, S. I. (1986). Ablative stabilization in the incompress-
ible Rayleigh-Taylor instability. Physics of Fluids, 29, 2067-75, 1986.

Lamb, H. (1932). Hydrodynamics, 6th ed. Cambridge.



316 HYDRODYNAMIC STABILITY

Landau, L. D., and Lifchitz, E. M. (1987). Fluid Mechanics, 2nd ed. Butterworth-
Heinemann, Oxford.

Layzer, D. (1955). On the instability of superposed fluids in a gravitational
field. Astrophysical Journal, 122, 1-12.

LeXevier, R, Lasher, G. J., and Bjorklund, F. (1955) Effect of a density gradient
on Taylor instability. Technical Report UCRL-4459, LLNL, Livermore.

Lehmberg, R. H., and Obenschain, S. P. (1983). Use of induced spatial incoher-
ence for uniform illumination of laser fusion targets. Optics Communications,
46, 27-31.

Lewis, J. D. (1950). The instability of liquid surfaces when accelerated in a
direction perpendicular to their planes. II. Proceedings of the Royal Society
(London), A202, 81-96.

Lindl, J. D., and Mead, W. C. (1975). Two-dimensional simulation of fluid
instability in laser-fusion pellets. Physical Review Letters, 34, 1273-6.

Lindl, J. D. (1997). Inertial confinement fusion: the quest for ignition and high
gain using indirect drive. Springer and AIP, New York.

Lohse, D. (2003). Bubble Puzzles. Physics Today, February, pp. 36-41.
Lobatchev, V., Betti, R. (2000). Ablative stabilization of the deceleration phase

Rayleigh-Taylor instability. Physical Review Letters, 85, 4522-5.
Marinak, M. ML, Tipton, R. E., Landen, O. L., Murphy, T. J., Amendt, P.,

Haan, S. W., Hatchett, S. P., Keane, C. J., McEachern, R., and Wallace,
R. (1996). Three-dimensional simulations of Nova high growth factor capsule
implosion experiments. Physics od Plasmas, 3, 2070-6.

Marinak, M. M., Kerbel, G.D., Gentile, N. A., Jones, O., Munro, D., Pollaine,
S., Dittrich, T. R., and Haan, S. (2001). Three-dimensional simulations of
National Ignition Facility targets. Physics od Plasmas, 8, 2275-80.

McKenty, P. W., Goncharov, V. N., Town, R. P. J., S. Skupsky, R. P. J., Betti,
R., and McCrory, R. L. (2001) Analysis of a direct-drive ignition capsule
designed for the National Ignition Facility Physics od Plasmas, 8, 2315-22.

McCrory,R.L., Montierth, L., Morse, R. L., and Verdon, C. P. (1981) Nonlin-
ear evolution of ablation-driven Rayleigh-Taylor instability. Physical Review
Letters, 46, 336-9.

Menikoff, R., Mjolsness, R.C., Sharp, D. H., and Zemach, C. (1977). Unstable
normal modes for Rayleigh-Taylor instability in viscous fluids. Physics of
Fluids, 20, 2000-4.

Meshkov (1969). Instability of the interface of two gases accelerated by a shock
wave. Izv. AN SSSR. Mekhanika Zhidkosti i Gaza, 4, 151-157.

Meyer, K. A., and Blewett, P. J. (1972). Numerical investigation of the stability
of a shockaccelerated interface between two fluids. Physics of Fluids, 15, 753-
759.

/ Metzler, N., Velikovich, L., Schmitt, A. J., and Gardner, J. H. (2002). Laser
imprint reduction with a short shaping laser pulse incident upon a foam-
plastic target. Physics of Plasmas, 9, 5050-8.



REFERENCES 317

Mikaelian, K. O. (1990). LASNEX simulations of the classical and laser-driven
Rayleigh-Taylor instability. Physical Review A, 42, 4944-51.

Munro, D. H. (1988). Analytic solutions for Rayleigh-Taylor growth rates in
smooth density gradients. Physical Review A, 38, 1433-45.

Nakai, S., Yamanaka, T., Izawa, Y., Kato, Y., Nishihara, K., Nakatsuka, M.,
Sasaki, T., Takabe, FL, et al. (1995). Present status and future prospects of
laser fusion research at ILE, Osaka. In Plasma Physics and Controlled Fusion
Research 1994, Fifteen International Conference proceedings, Seville, Spain,
28 September - 1 October 1994, vol. 3, pp. 3-12. IAEA, Vienna.

Obenschain, S. P., Colombant, D. G., Karasik, M., Pawley, C. J., Serlin, V^
.^Schmitt, A. J., Weaver, J. L., Gardner, J. H., Phillips, L., Aglitskiy, Y. ,
Chan, Y., Dahlburg, J. P., and Klapisch, M. (2002). Effects of thin high-Z
layers on the hydrodynamics of laser-accelerated plastic targets. Physics of
Plasmas, 9, 2234-43.

Ofer, D., Alon, U., Shvarts, D., McCrory, R. L., and Verdon, C. P. (1996). Modal
model for the nonlinear multimode Rayleigh-Taylor instability. Physics of
Plasmas, 3, 3073-90.

Oron, D., Alon, U., and Shvarts, D. (1998). Scaling lasws of the Rayleigh-Taylor
ablation front mixing zone evolution in inertial confinement fusion Physics
of Plasmas, 5, 1467-76.

Piriz, A. R. (2001a). Hydrodynamic instability of ablation fronts in inertial
confinement fusion. Physics of Plasmas, 8, 997-1002.

Piriz, A. R. (2001b) .Compressibility effects on the RayleighTaylor instability of
an ablation front. Physics of Plasmas, 8, 5268-76.

Plesset, M. S. (1954). On the stability of fluid flows with spherical symmetry.
Journal of Applied Physics, 25, 96-98.

Read, K. L. (1984). Experimental investigation of turbulent mixing by Rayleigh-
Taylor instability. Physica, 12, 45-52.

Remington, B. A., Haan, S. W., Glendinning, S. G., Kilkenny, J. D., Munro,
D. H., and Wallace, R. J. (1991). Large growth Rayleigh-Taylor experiments
using shaped laser pulses. Physical Review Letters, 67, 3259-62.

Remington, B. A., Amett, D. A., Drake, R. P., and Takabe, H. (1999). Modeling
astrophysics! phenomena in the laboratory with intense lasers. Science, 284,
1488-93.

Richtmyer, R. D (1960). Taylor instability in shock acceleration of compressible
fluids. Comm. Pure Appl. Mathematics, 13, 297-319.

Rostoker, N, and Tahsiri, H. (1977). Rayleigh-Taylor instability of impulsively
accelerated shells. Comments on Plasma Physics and Controlled Fusion, 3,
39-45.

Sakagami. H., and Nishihara, K (1990). Three-dimensional Rayleigh-Taylor in-
stability of spherical systems. Physical Review Letters, 65, 432-5.

Sanz, J. (1994) Self-consistent analytical model of the Rayleigh-Taylor instabil-
ity in inertial confinement fusion. Physical Review Letters, 73, 2700-3.

Sanz, J., Ramirez, J., Ramis, R., Betti, R., and Town, R. P. J. (2002). Nonlinear



Cf

318 HYDRODYNAMIC STABILITY

theory of the ablative Rayleigh-Taylor instability. Physical Review Letters,
89, 195002.

Sharp, D. H. (1984). An overview of Rayleigh-Taylor instability. Physica, 12D,
3-18.

Shvarts, D., Oron, D., Kartoon, D. Rikanati, A. Sadot, O. , Srebro, Y., Yevdab,
Y., Ofer, D., Levin, A., Sarid, E., Ben-Dor, G., Erez, L., Erez, G., Yosef-Hai,
A., Alon, U., and Arazi, L. (2000). Scaling laws of nonlinear Rayleigh-Taylor
and Richtmyer-Meshkov instabilities in two and three dimensions. In Inertial
fusion sciences and applications 99, (eds. C. Labaune, W. J. Hogan, and K.
A. Tanaka), pp. 197-204. Elsevier, Paris.

Shvarts, D., Sadot, O., Oron, D., Rikanati, A., and Alon, U. (2001). Shock-
induced instability of interfaces. In Handbook of shock waves, vol. 2, (eds. G.
Ben-Dor, O. Igra, and T. Elperrin), pp. 489-543. Academic, New York.

Skupski, S., Short, R. W., Kessler, T., Craxton, R. S., Letzring, S., and Soures,
J. M. (1989). Journal of Applied Physics, 66, 3456-62.

Smalyuk, V. A., Delettrez, J. A., Goncharov, V. N., Marshall, F. J., Meyerhofer,
D. D., Regan, S. P., Sangster, T. C , Town, R. P. J., and Yaakobi, B. (2002).
Physics of Plasmas, 9, 2738-44.

Tabak, M., Munro, D. H., and Lindl, J. D. (1990). Hydrodynamic stability and
the direct drive approach to laser fusion. Physics of Fluids B, 2, 1007-14.

Takabe, H., Mima, K. , Montierth, L., and Morse, R. L. (1985). Self-consistent
growth rate of the Rayleigh-Taylor instability in an ablatively accelerating
plasma. Physics of Fluids, 28, 3676-82.

Taylor, G. (1950). The instability of liquid surfaces when accelerated in a direc-
tion perpendicular to their planes. I. Proceedings of the Royal Society (Lon-
don), A201, 192-6.

Town, R. P. J., and Bell, A. R. (1991). Three-dimensional simulations of the
implosion of inertial confinement fusion targets. Physical Review Letters, 67,
1863-6.

Town, R. P. J., Findlay, J. D., and Bell, A. R. (1996). Multimode modelling of
the Rayleigh-Taylor instability. Laser and Particle Beams, 14, 237-51.

Yabe, T., Hoshino, H., and Tsuchiya. T. (1991). Two- and three-dimensional
behavior of Rayleigh-Taylor and Kelvin-Helmholtz instabilities. Physical Re-
view A, 44, 2756-8.

Youngs, D. L. (1984). Numerical simulation of turbulent mixing by Rayleigh-
Taylor instability. Physica, 12 D, 32-44.

Youngs, D. L. (1994. Numerical simulation of mixing by Rayleigh-Taylor and
Richtmyer-Meshkov instabilities. Laser and Particle Beams, 12, 725-50.

Zhang, Q. (1998). An analytical solution of Layzer-type approach to unstable
interfacial fluid mixing. Physical Review Letters, 81, 3391-4.

Jasmas ^ May 2QQ2 -ifolu


