

international atomic energy agency the **abdus salam** international centre for theoretical physics

SMR 1521/18

AUTUMN COLLEGE ON PLASMA PHYSICS

13 October - 7 November 2003

ITER

K. Lackner

Max-Planck Institut fuer Plasmaphysik Garching, Germany

These are preliminary lecture notes, intended only for distribution to participants.

ITER and the mid & long term physics fusion program

K.Lackner*)

Max-Planck-Institut für Plasmaphysik D-85748 Garching *) previous adress: EFDA Close Support Unit

- why fusion
- ITER
 - role in fusion development strategy
 - ITER as a physics experiments
- fusion physics beyond ITER
 - requirements of a power plant
 - the stellarator alternative

acknowledgements to D. Campbell, S. Günter, W.Suttrop, ASDEX Upgrade Team

Fusion Basics: steady state magnetic confinement fusion: fusion is a "burn" process, with a burn temperature of > 100 Million ° K

DT Fusion Reaction & Fuel Cycle

D-T Fusion Reaction

 $Q = \frac{\text{fusion power produced}}{\text{external heating power applied}}$

principle of toroidal magnetic confinement

magnetic field reduces drastically perpenticular mobility of particles balances the plasma pressure (O(10atm))

produces thermal insulation (200 Million K)

$$\beta = \frac{k \left\langle n_e T_e + n_i T \right\rangle}{B^2 / 2\mu_o}$$

$$\tau_{E} = \frac{\frac{3}{2}k\langle n_{e}T_{e} + n_{i}T\rangle V_{p}}{P_{heat}} = H \cdot \tau_{E,scaling}$$

Fusion Basics: intrinsic properties of magnetic fusion

pro:

- abundant, distributed fuel
- fuel cycle closed on site (tritium breeding and burnup)
- safety: low afterheat, fuel inventory for 1'burn, no chain reaction but thermal burn process
- waste only activated structural and functional material: large potential for minimization

con:

- difficult to initiate and maintain: >100 Mill. K, high energy confinement time, plasma pressure
- complex technology: magnets, remote handling, fuel cycle, power fluxes
- tritium handling

fusion belongs to the class of low environmental impact energy systems

potential role of fusion:

role in energy scenarios for 21st century

electric power production in Europe in 2100:

scenarios

- minimizing total (discounted) expenditures for electric energy production in 21st century
- under different
 constraints on total
 CO2 production and
 on acceptance of
 fission

under CO2 emission constraints

- fusion could gain significant market share
- complimentary to classical renewables: fusion satisfies base-load demands

energy consumption growth: total and per capita

CarolusMagnus 1999

nested magnetic flux surfaces

large anisotropy of heat conductivity:

$$\chi_{\text{par}}/\chi_{\text{perp}} > 10\ ^{10}$$

electromagnetics of a tokamak

Fully axisymmetric configuration

Toroidal field coils:

 \Rightarrow Toroidal magnetic field

Central solenoid:

 \Rightarrow Inductively driven plasma current \Rightarrow Poloidal magnetic field

Vertical field coils:

"Equilibrium" - balance of hoop force

Shape of flux surfaces (poloidal cross section)

ITER'Mission

		•	burning plasma physics		
		•	integration of technology with physics		
ITER Design Goals		•	demonstrate and test fusion power plant technologies		
	Physic	S:	na dominated by a particle beating		
	ot •9	a significant fusion power amplification factor ($Q \ge 10$) in long-pulse operation			
	•a	aim to achieve steady-state operation of a tokamak (Q = 5)			
	•p	possibility of exploring 'controlled ignition' ($Q \ge 30$)			
	Techno	hnology:			
	•0	lemonstrate inf	egrated operation of technologies for a fusion power plant		
	•te	est component	s required for a fusion power plant		
	•te	est concepts fo	or a tritium breeding module		

ITER's Mission: physics of burning plasma - confinement in power plant grade (size) plasmas

IPP

Burning Plasma Physics (1) explore plasma regime of a reactor

Quasineutral plasma state characterized by 3 dimensionless parameters ٠

 $\rho_i = \rho / R = 0.0032 \sqrt{\mu_i T} / (RB_t)$ $v^* = Rq / \lambda_{mfp} = 10^{-22} Rn_e q / T^2$ $\beta_t = 8 \times 10^{-22} n_{e}T / B_t^2$

$$n_e = 1.3 \times 10^{16} \left(\frac{\mu}{R^2} \times \frac{\beta}{\rho^2} \right)$$
$$B_t = 1.1 \times 10^{-4} \left(\frac{q\mu^3}{R^5} \times \frac{\beta}{\nu \rho^6} \right)^{1/4}$$
$$T = 0.0011 \left(\frac{q\mu}{R} \times \frac{\beta}{\nu \rho^2} \right)^{1/2}$$

- 4 dimensional ones: R, n, T, B ٠
- dimensionless identity experiments ٠
- a compact device with same plasma ٠ physics would require higher heating power, higher current than a reactor!

$$P_{heat} \propto R^{-3/4}$$

 $I_p \propto R^{-1/4}$

Fusion heating does not obey plasma physics constraints $\frac{P_{\alpha}}{P} \propto nT\tau_{E} = f(\rho^{*}, v^{*}, \beta) \times R^{-5/4}$

Device	R[m]	a[m]	Bt[T]	Ip[MA]	Pheat	$nT\tau$ (rel)
JET ext.	3	1.1	4	6	40	1
Ignitor	1.32	0.48	11.2 (<13)	7.4 (<11-	74 (35)	2.8
				12)		

ITER's Mission: physics of burning plasma - nuclear selfheating

IPP

tokamak operation so far: external heating

e.g. wave heating

ITER: nTτ sufficient for dominant self-heating

dynamics of burn: determined by

$$\gamma_{b} = \frac{1}{\tau_{E}} \left(\frac{d \log \langle \sigma v \rangle}{d \log T} + \left(1 + \frac{5}{Q} \right) \left(\frac{d \log \tau_{E}}{d \log T} - 1 \right) \right)$$

- Global dynamics of ignition depends on plasma physics (ρ *, ν *, β) and T
- burn stability depends on confinement "law" and T;

$$\gamma_b = \frac{1}{\tau_E} \left(\frac{d \, \log \langle \sigma v \rangle}{d \, \log T} + \left(1 + \frac{5}{Q} \right) \left(\frac{d \, \log \tau_E}{d \, \log T} - 1 \right) \right)$$

- for T-independent additional heating (not true, e.g. for Ohmic heating, which stabilizes due to opposite T-dependence)
- for physics of late 70ies (Alcator-Intor scaling, or even more CMG) and low temperature ignition a major issue.

$$\left(\frac{d\log\tau_E}{d\log T}\right)_{Alcator-Intor} = 0 \qquad \left(\frac{d\log\tau_E}{d\log T}\right)_{CMG} = 1 \qquad \left(\frac{d\log\langle\sigma\,\mathbf{v}\rangle}{d\log T}\right) > 2$$

• for scaling laws accounting for power degradation, and the higher operating temperatures forced by Greenwald limit - no issue

$$\left(\frac{d\log\tau_E}{d\log T}\right)_{H98(y)} = -1.7 \qquad \qquad \left(\frac{d\log\langle\sigma\,\mathbf{v}\rangle}{d\log T}\right) \le 2$$

(2) physics of fusion self-heating α – particle physics

- Sufficient Q needed to dominate heating (Q=10, concur with Ignitor)
- \Box α -particle physics (via MHD-instabilities) depends (for given Q) on T, β

$$\frac{\beta_{fast}}{\beta} = \frac{P_{fus}\tau_{sd}}{P_{fus}\tau_E(1+Q/5)} \propto (\text{for fixed Q}) \frac{T^{3/2}}{n\tau_E} = \frac{T^{5/2}}{nT\tau_E} \propto T^{5/2} \left(\frac{T^2}{\langle \sigma \mathbf{v} \rangle}\right)$$

• i.e. ignition temperature regime is essential for relevance of studies

Preparatory R&D: (some) key reactor technologies already on present devices

e.g.on JET: fully remote substitution of divertor structure under activated conditions (after DTE1)

Preparatory R&D: superconducting magnets (in burning plasma environment) - L1/L2

specific fusion technology had to be developed:

high field, high stress (Ni₃Sn)

rapidly time - varying magnetic fields

R&D for ITER (with strong involvement of industry and all 4 partners):

test coils fabricated with record parameters (e.g. raised record for stored energy for Ni_3Sn by factor of 21, pulsed operation)

developed industrial fabrication techniques

Preparatory R&D: Vacuum Vessel (L-3)

• View of full-scale sector model of ITER vacuum vessel completed in September 1997 with dimensional accuracy of ± 3 mm

Preparatory R&D: Physics and technology cannot be separated: e.g.: plasma-wall interaction at plasma-wall contact large heat fluxes unmitigated -> 60 MW/m² (comparable to sun surface) through plasma control (divertor) -> 5-10 MW/m² radiation emission BSZ #6134 2.500000 from ASDEX-Up conversion of power flow into radiation: 2.4E+06 prototype sustained 1.8E+06 2000 cycles of 20 MW/m² 1.2E+06 have to be solved in symbiosis of 600000 research institutions with industry 2.3

Resource Allocation Summary for the Seven Large R&D Projects

(Unit: kIUA)

Projects	EU	Japan	RF	US*	Total
L1 - Central Solenoid Model Coil	10	61	4	22	97
L2 - Toroidal Field Model Coil	40	0	0	1	41
L3 - Vacuum Vessel Sector	4	19	4	2	29
L4 - Blanket Module	29	14	12	9	64
L5 - Divertor Cassette	13	12	9	21	55
L6 - Blanket Module Remote	3	18	0	0	21
Handling					
L7 - Divertor Remote Handling	26	3	0	0	29
Total	125	127	29	55	336

* US contributed until July 1999

Status: June 2000

The 1B\$ ITER design effort and the 0.4 B\$ spent on dedicated component development have produced a solid fundament and are a highly tangible asset of the ITER-project

Readiness for ITER: Fusion Research Performance can be

measured in the "triple product" $n~T~\tau$

- n... plasma density
- T... plasma temperature
- τ ... energy confinement time

 (a measure of the quality of
 the thermal insulation)

steady, rapid progress of tokamak performance

natural next step: burning plasma tokamak research is mature for the step to a burning plasma - the progress in performance measure $n T \tau$

ITER L- mode and ELMy H - mode Dataset

progress by:

- increased size of devices
- by improvements in design & operation

H-mode confinement or the unexpected side of plasma boundary physics - the tail wags the dog!

consequences on global confinement beyond those via impurity balance

Transport barriers due to suppressed turbulence

1984 ASDEX:

Transition to H-mode = state with reduced turbulence at the plasma edge

Formation of an edge "transport barrier" = steep pressure gradient at the edge 20 ASDEX Upgrade #8595 H-mode 15 transport barrier

minor radius [m]

0.4

0.5

10

5

0 0.2 L-mode

0.3

Theoretical understanding critical gradient modes causes "stiff" temperature profiles

"Stiff" temperature profile found in experiment: temperature at half radius proportional to edge temperature

Simulation results reproduce measured temperatures

A. Peeters, G. Tardini

Transport barriers due to suppressed turbulence

Conventional Tokamak

"Advanced Tokamak"

For non-monotonic current profiles non-stiff profiles Ignition Temperature on ASDEX Upgrade!

ITER's role

 baseline ("conventional") scenarios: Elmy H-mode Q = 10 and "hybrid" scenario

single confinement barrier

physics: extrapolation of well understood regime to/in

- self heating
- physics of α-particles
- divertor & PSI
- identifiable milestone
- technology physics integration
- technology test & demonstration

advanced scenarios:

•

multiple confinement barriers

develop physics: (a range of scenarios exist)

- extrapolation of regime
- self-consistency of equilibria
- MHD stability
- compatibility with divertor requirements and impurity concentrations
- compatibility with satisfactory α-confinement
- controllability
- satisfy steady state objective
- prepare DEMO

Standard inductive scenarios

- 1) verify & extend our scalings and theory models (confinement, H-mode access, ELMs, NTMs..)
- 2) qualify α -particle heating as a heating method
- high power/long pulse (on wall equilibration time) test of plasma wall interaction (incl. tritium inventory control)

maintain momentum:

Q= 10 reference scenario(s): milestone

Parameter	400 MW	560 MW	260 MW
R/a (m/m)	6.2/2.0	\leftarrow	\leftarrow
κ ₉₅ /δ ₉₅	1.7/0.33	\leftarrow	\leftarrow
B _T (T)	5.3	\leftarrow	\leftarrow
I _P (MA)	15.0	\leftarrow	\leftarrow
q 95	3	\leftarrow	\leftarrow
$< n_e > (10^{20} \text{m}^{-3})$	1.01	1.18	0.83
<ne>/nG</ne>	0.85	1.0	0.7
<te> (keV)</te>	8.8	9.0	8.7
$\langle T_i \rangle$ (keV)	8.0	8.2	7.9
P _{FUS} (MW)	400	560	260
$P_{NB} + P_{RF} (MW)$	33 + 7	33 + 23	17 + 9
Q	10	\leftarrow	\leftarrow
P _{RAD} (MW)	47	71	30
PLOSS/PL-H	1.8 (87/48)	2.4 (124/53)	1.3 (55/42)
β _N	1.8	2.1	1.4
β _P	0.65	0.77	0.52
li (3)	0.84	0.84	0.85
τ_E (s)	3.7	3.1	4.7
H _{H98(y,2)}	1.0	\leftarrow	\leftarrow
$\tau_{\rm He}^{*}/\tau_{\rm E}$	5.0	\leftarrow	\leftarrow
f _{He,axis/ave} (%)	4.3/3.2	4.1/3.1	4.1/3.1
f _{Be, axis} (%)	2.0	\leftarrow	\leftarrow
$f_{Ar, axis}$ ^{*1} (%)	0.12	0.16	0.10
Z _{eff, ave}	1.66	1.77	1.60
V _{loop} (mV)	75	75	82

- -

- - - ----

...

conservative requirements

high confidence level in attainment of Q =10 results of targeted R&D

 previous major concern: high H-factor at n/n_{GR} > 0.85

active stabilization of NTMs

Missing bootstrap current inside island can be replaced by localised external current drive.

non-modulated co-ECCD (AUGD)

Complete stabilisation in quantitative agreement with theory!
high confidence level in attainment of Q =10 results of targeted R&D

Q =10: ITER-simulation discharges on JET

JET-operating space

1001-116-16

Preparatory R&D: Physics and technology cannot be separated: e.g.: plasma-wall interaction at plasma-wall contact large heat fluxes unmitigated -> 60 MW/m² (comparable to sun surface) through plasma control (divertor) -> 5-10 MW/m² radiation emission from ASDEX-up

have to be solved in symbiosis of research institutions with industry

600000

2.3

Edge Localised Modes (ELMs)

ELM oscillations:

- A. Critical ∇p in H-mode barrier region reached Short unstable phase (ELM event)
- B. Energy and particle loss has lead to reduced gradients
- C. Gradients build up during reheant/refuelling phase

Q =10: divertor issues

- divertor & plasma wall interaction issues (ELM tolerance, tritium):
 - determine pulses: how long & how often
 - has to be solved for any kind of fusion reactor
 - focussed effort starts bearing fruit
 - type 2 ELMs
 - control of C erosion & tritium co-deposition by surface temperature control
 - viability of W-solution
 - Be-experiments on Pisces

inner divertor

Q =10: α -particle effects

α -particle confinement:

- classical confinement good (ripple reduction through ferromagentic inserts)
- AE-modes: for "nominal" (monotonic) q-profiles (PENN,Mishka):
 - linearly stable or
 - weak redistribution of α-particles
- fishbones: (marginally) unstable for nominal parameters

sawteeth:

period extended
 by α-particle
 stabilisation

•30% central Texcursion

•small effect on heat flux

Sawtooth oscillations

Central profiles:

- ① T(0) and j(0) \propto T^{3/2} rise
- 2° q(0) falls below 1 \rightarrow kink instability grows
- ③ Fast reconnection event:
 - T, n flattened inside q=1 surface q(0) rises slightly above 1, kink stable

missing understanding: scaling of pedestal?

in simulations: pedestal parameters assumed input

A. Peeters, G. Tardini

Extend scaling and verify theory: confinement

- pedestal scaling
 - pressure gradient limited
 - spatial scale? $R^{\alpha}\rho^{1-\alpha}$

- profile stiffness
 - agreement with codes
 - role of self-generated shearflows
 - electron transport
- role of n/n_{GR} vs v*

hybrid scenario: conservative scenario for technology testing

	Scenario 3	
	Hybrid #1	
R (m)/a (m)	6.2/2.0	[
κ_{95}/δ_{95}	1.7/0.33	[
V_P (m ³)	831	
B_T (T)	5.3	
I _P (MA)	13.8	
q ₉₅	3.3	
$< n_e > (10^{19} \text{m}^{-3})$	9.3	
<ne>/nG</ne>	0.85	-
$\langle T_i \rangle$ (keV)	8.4	[
$< T_e > (keV)$	9.6	
β_N	1.9	-
P _{FUS} (MW)	400	-
P _{NB} (MW)	33	
P_{RF} (MW)	40	
$Q = P_{FUS} / (P_{NB} + P_{RF})$	5.4	-
I_{CD}/I_P (%)	25	
I_{BS}/I_P (%)	17	
$\gamma_{20}^{NB}(10^{20}AW^{-1}m^{-2})$	0.24	
γ_{20}^{RF} (10 ²⁰ AW ⁻¹ m ⁻²)	0.30	
$\gamma_{20}^{TOT}(10^{20} AW^{-1}m^{-2})$	0.27	
$\tau_{\rm He}^{*}/\tau_{\rm E}$	5	
H _{H98(y,2)}	1.0	-
V _{loop} (mV)	56	
Burn flux (Vs)	60	
Burn time (s) ^{*1}	1070	-

advanced tokamak operation on ITER

- satisfy "steady-state" objective
- prepare DEMO (i.e. characteristics of a commercially viable reactor)
 - blue ribbon "fast track" panel
 - fusion industry committee
- associated physics issues match ITER capabilities
 - α-physics compatibility
 - long pulse aspects
 - current profile
 - plasma surface interaction
 - heating power > current drive power
 - controllability

Cost of electricity

Normalised Pressure* Electrical Output

	ITER- baseline	ITER- steady	1 st generation reactor designs	"advanced" reactor designs
β _n	1.8	3.1	3.5 - 4	> 4
<β> [%]	2.5	2.9	2.2 - 3	3 - 5

steady state ("advanced") scenarios:

- development needed
- spectrum of scenarios
- scenarios illustrative

	Scenario 4		Scenario 6	Scenario 7	
	WNS	WNS	SNS	WPS	Low-Q
R/a (m)	6.35/1.85	6.35/1.85	6.35/1.85	6.35/1.85	6.35/1.85
B _T (T)	5.18	5.18	5.18	5.18	5.18
I _P (MA)	9.0	9.5	9.0	9.0	11.0
κ ₉₅ /δ ₉₅	1.85/0.40	1.87/0.44	1.86/0.41	1.86/0.41	1.84/0.43
$< n_c > (10^{19} \text{m}^{-3})$	6.7	7.1	6.5	6.7	5.7
n/n _G	0.82	0.81	0.78	0.82	0.57
<t<sub>i> (keV)</t<sub>	12.5	11.6	12.1	12.5	9.3
<t<sub>e> (keV)</t<sub>	12.3	12.6	13.3	12.1	12.1
β _T (%)	2.77	2.67	2.76	2.75	2.2
β_N	2.95	2.69	2.93	2.92	1.9
β _p	1.49	1.25	1.48	1.47	0.77
P _{fus} (MW)	356	338	340	352	174
$P_{RF} + P_{NB}$ (MW)	$29 + 30^{*1}$	$35 + 28^{*1}$	$40 + 20^{*2}$	29 + 28 ^{*3}	36 + 50
$Q = P_{\text{fus}} \! / \! P_{\text{add}}$	6.0	5.36	5.7	6.2	2.0
W _{th} (MJ)	287	292	287	284	212
P_{loss}/P_{L-H}	2.59	2.74	2.63	2.6	3.0
τ_E (s)	3.1	2.92	3.13	3.07	2.15
f _{He} (%)	4.1	4.0	4.0	4.0	3.0
f _{Bc} (%)	2	2.0	2	2	2
f _{Ar} (%)	0.26	0.16	0.2	0.23	0.19
Zeff	2.07	1.87	1.89	1.99	1.86
P rad (MW)	37.6	30.6	36.2	34.6	22
P _{loss} (MW)	92.5	100.0	91.6	92.7	99
l _i (3)	0.72	0.43	0.6	0.69	0.58
I_{CD}/I_p (%)	51.9	49.7	53.7	50.2	73.6
I_{bs}/I_p (%)	48.1	50.3	46.3	49.8	26.4
I _{OH} /I _p (%)	0	0	0	0	0
$q_{95}/q_o/q_{min}$	5.3/3.5/2.2	5.0/3.8/2.7	5.4/5.9/2.3	5.3/2.7/2.1	4.1/1.5/1.3
H _{H98(y,2)}	1.57	1.46	1.61	1.56	1.0
τ_{Hc}^*/τ_E	5.0	5.0	5.0	5.0	5.0

+

\$

Recent discovery (~1990s): transport barriers in the plasma core

extrapolation and extension of regime

approach to ITER s.s.-targets in dimensionless *performance* parameters:

the 7-fold way*)

*) + pulse length: -> only full CD,ELMy H-mode cases shown

ITER & Power Plant: higher n/n_{GW} but lower v* !

$\alpha\text{-particle}$ physics and self-heating in advanced scenarios

significantly more problematic than in standard scenarios

		Ind	uctive	Weak	(#4) RS (#4)	Stro	ong RS
o allow study of instability		No FI	With FI	No FI	With FI	No FI	With FI
facto: improve classical	Total particle loss fraction (%)	2.15	negligible	6.5	0.08	21	0.75
enects: improve "classical	Total power loss fraction (%)	0.65	negligible	2.5	0.04	9.3	0.13
confinement" – ferritic inserts	Peak FW heat load (MWm ⁻²)	< 0.1	negligible	0.23	0.005	0.8	0.025
	Plasma current (MA)		15		10		10

Parameter	NBI	ICRH	α's (TFTR)	α's (JET)	α's (1998)	α 's (FEAT)
P _f (0) [MWm ⁻³]	3	1–3	0.3	0.16	0.3	0.44
δ _f /a	0.05	0.3	0.3	0.34	0.05	0.08
n _f (0)/n _e (0) [%]	13	1-10	0.3	0.17	0.3	0.8
$\beta_{\rm f}(0)$ [%]	0.9	1-3	0.26	0.3	0.7	1.1
$\langle \beta_{f} \rangle$ [%]	0.4	0.5	0.03	0.04	0.2	0.16
max R.∇β _f	0.04	≈ 0.1	0.02	0.016	0.06	0.08
v _f / v _A (0)	0.35	≈ 1-2	1.6	1.4	1.9	1.8

relevant for D –KAE:

$$\frac{\omega^*}{\omega_{TAE}} \cong 2nq^2 \rho^{*2} (R\omega_{pi}/c)$$

"synergies" between AE core losses and ripple edge losses?

Moreau: simulation of ITER-FDR *) feedback control with fuelling, FWCD & LHCD 300 250 LHCD alpha 200 FWCD 150 • high availability: 100 50 ample time & 0 \implies opportunity for experiments Total 12 3S H 9 • (although observation of 6 current diffusion on $\tau \sim \tau_{skin}$) 3 execution of control: 0 $\implies \tau >> \tau_{skin}$ q(x=0.1) 4,0 q(xref) 3,0 2,0 1,0 6000 2000 4000 8000

*) reduce times by factor of 2 for ITER-FEAT

Tim e, s

(reference

pulse length & duty cycle

*) repetition time = $4 \times burn$ time

**) (at present) limited by external cooling capacity

diagnostic access & facilities

ITER

UPPER PORT

NORTH

- 1 Active Spectr (MSE) Neutron Act syst (¹⁶N)
- 2 H-alpha /Visspec(inner edge) Main plasma reflect.
- 3 Neutron Camera
- 4 CXRS(pol rotn DNB) Wide angle viewing/IR
- 5 Neutron Camera Neutron Act syst (¹⁶N)
- 6 Neutron Camera 🛇 Neutron Act syst (foil)
- 7 Neutron camera Wide angle viewing/IR
- 8 Bolometry Position Reflectometry

- 9 H-alpha/Vis. spec (upper edge)
- 10 VUV, X-ray Crys Array Neutron Act syst (foil)
- 11 Edge Thomson scattering Wide angle viewing/IR
- 14 Wide angle viewing/IR Position Reflectometry
- 16 Bolometry Soft X-Ray Divertor Impurity (div16)
- 18 Wide angle viewing/IR H-alpha/Vis. spec (outer edge)
- all In-vessel diagnostic wiring

EQUATORIAL PORT

diagnostic access & facilities

- 3 Wide angle viewing/IR CXRS (with DNB) MSE (with heating NB) H-alpha/Vis spect (Div).
- 4 DNB
- 7 Obscured port
- 8 RH plus Limiter Neutron flux monitor
- 9 Wide angle viewing/IR Tor./Intefer. polarimeter ECE Fast Wave Reflectometry (possibly) MSE
- 10 LIDAR Thomson Scattering Polarimeter
 - 10 X-point LIDAR (c) Div Thomson Scattering (g) Bolometry, Magnetics Langmuir Probes Pressure Gauges,
 - 14 Reflectometry/Interferometry (g) Plate Erosion (c) Magnetics, Thermocouples Langmuir Probes
 - 16 Visible Div Impurity Monitor (c,g) Bolometry, Magnetics Pressure Gauges, Thermocouples

- 11 X-ray Cryst spec NPA VUV (main & div.) Reflectometry
- 12 Wide angle viewing/IR H-□ /Vis. spec (upper edge) Vis. continuum array
- 16 Wide angle viewing/IR Radial Neutron Camera Bolometry Soft x-ray array Divertor Impurity (div 16)
- 17 RH plus Limiter Neutron flux monitor Neutron Act syst (foil & ¹⁶N)
- Unassigned: Collective scattering

heating system	stage I	possible upgrade	remarks
		by	
NBI (1MeV negative ion)	33	16.5*)	vertically steerable (z at R _{tan} : -0.42m to + 0.16m)
ECR H&CD (170 GHz) (+2MW 120 GHz for start-up)	20	20	equatorial port & upper port launcher; steerable
ICR H&CD (40 – 60 MHz)	20		$2\Omega_{T}(50\% \text{ power to ions}),$ $\Omega 3_{He}(70\% \text{ to ions}); FWCD$
LH H&CD (5GHz)		20	1.8 <n 2.2<="" <="" td=""></n>
total	73	130 (110 simultan.)	upgrade in different RF combinations possible
ECRH start-up system (120 GHz)	2		
Diagnostic Beam (100 keV H, neg. ion?)	>2		

IPP

heating & current drive systems

heating system	stage I	possible upgrade by	remarks
NBI (1MeV negative ion)	33	16.5*)	vertically steerable (z at R _{tan} : -0.42m to + 0.16m)
ECR H&CD (170 GHz) (+2MW 120 GHz for start-up)	20	20	equatorial port & upper port launcher; steerable
ICR H&CD (40 – 60 MHz)	20		$_{2\Omega_{T}}(50\% \text{ power to ions}),$ $_{\Omega_{He}}(70\% \text{ to ions}), FWCD$
LH H&CD (5GHz)		20	1.8 <n 2.2<="" <="" td=""></n>
total	73	130 (110 simultan.)	upgrade in different RF combinations possible
ECRH start-up system (120 GHz)	2		
Diagnostic Beam (100 keV H, neg. ion?)	>2		

LH-launcher; based on Passive-Active Multijunction principle*) *) to be tested on FTU, Tore-S.

Adsorbed power (% of incoming power)

ITER- ω range

100 Ptot 75 He3 α 50 Be D 25 40 50 60 70 20 30 frequency (MHz) IC power absorbtion by species Standard□ Waveguide Support□ Structure Mode D Converter PAMD Module

the JET ICRH ITER-like antenna (2005)

- 7.5 MW at ITER relevant coupling (2-4 W/m)
- High coupling efficiency
 (90%) in range 30<f<55 MHz
- ELM resilient

preparatory physics R&D for ITER heating in JET

strong effort to increase LH availability in combination with other heating systems

flexibility through divertor maintanance and exchange capability

CASSETTE MULTI-FUNCTIONAL MOVER (CMM) CASSETTE END-EFFECTOR

for refurbishment and design-improvements

divertor casette system allows replacement of divertor within 6 months:

high field side pellet launch

type	number of injectors	repetition frequency	size	velocity	pulse length capability
high field side; centrifuge	2 (3)	7 – 50 Hz	3 - 6 mm	< 0.5 km/s	3000 s

benefit for high-βp ELMy H-mode

benefit of pellet injection on reverse shear modes: still to be explored

inward shift of mass deposition with respect to ablation

Figure 4.5-2 Model Predictions for the HFS Injection in ITER Solid lines correspond to pellet ablation, dashed lines for the ablated mass deposition

advanced scenarios at high β_n require RW feedback stabilisation

relevant & attractive range of plasma shapes covered:

enhanced		FDR	FEAT	(
snaping viz ITER-	κ_{05}/κ_{x}	1.6 / 1.76	1.7 /1.86	〈δ〉 0.
FDR	δ_{95}/δ_x	0.24 / 0.31	0.35 /0.5	(

can be further pushed to accomodate important observations

Double-Null proximity (+triangularity)for acces to type II ELMs

advanced scenarioes - > stronger shaping possible ($I_p = 9 \text{ MA}$)

l _i	0.6	0.4
k _{95, ma}	<2	<2.
		Ι

ITER's mission: physics of reactor grade (size) plasmas

ITERis not one experiment, but a facility on which we will run a broad range of experiments (like on other devices)

on ITER: no conflict to be expected between

 exciting burning plasma physics

 reactor oriented performance maximization

only high performance plasmas will burn

ITER sufficiently close to reactor that regimes transferrable

Fusion Power Plant: fusion core integrated into a "conventional" requirement

size and shape of a power plant could be quite close to ITER (stellarator - sharing most of the physics and technology with a tokamak - might be advantageous for easier steady-state operation)

Further Steps to a Power Plant: **Power Plant Conceptual Design Studies:**

reactor requirements beyond basic ITER

	ITER	ITER-RS	PPCD - C	PPCD - D
Ro [m]	6,20	6,20	7,5	6,1
lp[MA]	15,00	9,00	20,1	14,1
fBS	0,15	0,46	0,69	0,76
βN	1,80	2,90	4,0	4,5
H98y	1,00	1,60	1,3	1,2
Pfus [GW]	0,40	0,34	3,4	2,5
Q	10,00	5,70	30	35
Pel, net[GW]	n.a.	n.a.	1,5	1,5
structural materials	SS	SS	Eurofer+SiCSiC inserts;Eurofer ODS for first wall	SiC/SiC
blanket coolant	H₂O	H₂O	He+PbLi	PbLi
breeding blanket	n.a.	n.a.	PbLi	PbLi
design divertor load [MW/m2]	10	10	10	5
thermal power cycle efficiency	n.a.	n.a.	~43%	~59%
<neutron wall<br="">load></neutron>	0,5	0,4	2,2	2,4

Further Steps to a Power Plant: plasma performance beyond ITER nominal requirements

Further Steps to a Power Plant: **plasma performance: steady state at high** β_N

long-pulse control of advanced (high β_N , *H*) regimes

attractive reactor regimes so far only attained transiently (in contrast to ITER Q =10 regime)

stationary profile control strongly dependent on heating characteristics \Rightarrow experiments on ITER critical

Alterantives to tokamak: stellarator?

up to early 80ies stellarator had no consistent theoretical foundation:

tokamak: axisymmetry ensures a constant of motion -> confined orbits; small neoclassical losses

stellarator: discovery of quasisymmetry (Boozer&Nührenberg) configurations exist with constants of motion *in drift approximation*

Alterantives to tokamak: why?

- (1) intrinsic steady state capability
- (2) possibility of current disruptions

Time history of a (provoked) density limit disruption:

- 1. Radiation instability plasma edge cooled
- Resistive MHD: tearing modes magnetic islands
- 3. "Minor" disruptions loss of confinement
- 4. "Major" disruption: plasma current quench

problem of classical stellarator confinement of fast particles

Quasihelikale Symmetrie

$$\mathsf{B} = \mathsf{B}(\mathsf{s}, \theta - \varphi)$$

gyrocenters rest on closed surfaces

W7-X: confinement of fast particles

W7-X: modular coils

W7-X: modular coils

W7-X aim: close performance gap to tokamaks

Summary and Outlook

