

the

international atomicenergy agency **abdus salam**international centre for theoretical physics

SMR 1521/18

AUTUMN COLLEGE ON PLASMA PHYSICS

13 October - 7 November 2003

ITER

K. Lackner

Max-Planck Institut fuer Plasmaphysik Garching, Germany

These are preliminary lecture notes, intended only for distribution to participants.

ITER and the mid & long term physics fusion program

K.Lackner*)

Max-Planck-Institut für Plasmaphysik D-85748 Garching *) previous adress: EFDA Close Support Unit

- why fusion
- ITER
	- role in fusion development strategy
	- ITER as ^a physics experiments
- fusion physics beyond ITER
	- requirements of a power plant
	- the stellarator alternative

acknowledgements to D. Campbell, S. Günter, W.Suttrop, ASDEX Upgrade Team

Fusion Basics: steady state magnetic confinement
fusion: fusion is a "burn" process, with a burn temperature of
> 100 Million º K

DT Fusion Reaction & Fuel Cycle principle of toroidal magnetic

D-T Fusion Reaction

external heating power applied fusion power produced *Q* =

confinement

magnetic field reduces drastically perpenticular mobility of particles

balances the plasma pressure (O(10atm))

produces thermal insulation (200 Million K)

$$
\beta = \frac{k \langle n_e T_e + n_i T \rangle}{B^2 / 2 \mu_o}
$$

$$
\tau_E = \frac{\frac{3}{2}k \langle n_e T_e + n_i T \rangle V_p}{P_{heat}} = H \cdot \tau_{E, scaling}
$$

Fusion Basics: intrinsic properties of magnetic fusion

pro:

- abundant, distributed fuel
- fuel cycle closed on site (tritium breeding and burnup)
- safety: low afterheat, fuel inventory for 1´burn, no chain reaction but thermal burn process
- waste only activated structural and functional material: large potential for minimization

con:

- difficult to initiate and maintain: >100 Mill. K, high energy confinement time, plasma pressure
- complex technology: magnets, remote handling, fuel cycle, power fluxes
- tritium handling

fusion belongs to the class of low environmental impact energy systems

potential role of fusion:

electric power production in Europe in 2100:

scenarios

- minimizing total (discounted) expenditures for electric energy production in 21st century
- under differentconstraints on total CO2 production and on acceptance of fission

under CO2 emission constraints

- fusion could gain significant market share
- complimentary to classical renewables: fusion satisfies base-load demands

energy consumption growth: total and per capita

CarolusMagnus 1999

nested magnetic flux surfaces

large anisotropy of heat conductivity:

 $\chi_{\text{par}}/\chi_{\text{perp}} > 10^{-10}$

electromagnetics of a tokamak

Fully axisymmetric configuration

Toroidal field coils:

 \Rightarrow Toroidal magnetic field

Central solenoid:

 \Rightarrow Inductively driven plasma current
 \Rightarrow Poloidal magnetic field

Vertical field coils:

"Equilibrium" - balance of hoop force

Shape of flux surfaces
(poloidal cross section)

ITER´Mission

IPP ITER´s Mission: physics of burning plasma - confinement in power plant grade (size) plasmas

Burning Plasma Physics (1) explore plasma regime of a reactor

- • Quasineutral plasma state characterized by 3 dimensionless parameters
	- $n_t = 8 \times 10^{-22} n_e T / B_t^2$ $v^* = Rq / \lambda_{mfp} = 10^{-22} R n_e q / T^2$ $\beta_t = 8 \times 10^{-7}$

$$
n_e = 1.3 \times 10^{16} \left(\frac{\mu}{R^2} \times \frac{\beta}{\rho^2} \right)
$$

$$
B_t = 1.1 \times 10^{-4} \left(\frac{q\mu^3}{R^5} \times \frac{\beta}{\nu \rho^6} \right)^{1/4}
$$

$$
T = 0.0011 \left(\frac{q\mu}{R} \times \frac{\beta}{\nu \rho^2} \right)^{1/2}
$$

/ 0.0032 /() *i i t R T RB* = ⁼ ^ρ ^ρ ^µ • 4 dimensional ones: R, n, T, B \bullet dimensionless identity experiments \bullet a compact device with same plasma physics would require higher heating power, higher current than a reactor! • Fusion heating does not obey plasma physics constraints 1/ 4 3 / 4 − ∝ ∝ *I* I , $\propto R$ *P* $P_{\scriptscriptstyle L}$ \propto R *p heat*

5/ 4

Device $\mathbb{R}[\text{m}]$ a $[\text{m}]$ $\mathbb{B}[\text{T}]$ $\mathbb{I}[\text{p}[\text{MA}]$ $\mathbb{P}[\text{heat}$ $\text{nT}\tau$ (rel) JET ext. 13 1.1 14 16 140 1 Ignitor 1.32 0.48 $11.2 \left(\leq 13\right)$ $7.4 \left(\leq 11\right)$ 12) $74(35)$ 2.8 $\frac{P_\alpha}{P_{heat,tot}} \propto nT\tau_{_E} = f(\rho^*,\nu^*,\beta) \times R^{-1}$

ITER´s Mission: physics of burning plasma - nuclear selfheating

IPP

tokamak operation so far: external heating

e.g. wave heating

 \rightarrow 10 externally applied heating power to plasma fusion produced power Q $=$

dynamics of burn: determined by

$$
\gamma_b = \frac{1}{\tau_E} \left(\frac{d \log \langle \sigma v \rangle}{d \log T} + \left(1 + \frac{5}{Q} \right) \left(\frac{d \log \tau_E}{d \log T} - 1 \right) \right)
$$

- •Global dynamics of ignition depends on plasma physics (ρ^*, v^*, β) and T
- \bullet burn stability depends on confinement "law" and T;

$$
\gamma_b = \frac{1}{\tau_E} \left(\frac{d \log \langle \sigma v \rangle}{d \log T} + \left(1 + \frac{5}{Q} \right) \left(\frac{d \log \tau_E}{d \log T} - 1 \right) \right)
$$

- for T-independent additional heating (not true, e.g. for Ohmic heating, which stabilizes due to opposite T-dependence)
- \bullet for physics of late 70ies (Alcator-Intor scaling, or even more CMG) and low temperature ignition a major issue.

$$
\left(\frac{d \log \tau_{E}}{d \log T}\right)_{\text{Alcator}-\text{Intro}} = 0 \qquad \left(\frac{d \log \tau_{E}}{d \log T}\right)_{\text{CMG}} = 1 \qquad \left(\frac{d \log \langle \sigma v \rangle}{d \log T}\right) > 2
$$

 \bullet for scaling laws accounting for power degradation, and the higher operating temperatures forced by Greenwald limit - no issue

$$
\left(\frac{d \log \tau_{E}}{d \log T}\right)_{H98(y)} = -1.7 \qquad \left(\frac{d \log \langle \sigma v \rangle}{d \log T}\right) \le 2
$$

(2) physics of fusion self-heating α – particle physics

- \bullet Sufficient Q needed to dominate heating (Q=10, concur with Ignitor)
- \Box a-particle physics (via MHD-instabilities) depends (for given Q) on T,β

$$
\frac{\beta_{\text{fast}}}{\beta} = \frac{P_{\text{fix}} \tau_{\text{sd}}}{P_{\text{fix}} \tau_{\text{g}} (1 + Q/5)} \propto \text{(for fixed Q)} \frac{T^{3/2}}{n \tau_{\text{g}}} = \frac{T^{5/2}}{n T \tau_{\text{g}}} \propto T^{5/2} \left(\frac{T^2}{\langle \sigma v \rangle} \right)
$$

 \bullet i.e. ignition temperature regime is essential for relevance of studies

Preparatory R&D: (some) key reactor technologies already on present devices

e.g.on JET: fully remote substitution of divertor structure under activated conditions (after DTE₁)

Preparatory R&D: superconducting magnets (in burning plasma environment) - L1/L2

specific fusion technology had to be developed:

high field, high stress $(Ni₃Sn)$

rapidly time - varying magnetic fields

R&D for ITER (with strong involvement of industry and all 4 partners):

> test coils fabricated with record parameters (e.g. raised record for stored energy for $Ni₃Sn$ by factor of 21, pulsed operation)

developed industrial fabrication techniques

Preparatory R&D: Vacuum Vessel (L-3)

• View of full-scale sector model of ITER vacuum vessel completed in September 1997 with dimensional accuracy of \pm 3 mm

<u>יין ון</u> **Preparatory R&D:** Physics and technology cannot be separated: e.g.: plasma-wall interaction at plasma-wall contact large heat fluxes unmitigated -> 60 MW/m2 (comparable to sun surface) through plasma control (divertor) $-5 - 10$ MW/m² **radiation emission** BSZ #6134 2.500000 **from ASDEX-Up conversion of power flow into radiation:** $2.4E + 06$ **prototype sustained** 1.8E+06 **2000 cycles of 20 MW/m²** $1.2E + 06$ have to be solved in symbiosis of 600000 research institutions with industry 2.3

Resource Allocation Summary for the Seven Large R&D Projects

(Unit: kIUA)

* US contributed until July 1999

Status: June 2000

The 1B\$ ITER design effort and the 0.4 B\$ spent on dedicated component development have produced a solid fundament and are ^a highly tangible asset of the ITER-project

Readiness for ITER: Fusion Research Performance can be

measured in the "triple product" *n T τ*

- *ⁿ*... plasma density
- *T*... plasma temperature
- τ ... energy confinement time. (a measure of the quality of the thermal insulation)

steady, rapid progress of tokamak performance

natural next step: burning plasma tokamak research is mature for the step to a burning <code>plasma</code> - the progress in performance measure n T τ

ITER L- mode and ELMy H - mode Dataset

progress by:

- increased size of devices
- • by improvements in design & operation

H-mode confinement or the unexpected side of plasma boundary physics - the tail wags the dog!

consequences on global confinement beyond those via impurity balance

Transport barriers due to suppressed turbulence

1984 ASDEX:

Transition to H -mode = state with reduced turbulence at the plasma edge

Formation of an edge "transport barrier"
= steep pressure gradient at the edge 20 **ASDEX Upgrade** #8595 electron pressure [kPa] H-mode 15 transport barrier 10 5 L-mode O 0.2 0.3 0.4 0.5 minor radius [m] Reduction of transport coefficients
to "neoclassical" level often found Edge pressure limited by stability

Theoretical understanding critical gradient modes causes "stiff" temperature profiles

"Stiff" temperature profile found in experiment: temperature at half radius proportional to edge temperature

Simulation results reproduce measured temperatures

A. Peeters, G. Tardini

Transport barriers due to suppressed turbulence

Conventional Tokamak "Advanced Tokamak"

For non-monotonic current profiles non-stiff profiles Ignition Temperature on ASDEX Upgrade!

ITER´s role

•baseline ("conventional") scenarios: Elmy H-mode $Q = 10$ and "hybrid" scenario

single confinement barrier

physics: extrapolation of well understood regime to/in

- self heating
- \bullet $\,$ physics of α -particles
- divertor & PSI
- identifiable milestone
- technology physics integration
- technology test & demonstration

advanced scenarios:

•

multiple confinement barriers

develop physics: (a range of scenarios exist)

- extrapolation of regime
- self-consistency of equilibria
- MHD stability
- compatibility with divertor requirements and impurity **concentrations**
- compatibility with satisfactory ^α-confinement
- controllability
- satisfy steady state objective
- prepare DEMO

Standard inductive scenarios

- 1) verify & extend our scalings and theory models (confinement, H-mode access, ELMs, NTMs..)
- 2) $\,$ qualify α -particle heating as $\,$ ^a heating method
- 3) high power/long pulse (on wall equilibration time) test of plasma wall interaction (incl. tritium inventory control)

maintain momentum:

Q= 10 reference scenario(s): milestone

τ

 $\overline{}$

 $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac$

 \sim \sim

 $\overline{}$

conservative requirements

high confidence level in attainment of $Q = 10$ results of targeted R&D

 \bullet previous major concern: high H-factor at $n/n_{GR} > 0.85$

active stabilization of NTMs

Missing bootstrap current inside island can be replaced by localised external current drive.

non-modulated co-ECCD (AUGD)

Complete stabilisation in quantitative agreement with theory!
high confidence level in attainment of $Q = 10$ results of targeted R&D

Q =10: ITER-simulation discharges on JET

JET-operating space

IOA1 410 16

Preparatory R&D: Physics and technology cannot be separated:

<u>יין ו</u>

e.g.: plasma-wall interaction

Edge Localised Modes (ELMs)

ELM oscillations:

- A. Critical Vp in H-mode barrier region reached Short unstable phase (ELM event)
- B. Energy and particle loss has lead to reduced gradients
- C. Gradients build up during reheant/refuelling phase

Q =10: divertor issues

- \bullet **divertor & plasma wall interaction issues (ELM tolerance, tritium):**
	- – determine pulses: how long & how often
	- has to be solved for any kind of fusion reactor
	- focussed effort starts bearing fruit
		- type 2 ELMs
		- • control of C erosion &tritium co-deposition by surface temperature control
		- viability of W-solution
		- •Be-experiments on Pisces

inner divertor

Q =10: α -particle effects

^α**-particle confinement:**

- • **classical confinement good (ripple reduction through ferromagentic inserts)**
- AE-modes: **for"nominal" (monotonic) q-profiles (PENN,Mishka):**
	- **linearly stable or**
	- **weak redistributionof** α−**particles**
- fishbones:**(marginally) unstable for nominalparameters**

sawteeth:

•period extended by ^α-particle stabilisation

•30% central Texcursion

•small effect onheat flux

Sawtooth oscillations

Central profiles:

- T(0) and $j(0) \propto T^{3/2}$ rise $\circled{1}$
- $q(0)$ falls below $1 \rightarrow$ kink instability grows ②
- Fast reconnection event: $\circled{3}$
	- T, n flattened inside $q=1$ surface
 $q(0)$ rises slightly above 1, kink stable

missing understanding: scaling of pedestal?

in simulations: pedestal parameters assumed input

A. Peeters, G. Tardini

Extend scaling and verify theory: confinement

- • pedestal scaling
	- pressure gradient limited
	- – spatial scale? $R^{\alpha} \rho^{1 - \alpha}$

- • profile stiffness
	- agreement with codes
	- role of self-generated shearflows
	- electron transport
- •role of n/n_{GR} vs $v*$

hybrid scenario: conservative scenario for technology testing

Burn Time (s)

advanced tokamak operation on ITER

- •satisfy "steady-state" objective
- • prepare DEMO (i.e. characteristics of acommercially viable reactor)
	- blue ribbon "fast track" panel
	- fusion industry committee
- \bullet **associated physics issues match ITER capabilities**
	- –^α**-physics compatibility**
	- **long pulse aspects**
		- **current profile**
		- **plasma surface interaction**
	- – **heating power > current drive power**
		- •**controllability**

Cost of electricity

Normalised Pressure* Electrical Output

steady state ("advanced") scenarios:

- **development needed**
- **spectrum of scenarios**
- **scenarios illustrative**

Recent discovery (~1990s): transport barriers in the plasma core

extrapolation and extension of regime

approach to ITER s.s.-targets in dimensionless *performance* parameters:

the 7-fold way*)

*) + pulse length: -> only full CD,ELMy H-mode cases shown

ITER & Power Plant: higher n/n_{GW} but lower v^{\star} !

^α-particle physics and self-heating in advanced scenarios

significantly more problematic than in standard scenarios

 0.26

0.03

0.02

 1.6

 0.3

 0.04

0.016

 1.4

 0.7

 0.2

0.06

 1.9

 1.1

0.16

0.08

 1.8

 $[%]$

 $[%]$

0.9

 0.4

0.04

0.35

 $1 - 3$

 0.5

 ≈ 0.1

 \approx 1-2

$$
\frac{\omega^*}{\omega_{\scriptscriptstyle TAE}} \cong 2nq^2 \rho^{*2} (R\omega_{\scriptscriptstyle pi}/c)
$$

"synergies" between AE core losses and ripple edge losses?

 $\beta_{\mathsf{f}}(0)$

 $max | R.\nabla \beta_f |$

 $v_f / v_A(0)$

 $\langle \beta_f \rangle$

pulse length & duty
cycle

Moreau: simulation of ITER-FDR *) feedback control with fuelling, FWCD & LHCD

**) (at present) limited by external cooling capacity

*) reduce times by factor of 2 for ITER-FEAT

Tim e, s

0 2000 4000 6000 8000

diagnostic access & facilities

ITER

UPPER PORT

NORTH

- 1 Active Spectr (MSE) Neutron Act syst (¹⁶N)
- 2 H-alpha /Visspec(inner edge) Main plasma reflect.
- 3 Neutron Camera \Diamond
- 4 CXRS(pol rotn DNB) Wide angle viewing/IR
- 5 Neutron Camera \diamondsuit Neutron Act syst (¹⁶N)
- 6 Neutron Camera \Diamond Neutron Act syst (foil)
- 7 Neutron camera \Diamond Wide angle viewing/IR
- 8 Bolometry **Position Reflectometry**
- 9 H-alpha/Vis. spec (upper edge)
- 10 VUV. X-ray Crys Array Neutron Act syst (foil)
- 11 Edge Thomson scattering Wide angle viewing/IR
- 14 Wide angle viewing/IR **Position Reflectometry**
- 16 Bolometry Soft X-Ray Divertor Impurity (div16)
- 18 Wide angle viewing/IR H-alpha/Vis. spec (outer edge)
- all In-vessel diagnostic wiring

EQUATORIAL PORT

diagnostic access & facilities

- 3 Wide angle viewing/IR CXRS (with DNB) MSE (with heating NB) H-alpha/Vis spect (Div).
- 4 DNB
- 7 Obscured port
- 8 RH plus Limiter Neutron flux monitor
- 9 Wide angle viewing/IR Tor./Intefer. polarimeter **FCF** Fast Wave Reflectometry (possibly) MSE
- 10 LIDAR Thomson Scattering Polarimeter
	- 10 X-point LIDAR (c) Div Thomson Scattering (g) Bolometry, Magnetics Langmuir Probes Pressure Gauges,
	- 14 Reflectometry/Interferometry (g) Plate Erosion (c) Magnetics, Thermocouples Langmuir Probes
	- 16 Visible Div Impurity Monitor (c,g) Bolometry, Magnetics Pressure Gauges, Thermocouples

- 12 Wide angle viewing/IR $H - \Box$ / Vis. spec (upper edge) Vis. continuum array
- 16 Wide angle viewing/IR Radial Neutron Camera Bolometry Soft x-ray array Divertor Impurity (div 16)
- 17 RH plus Limiter Neutron flux monitor Neutron Act syst (foil & ¹⁶N)
- Unassigned: Collective scattering

IPP

heating & current drive
systems

LH-launcher; based on Passive-Active Multijunction principle*) *) to be tested on FTU, Tore-S.

PAMD Module

ITER- ω range

Converter

the JET ICRH ITER-like antenna(2005)

- • 7.5 MW at ITER relevant coupling (2-4 W/m)
- • High coupling efficiency (90%) in range 30<f<55 MHz
- •ELM resilient

preparatory physics R&D for ITER heating in JET

strong effort to increase LH availabilty *in combination with other heating systems*

flexibility through divertor maintanance and exchange capability

CASSETTE 3411 MULTI-FUNCTIONAL MOVER (CMM) Q CASSETTE END-EFFECTOR

for refurbishment and design-improvements

divertor casette system allows replacement of divertor within 6 months:

high field side pellet
launch

benefit for high-βp ELMy H-mode

benefit of pellet injection on reverse shear modes: still to be explored

inward shift of mass deposition with respect to ablation

Figure 4.5-2 Model Predictions for the HFS Injection in ITER Solid lines correspond to pellet ablation, dashed lines for the ablated mass deposition

advanced scenarios at high $β_n$ advanced scenarios at high β_n require RW
feedback stabilisation

relevant & attractive range of plasma shapes covered:

can be further pushed to accomodate important observations

Double-Null proximity (+triangularity)for acces to type II ELMs

advanced scenarioes - > stronger shaping possible $(I_p = 9 \text{ MA})$

ITER´s mission: physics of reactor grade (size) plasmas

ITERis not *one* experiment, but ^a facility on which we will run ^a broad range of experiments (like on other devices)

on ITER: no conflict to be expected between

• exciting burning plasma physics

• reactor oriented performance maximization

only high performance plasmas will burn

ITER sufficiently close to reactor that regimes transferrable

Fusion Power Plant: fusion core integrated into a "conventional" requirement

size and shape of a power plant could be quite close to ITER (stellarator - sharing most of the physics and technology with ^a tokamak - might be advantageous for easier steady-state operation)

Further Steps to a Power Plant: *Power Plant Conceptual Design Studies:*

reactor requirements beyond basic ITER

Further Steps to a Power Plant: **plasma performance beyond ITER nominal requirements**

Further Steps to a Power Plant: **plasma performance: steady state at high** $β_M$

long-pulse control of advanced (high $\beta_{\sf N}$ **,** $\bm H$ **) regimes**

attractive reactor regimes so far only attained transiently (in contrast to ITER $Q = 10$ regime)

stationary profile control strongly dependent on heating characteristics \Rightarrow experiments on ITER critical

Alterantives to tokamak: stellarator ..&..?

up to early 80ies stellarator had no consistent theoretical foundation:

tokamak: axisymmetry ensures ^a constant of motion -> confined orbits; small neoclassical losses

stellarator: discovery of quasisymmetry (Boozer&Nührenberg) configurations exist with constants of motion *in drift approximation*

Alterantives to tokamak: why?

- (1) intrinsic steady state capability
- (2) possibility of current disruptions

Time history of a (provoked) density limit disruption:

- 1. Radiation instability plasma edge cooled
- 2. Resistive MHD: tearing modes magnetic islands
- 3. "Minor" disruptions loss of confinement
- 4. "Major" disruption: plasma current quench

problem of classical stellarator confinement of fast particles

Quasihelikale Symmetrie

$$
B=B(s, \theta-\varphi)
$$

gyrocenters rest on closed surfaces

W7-X: confinement of fast particles

W7-X: modular coils

W7-X: modular coils

Summary and Outlook

