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FIG. 2: Contours of constant stream function ¢ for the solutions of Eq. (5). Negative values are

shown as broken lines, throughout.
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FIG. 3: Entropy vs. energy for the solutions of Eq. (5) for unit positive and negative vorticity

flux, computed for the “point” discretization.
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FIG. 4: Entropy vs. energy at unit vorticity fluxes for the solutions of Eq. (8): (a) with a relatively

large patch size (M/A = 3.7814); (b) with a somewhat smaller patch size (M/A = 25); (¢) with

a still smaller patch size (M/A = 100). Note that in (c) the dipole solution has become slightly

more probable than the bar.
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FIG. 5: Equally spaced contours of constant vorticity at three different times (left column) and
corresponding modal energies at the lower values of k (right column), during the evolution of the
McWilliams/Matthaeus initial conditions. These have no flat patches of vorticity initially, even

approximately.
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FIG. 6: The w — 1 scatter plot for the run shown in Fig. 5 (which is close to Fig. 1(a)).
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FIG. 7: The initial vorticity field as a function of z and y for a run intended to exhibit patch
characteristics. (a) without random noise, (b) has had substantial randorm noise added to the

vorticity field.
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FIG. 8: Contours of constant vorticity (left column) and constant stream function (right column)

at three different times for the run originating from the initial vorticity distribution (with noise)

shown in Fig. 7(b).
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FIG. 13: Time evolution of a 64-pole initial condition, triggered only by round-off error, into a bar
state (the scatter plot of final state is close to Fig. 1(c)). No noise beyond round-off error has been

added to the initial condition.
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FIG. 14: Time evolution of the vorticity contours, starting from the same initial condition as in
Fig. 13, but with a healthy addition of random noise (In this run, Ry increases from 2036 initially
to 11400 at the end.). The last panel is the late-time w — 9 scatter plot for the resulting dipole
(which is close to Fig. 1(a)).
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FIG. 15: Evolution of the one-dimensional “8-bar” initial condition, with random noise added
initially (In this run, R, increases from 3228 initially to 11500 at the end.). The evolution is

toward a dipole, now, as seen in the bottom panel (which is close to Fig. 1(a}).
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FIG. 21: A second run, whose late-time state is outside the patch/point classifications, that seems to have reached some metastable late-time

state. Here, a large arca of zero vorticity was created in the initial conditions by removing, asymmetrically, four pieces of a 16-pole patch

solution.
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FIG. 22: The w — 1 scatter plot of the late-time state achieved in Figs. 21, suggesting two
independent co-existing sinh-Poisson states which have developed asymmetrically. This is for the

evolution shown in Figs. 21.
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