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nonvanishing Bumg are the Bog,, which are straightfor-
wardly obtained from setting the z component of Joog =0
atr =

00g = '—§00ch3x)qjo(kooqa) .

There are two possible signs of knmq—:t(y,,mq-i-kz)l/z
for each v,,,>0. It will be seen in Sec. V that the sign
of A, is fixed by the sign of (j*B). The 7,y are or-
dered in g as ascending positive values, with ¢ =1 always
identifying the lowest nonzero ¥ ,,,, for any n and m.

{4.10)

The determination of the possible j,,,,, which satisfy all-

the boundary conditions is now complete, up to the
overall multiplicative amplitude £,,,,. The constraint of
constant helicity supply rate will be expressed as
)

DAVID MONTGOMERY AND LEE PHILLIPS

(jnmq "Bimg ) =const where B,ng
be determined in Sec. V.

is the magnetic field 1o

V. ASSOCIATED MAGNETIC FIELD PROFILES

For each j,,, of the form of Eq. (4.1), there is a B

_ for which

VSnmq

V><Bnmq =jnmq =Jnmq + A

(5.1)

nmgq

It is vseful to write Vs,,mq in the form of Eq. {4.4b) and
identify

ilmp+k,2)

gnmanmq. . (d nrmq /lk )V ></ézIm(kn")e ns40
 Booa?

2)»00‘1 81 0Bm

where some of the symbols remain to be defined. B, is a
constant, uniform magnetic field in the z direction, By€,,
and accounts for all the toroidal flux Bomz 2, since all the
other functions are “fluxless.” X nmg is a solution of
Laplace’s equation V2¥ amq =0, and is written

ilmp+k,2)
1B g L (K )e , n#0

= ibgpuer™ e™? n=0and m=0 {5.3)

Xnmq
0, n=0=m .

The real numbers b,,, and b,y are determined by the
boundary condition B-A=0 at r =a. The last term of
(5.2) is a poloidal contribution whose curl leads to the
average toroidal current contribution that follows from
(4.10).

All terms in (5.2) are thus completely determined ex-
cept the overall amplitude §,,,. Since the ib,,, will be
proportional to the id,,,, notice that every term in (5.2)
except B, contains a multiplicative factor of £,,.;. Boog 18
responsible for all the toroidal current, and there is none
for modes with n24+m?2>0. B, is responsible for the to-
tal toroidal flux, which is always Byma?® regardless of m
and n.

~ VI SEARCH FOR THE MINIMUM-DISSIPATION
STATE

The only undetermined number in j,,, and B,,, is
now the overall amplitude §,,,,, given n, m, and g. The
problem has been reduced to finding the minimum value

“of (j3 ), subject to a given value of K =(jumgBumg )
with j,,,, and B,,, given by (4.1) and (5.2). It is possible
to prove a very useful relation between these volume
averages, which we now demonstrate. )

(5.2)

—

First, consider the case n?’+m?2>0. Substitute (4.1)
into f Inmg ‘Bamgd 3x to get (real parts understood before

- multiplication)

fjnmq Bnqu x

=fd3x

The last term in {(6.1) vanishes upon conversion to a sur-
face integral and using the boundary conditions; for the
rest, we may write

;nqunmq+_kﬂ 'Bnmq . (6D

nmq

fd3x é-nqunmq ’Bnmq
(VX EumaT nma }
_ 3 nmq~ nmq’
=[d S Bomg
3 1 1
=fd xl VX §nmql,,mq+‘i"‘vsnmq 'Bnmq .
nmgq nmgq
(6.2)

The larger parentheses in (6. 2) iS jumq» SO We have proved
that

fjnmq'Bnqusx = x (vxjnmq )'Bnmq

1 .
= Iy fv'(.’nmq XBnmq Jd’x

nmgq

1 .
+ Iy fVXBnmq'Jnquax

nmgq

1 .
=A' fd3x1,2,mq ’

nmq

6.3

13
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_ So017001/o(¥ 0014)
= B,

T yea@)[1 =V 1+(2/T5)]
2{273(yoma) + [T (Y oma) P}
=1+41-v1+(2/Tp)] .

This follows from

F

+1

=+1+

(6.19)

Booi(r)€, /By
=1+(%)[1-—\/1+2/H3 )]'JO(Y()OI")/JO('VOOIa) ’

also
o (@Ago W 3(Agora)
4{2J5(Xo18)+ 71 (Ag10) %)
X[—1+v/T+(2/Tp)]

=0.32[ - 14V 14+(2/11,)] . (6.20)
Combining these two expressions gives
F=1-0.520 . 6.21)

Field reversal occurs at ©=1.9 (instead of 1.2, as in the
“minimum-energy” formulation), and the minimum-
energy-dissipation state ceases to be the 001 state at

©=0.32[—1+V1+2/(0.022)] ~2.75

(instead of 1.6, as in the minimum-energy formulation).
The toroidal current density of the 001 state is

j001'82=§001ng1[]0(7'001’)"JO(YOOIa)] > (6.22)

which remains always positive and goes smoothly to zero
at r =a. The toroidal magnetic field is given by

Boo:1 €, =801V 001/of Apor”) + By -

Equation (6.23) is the magnetic field of the “Taylor state”
plus a a constant. Whether or not it reverses before r =a
depends upon II; (or ©), as we have already seen. Up to
an additive constant, (6.22) is also the toroidal current as-
sociated with the ““Taylor state;” the constant is the con-
stant necessary to bring j,(7) smoothly to zero at r =a.

Some typical profiles of the 001 minimum-dissipation
state are illustrated in Figs. 1-5. Figures 1-5 refer to the
case B;=0.5, a =m/2, I13 =0.025. This is a state close
to the upper limit in © of the “window” in which the
minimum-dissipation state is the field-reversed 001 state.
Figures 1-5 are obtained by numerically evaluating Egs.
{6.9) and (6.10) for ¢ =1, and plotting the evaluated quan-
tities versus r.

Figure 1 is B,(r) as a function of ». Figure 2is j,(r) as
a function of . Figure 3 is the radial component of jXB
as a function of 7, and is the only nonvanishing com-
ponent of that vector. Note that the magnitude of jXB
is much less than |j|-|B|, indicating proximity to a
force-free state. Figure 3 is a direct measure of the radial
pressure gradient that the minimum-dissipation state will
support. Figure 4 is a plot of the “alignment cosine”

(6.23)
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2.2

1.8

1.4

1.0

0.6

z COMPONENT OF B

0.2 ;

-0.2

FIG. L. B,(r) vs r, for the case a =7/2, By=1, l1;=0.025

and ©==2.56. [All graphs are in the dimensionless units of Eqgs.

2.1)-2.4)]

j-B/jB, which measures the departure from the force-
free condition. Note the presence of a force-free core sur-
rounded by a region which is less so centered just above
r=1. Finally, Fig. 5 is a plot of the ratio j-B/B?, which
varies considerably more than the alignment cosine. Fig-
ures 4 and 5 are in qualitative agreement with the results
of dynamical computations.

VII. SUMMARY

We have explored the consequences of the assumption
that time-averaged magnetic profiles in a current-
carrying conducting magnetofluid may be determined by
minimizing the rate of energy dissipation. For the case of

6.0

5.0

>
o

z COMPONENT OF j
) w
o =Y

1.0

FIG. 2. j,(r) vs r, same case as Fig. 1.
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r-COMPONENT OF (jXB)

FIG. 3. (jXB), vs r, same case as Fig. 1.

a uniform, incompressible magnetofluid with constant
dissipation coefficients, to which these calculations are
limited, this is equivalent to the principle of minimum en-
tropy production, if the primitive deﬁnmon of entropy is
“adopted.

The variational equation which results, for perfectly
conducting boundaries with the current density unre-
stricted at the wall, or normal to the wall, is Eq. (3.3),
with 5 a solution of Laplace’s equation. The range of pos-
sible solutions to (3.3) is wide. For the case of the current
unrestricted at the wall, the implications of the theory
seem to be those of Taylor’s “minimum-energy” theory.
For the case in which the tangential component of the
current vanishes at the wall, the results differ in several
respects. It seems likely that any other possible boundary
conditions will result in predictions which differ in other

1.000

0.990

0.980

0.970

0.960

ALIGNMENT COSINE

0.950

0.940

[

02 04 06 08 10 12 14 186

0.930
0

FIG. 4. Alignment cosine, j-B/jB, same case as Fig. 1.
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bproﬁle, may be inferred from Eq. (2.1).
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28 T | T ] ] T

|-B/B?

FIG. 5. Plot of A=j-B/B? vs r, same case as Fig. 1.

ways. One result that the current boundary conditions
do yield is a finite value of (jXB)-€,, providing some
confinement.

A time-averaged pressure, to go with each magnetic
One takes the
divergence before time averaging, and solves the resulting
Poisson equation for p.  If jXB£0, Vp will in general be
nonzero. It is interesting that below the value of © for
which field reversal occurs, (j X B)+€, develops a positive
“hook” below r =a, which is an expelhng, rather than a
confining, force.

The principle itself is in the not entirely satisfactory
position of having been proved, but under less than gen-
eral conditions, that do not fully cover the cases to which
we wish to apply it. This issue has been worried about by
others®?* in the hydrodynamic context, and we do not
expect an easy or early resolution to it. For purposes of
this paper, it stands only as a conjecture, though poten-
tially a numerically testable one. (See also Jaynes.?)

Notice that the principle as given does not demand
that the profiles calculated be stable or even time station-
ary. All that is required is that the fluctuations about
them be fractionally small. There is also no reliance upon
inverse cascade processes, or their close relatives, “selec-
tive decay” and “dynamic alignment.”

The axisymmetric state, 001 [Eqgs. (6.9) and (6. 10] is
predicted up to a value of the pinch parameter ©=2.75,
and the toroidal magnetic field [Eq. (6.23)] reverses above
O=1.9, for the jX1f=0 boundary conditions. The re-
sulting F-© diagram, F=1-0.520, lies above points
which have been observed in several experiments (cf. Tay-
lor,'? for example, Figs. 3, 5, and 6). The experimental
points, however, consistently lie well above the F-O curve
predicted by the minimum-energy principle, whose “win-
dow” of axisymmetric reversed-field operation lies®~!2
between © 1.2 and 1.6. It seems likely that the region
between the two curves is accessible to more exotic
boundary conditions. The toroidal current [Eq. (6.22)]

15



IF o = ("%hst‘/ Vz§ = O
G;Vl’vlj § CVev Lounbm\r;/ <OV ':‘\‘V§>
will determine P = £=> ﬂ:>,§

\7)(‘/\4\:()) Z’-Aen) ‘I(dw z\n/ yf"eﬂj/ J‘f«gTQ,



AV‘/ V«’/\vfof('ion I /Dwof[le q/apec\rs €<
0/23}01\{'6 [N S/)&\f;c\{ Jefey\sehce o)f
O g :O\(?S) )
Cm(u/a*”«nj o (X) Se/f'—(gnsfsfev\(*l/
de(cs ;n(/c)lve G\Jclfw,j a n @nej/
equ“-&"o’“’\ té \(/\ﬁ JQJCY}/)(‘)'GV\ C/)V‘CA;E;ter(’)'

i‘m[)Jesf s‘feo\J/ stabe - ¢y /r‘»’lJ"ica/

Cvy
“BGA 277 4,7 ]
= BeCz p L0707 e
< ¢
.
¥ = T 1o 02 —v?)

17



- -4 ) \
4= 4,6+ €974 4D
k4 ~Z
(1
v o= cv Ly,
*
w = e 4 eTw®,,
;o) ) A 1) A
E Q }u'/\ = &« |8}
~ (1) n <
;CJ(’) /DevzoJ?c £

STA B/L(T7 BOUNDARY (S EXACTLY SOLUBLE

Eij?h]pUth)OnJ & r € ChandraseK har —
K?HJA// [UWC{/GAS)

Vx A= AA ats gt

f\: C[VX(VXé\g?’)+ //%(7)( é\qu)]

(V+r) ¢ =0
Q = exp [,/“w{ +hz +im?oj jn\(yy)

18



For 9‘,\/@/\ QS}JPCT vo\_t"lo 5 Z’Z/&)

S‘faio}([f/ LOUV\AG\V/ [5 A
CUuwvve 1 't/'\e @) /—/ F/«ne,

_  C =
4,( - /7/70’ J,‘[‘/ﬁuS;v’/(\/

G‘en eval 91"“/76 -
C)

UNSTABLE




S//ﬂ/\€7 above yf«L,‘/;{/ ‘(‘Awmrlzo((})

A STEADy JTAT E CAWN RBE CONSTRUCTED

THROuGH FIRST THREELE oORDOERS N

PERTOR BATron THEORY ; (T (S HELICAL

AND (NVoLves FLow.

A\
DISSIPATon /
VS : é—\HEL/CAL
+ OHMIC) Symme 7 RIC
BRANCH
AN
| j‘ > @
STAB/L/T/
THRESHoLD

X. SHAN et al,
P/\ys, Rev. A 47, {800 (1191),

F/ﬂ\f"")ﬂ\ P/‘/S- + COV\—(’C Fujfon 2__—__5)
17 and 1019 (1993).

Thys. Rev. Lett. '_?_}_/ /{24 (/77?).

20



1518

2

= nA
(mj,/2)—k,B,
X (A cosy€, + B sinye,,+ C sinye, )
Also, J”’—'AB(”and o' V=2y1). '

The inhomogeneous terms whxch generate the second-
order solution are

(21)

viVx V=0, (22a)
i"xB"=0, (22b)
and
v‘”><B‘“=———’7}‘2—(—Ace +4B8,). (220
(mjy,/2)—k,Bg ¢ z

The fact that v’ XB'" is a function of r only and has
only €, and €, components is what makes the solution
possible in second order. For now, inserting Egs. (22)
into Egs. (9) and (10), we see that it is possible to find the
second-order solution as essentially a correction to the
zeroth order,

v2=0, (232)
j‘2)=—1-v(”><B‘”
7
LM N 4ce+4Be),  (@3b)
N | (mjo/2)—k,Byg ¢
with the easy equation
VX B2=j (230)

to be solved for B‘?).; Note that j'V-i=0=3%1 at r =g,
compatible with the insulating layer’s presence there.
The fields v, B?) will also obey all the boundary condi-
tions. B'? will be an axisymmetric function of r with
“only € €, and €, components. A constant must be added to
B, {2) to guarantee zero second-order toroidal flux.
We now have the solution through the first two orders
beyond the axisymmetric state. Of course, the zeroth-
“order solution, without any vl B, etc., is still a solu-
‘tion also, for the same parameters. It is known to be the
minimum dissipation state for this problem,>* with v=0
by assumption, for low enough E.,,, providing that the
same boundary conditions are employed. We must now
compare the dissipation rates for the two states.

III. THE DISSIPATION RATES

The total dissipation rate before any expansions are
performed is
R =79(j*)+v(a?) . (24)
For the axisymmetric v=0 state, R is just nj3=E2, /7.
The bracket { ) will always mean a volume average.

Accurate through terms of second order, R becomes,
in terms of the expansion of Eq. (5) and (6),

MONTGOMERY, PHILLIPS, AND THEOBALD

IS

R =7]<(j(0))2)+27]<j(0)’j(2)>

_*_7]((1-(1))2)_‘_“,((@(1))2)_*_' e (25)
since {j'?-j'')=0. The last two terms.in Eq. (25) are
positive definite, and the question is whether 25(j®-j?)
can be negative enough to pull the sum of the last three
terms negative. We may consider the ratio

- ()2 (o1)?)
a=2GY) | v =R, +R, .
2,’(_‘«)) {21y 27](]“” $(2)) 1 2

(26)

IR is negative and lies between O and —1, the nonax-

isymmetric state will have a lower d1351pat10n rate than
the axisymmetric one.

Since j'''=AB'Y and &'!'=Av'l), all the quantltles in
Eq. (26) can be calculated using Egs. (20), (21), and (23b).
The dispersion relation (16) at =0 can be used to sim-
plify the result. After some algebra, we get

kn (42+B2+C?)

=-4 (AB) ’

27)

where A, B, and C are defined between Egs. (20) and (21).
Using some obvious properties of the Chandrasekhar-
Kendall functions, it can be straightforwardly shown that
(AB)=(k,/2 ) 4%+ B*+C?), so that

R=—1. (28)

The simple result of Eq. {(28) may be considered the
principal result of this paper, since it demonstrates that,
under the conditions assumed, the partially helical state
with flow has a lower 'dissipation rate than the' corre-
sponding axisymmetric one, any time the stability thresh-
old is reached.

We close this section by displaying some computer-
drawn graphics which compare the nonaxisymmetric
state calculated analytically in Sec. II with the results of
previous dynamical computatlons of solutigns to the
driven MHD equations in the Strauss approximation.
Even though several details differ in the two situations,
we believe the similarities to be somewhat striking. Com-
parison is made with the Strauss-approximation compu-
tations rather than the full three-dimensional (3D) MHD
ones,” ~? because, in the latter ones, emphasis was on the
RFP state. It would not be expected that the perturba-
tion theory could be pushed to high enough amplitudes
to apprehend field reversal.

Figures 1 are two computer-drawn, three-dimensional,
perspective plots of a surface of constant j,. Figure 1(a)
is obtained from the analytical function j®+ j'1'+
given in this paper, and has the following dimensionless
associated parameters: L,=4w, a=w/2, B,=4.8,
Jo=35.2,n =1, m =1, and ya =4.45. The displayed sur-
face is j,=5.5. The overall multiplicative amplitude, by
which the helical magnetic field functions are multiplied
before being added to the axisymmetric zeroth-order
state, is 0.033. These parameters were chosen to match
as closely as possible those of Fig. 1(b), which comes from
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FIG. 1. Three-dimensional perspective plot of a j, =const surface, showing the helically kinked current channel: (a) the analytical
solution from this paper; (b) an instantaneous snapshot of the numerical solution of the Strauss equations reported in Ref. 10. The
circular-boundary analytical solutions are compared with the square-boundary computational ones by letting the circle be the largest
one that can be inscribed in the square of edge 7. Outside the radius r = /2, the circular boundary solution has no physical mean-

ing.
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Figure 1.1: Threshold curve above which the zero-flow, uniform current profile is unsta-
ble. Axisymmetric zero-flow pinch ratio O is plotted versus inverse Hartmann number
squared. H~? decreases linearly with decreasing nv and ©g increases with increasing
toroidal voltage.

Notice the simple relation between the pinch ratio ©g and the safety factor at the edge

g in the axisymmetric, zero-flow state,
Oy = —5— = a/q., (1.23)

at the lowest order, namely H — oo, the threshold given by Eq. (1.20) can be equivalently

expressed in terms of ¢,, the safety factor at the wall, as

m 2
qs > - + e’ (1.24)

which at the large aspect ratio (o >> 1) limit, is reduced to g¢. > m/n. This is not to
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Figure 1.2: m, n and X value of the first unstable mode as ©y is raised above the threshold
shown in Fig. 1.1. Shown as functions of H~2 for the inverse aspect ratio o™} = 7 /4.

which at the large aspect ratio (a >> 1) limit, is reduced to ¢, > m/n. This is not to
be considered as the same as the formally similar ideal stability condition derived for
each kink mode with mode numbers m and n. In Eq. (1.24), m and n are to be read off
Fig. 1.2 for given Hartmann numbers and are predicted as the mode numbers of the first

unstable mode when ¢, is lowered, or equivalently, when ©y is raised.

The predictions of the principle of minimum energy dissipation rate are consistent
with the repeated appearance of the partially-helical states with vortical flow in several
fully three-dimensional computations [74, 75,88-90] and are not inconsistent with the
data from some confinement experiments. Further exploration of these minimum energy

dissipation rate states will be one of the major tasks of this thesis.

24



equally among all the helical modes (Ann, with m? 4+ n? # 0). For the computation
shown in Fig. 3.1 and Fig. 3.2, there are 330 independent modes present, including all
those with A2, = < 100 for m and n not both zero. The 00¢ modes, up to ¢ = 10, are

required for the development of the radial variation in the current and magnetic field.

Linear Instability Threshold 4

7.3 F TTTTTTTTTTTTTTTTTTTTTTTT o ]

Jo(t) and B/
L]

time

Figure 3.1: Time history of averaged current density jo and applied electric field divided
by resistivity Eo/n, which is what the current density would be in an axisymmetric
solution, plotted vs. ¢ in poloidal Alfvén transit times. For this step in the electric field,
the current crosses, between ¢t = 5 and ¢ = 10, the threshold for the appearance of the
first linearly unstable mode. The dashed horizontal line is the current stability threshold.

The dashed curve in Fig. 3.1 is the axial current Jo(t), which is following Ey/n, and
by about ¢ = 20 (times are always in poloidal Alfvén transit times), jo(¢) has adjusted
itself to the value Eo/n ~ 7.78. Shown in Fig. 3.2 are the time histories of the kinetic,
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Figure 3.2: Time history of kinetic, magnetic and total energy for the same situation as
shown in Fig. 3.1.

magnetic and total energy for the same situation. The total kinetic energy (the scale is
on the right of the graph) is decaying from the initial random noise in the earliest stage

when the current density is below the linear threshold.

As the current density jo approaches its new uniform value above the threshold just
before ¢t = 20, the kinetic energy begins to grow exponentially at a constant rate nu-
merically measured to be 0.555, compared with a theoretical value of 0.558 [81]; this is
thought to be satisfactory agreement. Fj is held at this constant (supercritical) value
and the kinetic energy ceases to grow at about ¢ = 50. By ¢ = 60, it has approached
a constant value and there has been an accompanying depressionv of jo(t) to a constant

value below Eq/7n, (the global plasma resistivity increased). The magnetic energy also de-
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creases a little because of this depression of the current density. It can be seen that after
Jo passes the linear threshold, the system undergoes a transition from the axisymmetric,
uniform-current-density, no-flow, steady state to another steady state which is helically
deformed and has finite amount of large scale vortical fluid motion. After ¢ = 60, all
quantities become time-independent and this saturated state with flow will apparently

persist indefinitely.
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Figure 3.3: Time histories of the ohmic, viscous and total energy dissipation rates when
the system undergoes a transition from the axisymmetric state to the helically deformed
state. Note the decrease in the total energy dissipation rate after the transition.

Shown in Figure 3.3 are the ohmic, viscous and total energy dissipation rates as
functions of time. It will be seen that the helical state the system bifurcated into has a

lower total energy dissipation rate.
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Figure 3.4: Time histories of the kinetic energies of the most energetic helical modes for
the same situation as shown in Fig. 3.1. At ¢t = 0, 320 helical modes are present. Note
that a time-independent laminar state, where only a small number of modes are present,
has been achieved by about ¢ = 65. The dominant mode has (m,n) = (1,1), and second
most dominant mode, down by over an order of magnitude, has (m,n) = (2,2).

Figures 3.4 and 3.5 show the time histories of the largest non-axisymmetric (i.e., those
with m and n not both zero) modal kinetic and magnetic energies respectively. In the
earliest subcritical stage, the majority of the modes simply damp away from the initial
small random noise in about ten Alfvén times. At about ¢ ~ 10 when the averaged current
density jo is raised above the linear instability threshold (cf. Fig. 3.1), as predicted by
the linear theory, one single mode, identified as the first unstable mode (1,1,1), starts

to grow exponentially at a constant rate. In the period between ¢ = 10 and ¢ = 40,

when the departure from the uniform current density, zero flow equilibrium is small, the
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Figure 3.5: Time histories of the magnetic energies of the energetically largest helical
modes for the same situation as shown in Fig. 3.4.

system is approximately axisymmetric and the linear theory is valid. At ¢ ~ 40, when
the amplitude of the largest helical mode becomes so high that the linear theory ceases
to apply, some other modes, identified either as (1,1) modes with higher radial mode
number or the higher harmonics of the (1,1) mode, begin to participate and form a final

helical equilibrium at ¢ > 60.

Since the plot is logarithmic, it will be seen that for all practical purposes, the helical
part of the final state is characterized by only a single Chandrasekhar-Kendall function
and it is the A;;; mode (m =1, n =1, ¢ =1). The second largest mode is smaller than
the dominant mode by more than an order of magnitude. The single-mode, perturbation-

theoretic, helical equilibrium [80], which consists only the A1;; helical mode, appears to
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Figure 3.12: The three-dimensional perspective plot of a pair of the mass “flux surfaces.”
At any point on these surfaces the velocity field is tangent to the surface. Each of these
surfaces defines a closed “flux tube.” Axial cross sections of these surfaces are shown in
Fig. 3.16.
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Figure 3.14: The three-dimensional perspective plot of a pair of the “vortex tubes,” at
any point on which, vorticity is tangent to the surface and the surface can be considered
to be composed of “vorticity lines.” Axial cross sections of these surfaces are shown in
Fig. 3.18.
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Figure 3.22: Time history of kinetic, magnetic and total energy for the same situation as
shown in Fig. 3.21.

netic energies of the energetically largest helical modes. Similar to what has been shown
in Figs. 3.4 and 3.5, the majority of the modes damped away in a short period. The
largest mode which grows exponentially before ¢ = 180 is identified as (3,1,1), the first
unstable mode. After ¢ ~ 200 the (3,1,1) mode becomes nonlinearly saturated and the
system evolves into a helical equilibrium which consists of only the (3,1) modes and their

harmonics.

Figures 3.21 — 3.23 are the time histories of some of the global quantities plotted versus
time. Shown in Figures 3.21 are the averaged current density jo(t) and Eo/n. Shown in
Fig. 3.22 are the global kinetic energy, magnetic energy and the total energy. Plotted

in Fig. 3.23 are the viscous, Ohmic, and the total energy dissipation rates. Initially the
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Figure 3.23: Time histories of the ohmic, viscous and total energy dissipation rates when
the system undergoes a transition from the axisymmetric state to the helically deformed
state.

system is in the axisymmetric equilibrium and j, = Eo/n. As the kinetic energy grows,
the averaged current and the Ohmic dissipation rate grow above their axisymmetric state
values and decay rapidly below the axisymmetric state values when the kinetic energy
becomes saturated after ¢ ~ 180, and then approach to steady values gradually. In

contrast, the magnetic energy keeps decaying in the whole process.

At the end of this high-Hartmann number run, namely at ¢ = 700, a laminar steady
state, dominated by the single mode (3,1), is reached. The actual pinch ratio is measured
to be © = 0.278. Similar to the steady state shown in Fig. 3.11-3.18, this steady

state is also purely helically symmetric and can be characterized by a small number of
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