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2958 DAVID MONTGOMERY AND LEE PHILLIPS

nonvanishing f$nmq are the P(x)q, which are straightfor-
wardly obtained from setting the z component of j ^ = 0
at r =a,

(4.10)

There are two possible signs of knmq=±(y2
nmo+k2)

nmq

1/2
nmq —-1-1' I nmq ~^nn '

> 0. It will be seen in Sec. V that the signfor each y
of k is fixed by the sign of < j - B ) . The ynm are or-

= c°nst where Bnmq is the magnetic field to
be determined in Sec. V.

V. ASSOCIATED MAGNETIC FIELD PROFILES

For each j n m q of the form of Eq. (4.1), there is a B
for which

ntnq

" **• "nmq —Jnmq —"•,

Vs,
nmq ' i

nmq (5.1)
nmq

dered in q as ascending positive values, with q = 1 always
identifying the lowest nonzero ynmq for any n and m.

The determination of the possible j n m ? which satisfy all •
the boundary conditions is now complete, up to the
overall multiplicative amplitude £nmq. The constraint of It is useful to write Vsnm? in the form of Eq. (4.4b) and
constant helicity supply rate will be expressed as identify

b nmqnmq

nmq

r

(dnmq/ikn)VXczIm(knr)e
Hmtp+k z)

for n=0

(5.2)

where some of the symbols remain to be defined. Bo is a
constant, uniform magnetic field in the z direction, B^e2,
and accounts for all the toroidal flux Bona2, since all the
other functions are "fluxless." X.mn is a solution of

nmqLaplace's equation V2Xnmi =0 , and is written

y •
"•nmq

ib»mJm(knr)e
i{m<p+k z)

nmq* m ' " ' "*

ibOmqr
meimi>, « = 0 a n d

0, n=0—m .

(5.3)

The real numbers bnmq and bOmq are determined by the
boundary condition B-n=0 at r=a. The last term of
(5.2) is a poloidal contribution whose curl leads to the
average toroidal current contribution that follows from
(4.10).

All terms in (5.2) are thus completely determined ex-
cept the overall amplitude £nmq. Since the ibnmq will be
proportional to the idnmq, notice that every term in (5.2)
except Bo contains a multiplicative factor of £nm?. 0OOq is
responsible for all the toroidal current, and there is none
for modes with n2+m2>Q. Bo is responsible for the to-
tal toroidal flux, which is always B0ira2 regardless of m
and n.

VI. SEARCH FOR THE MINIMUM-DISSIPATION
STATE

The only undetermined number in j n m q and Bnmq is
now the overall amplitude £nmq, given n, m, and q. The
problem has been reduced to finding the minimum value
o f (ilmqh subject to a given value of K = { jnmq-Bnmq ) ,
with j n m q and Bnmq given by (4.1) and (5.2). It is possible
to prove a very useful relation between these volume
averages, which we now demonstrate.

First, consider the case « 2 + m 2 > 0 . Substitute (4.1)
into J}n mq-Bn m qd3x to get (real parts understood before
multiplication)

J inm qd X

= / a x
t T i VA""'g
SnmqJnmq' i

nmq

(6.1)

The last term in (6.1) vanishes upon conversion to a sur-
face integral and using the boundary conditions; for the
rest, we may write

nmq °nmqJ " x Snmq^i

•B
nmq

nmq

nmq
5 nmq "* nmq •\q * nmq ' \ -Vs,

nmq
nmq

•Bnmq '

(6.2)

The larger parentheses in (6.2) is j n m q , so we have proved
that

f L ^Y^— f d^
nmq

l

"nmq

= _ ! _ fdl :2
, J u •*• Jnmq >

(6.3)
"nmq

13



2960 DAVID MONTGOMERY AND LEE PHILLIPS 38

+1

(6.19)

This follows from

also

e=

Combining these two expressions gives

Fas 1-0.520 .

(6.20)

(6.21)

Field reversal occurs at 0 s 1.9 (instead of 1.2, as in the
"minimum-energy" formulation), and the minimum-
energy-dissipation state ceases to be the 001 state at

0 s 0.32[ - 1 + vT+27(bT022) ] ~ 2.75

(instead of 1.6, as in the minimum-energy formulation).
The toroidal current density of the 001 state is

700,0)] , (6.22)

which remains always positive and goes smoothly to zero
at r =a. The toroidal magnetic field is given by

(6.23)

Equation (6.23) is the magnetic field of the "Taylor state"
plus a a constant. Whether or not it reverses before r =a
depends upon IIB (or 0) , as we have already seen. Up to
an additive constant, (6.22) is also the toroidal current as-
sociated with the "Taylor state;" the constant is the con-
stant necessary to taring jz(r) smoothly to zero at r =a.

Some typical profiles of the 001 minimum-dissipation
state are illustrated in Figs. 1-5. Figures 1-5 refer to the
case 5 0 =0 .5 , a =TT/2 , IIB =0.025. This is a state close
to the upper limit in 0 of the "window" in which the
minimum-dissipation state is the field-reversed 001 state.
Figures 1-5 are obtained by numerically evaluating Eqs.
(6.9) and (6.10) for q = 1, and plotting the evaluated quan-
tities versus r.

Figure 1 is Bz{r) as a function of r. Figure 2 is jz{r) as
a function of r. Figure 3 is the radial component of j X B
as a function of r, and is the only nonvanishing com-
ponent of that vector. Note that the magnitude of j X B
is much less than | j | • | B | , indicating proximity to a
force-free state. Figure 3 is a direct measure of the radial
pressure gradient that the minimum-dissipation state will
support. Figure 4 is a plot of the "alignment cosine"

FIG. 1. Bz(r) vs r, for the case a =tr/2, Bo = \, IIfl=0.025
and 9ss2.56. [All graphs are in the dimensionless units of Eqs
(21)(24)]

yB/jB, which measures the departure from the force-
free condition. Note the presence of a force-free core sur-
rounded by a region which is less so centered just above
r = 1. Finally, Fig. 5 is a plot of the ratio j -B/B 2 , which
varies considerably more than the alignment cosine. Fig-
ures 4 and 5 are in qualitative agreement with the results
of dynamical computations.

VII. SUMMARY

We have explored the consequences of the assumption
that time-averaged magnetic profiles in a current-
carrying conducting magnetofluid may be determined by
minimizing the rate of energy dissipation. For the case of
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38 MINIMUM DISSIPATION RATES IN MAGNETOHYDRODYNAMICS 2961
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FIG. 3. (jXB), vs r, same case as Fig. 1. FIG. 5. Plot of A=j-B/U2 vs r, same case as Fig. 1.

a uniform, incompressible magnetofluid with constant
dissipation coefficients, to which these calculations are
limited, this is equivalent to the principle of minimum en-
tropy production, if the primitive definition of entropy is
adopted.

The variational equation which results, for perfectly
conducting boundaries with the current density unre-
stricted at the wall, or normal to the wall, is Eq. (3.3),
with s a solution of Laplace's equation. The range of pos-
sible solutions to (3.3) is wide. For the case of the current
unrestricted at the wall, the implications of the theory
seem to be those of Taylor's "minimum-energy" theory.
For the case in which the tangential component of the
current vanishes at the wall, the results differ in several
respects. It seems likely that any other possible boundary
conditions will result in predictions which differ in other

1.000

0.930
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

r

FIG. 4. Alignment cosine, }-B/jB, same case as Fig. 1.

ways. One result that the current boundary conditions
do yield is a finite value of (jXB)-er, providing some
confinement.

A time-averaged pressure, to go with each magnetic
profile, may be inferred from Eq. (2.1). One takes the
divergence before time averaging, and solves the resulting
Poisson equation for p. If j X B^tO, Vp will in general be
nonzero, it is interesting that below the value of 9 for
which field reversal occurs, (jxB)-e r develops a positive
"hook" below r=a, which is an expelling, rather than a
confining, force.

The principle itself is in the not entirely satisfactory
position of having been proved, but under less than gen-
eral conditions, that do not fully cover the cases to which
we wish to apply it. This issue has been worried about by
others23'24 in the hydrodynarnic context, and we do not
expect an easy or early resolution to it. For purposes of
this paper, it stands only as a conjecture, though poten-
tially a numerically testable one. (See also Jaynes.25)

Notice that the principle as given does not demand
that the profiles calculated be stable or even time station-
ary. All that is required is that the fluctuations about
them be fractionally small. There is also no reliance upon
inverse cascade processes, or their close relatives, "selec-
tive decay" and "dynamic alignment."

The axisymmetric state, 001 [Eqs. (6.9) and (6.10)], is
predicted up to a value of the pinch parameter 9=s 2.75,
and the toroidal magnetic field [Eq. (6.23)] reverses above
9=sl.9, for the j X n = 0 boundary conditions. The re-
sulting F-Q diagram, F s 1—0.529, lies above points
which have been observed in several experiments (cf. Tay-
lor,12 for example, Figs. 3, 5, and 6). The experimental
points, however, consistently lie well above the F-Q curve
predicted by the minimum-energy principle, whose "win-
dow" of axisymmetric reversed-field operation lies9"12

between 9 = 1.2 and 1.6. It seems likely that the region
between the two curves is accessible to more exotic
boundary conditions. The toroidal current [Eq. (6.22)]

15
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1518 MONTGOMERY, PHILLIPS, AND THEOBALD 40

v d ) =

(mjQ/2)-knB0

X(A (21)

Also, j ( 1 ) = XB(U and o,(1) = Xv(1). :
The inhomogeneous terms which generate the second-

order solution are

(22a)

(22b)

and

> X B m = -
(mjo/2)-knBo

(22c)

The fact that v ( 1 1 XB a l is a function of r only and has
only ey and ez components is what makes the solution
possible in second order. For now, inserting Eqs. (22)
into Eqs. (9) and (10), we see that it is possible to find the
second-order solution as essentially a correction to the
zeroth order,

' =0 ,

V

V

(23a)

(mjo/2)-knBo

- ACtm+ (23b)

(23c)

with the easy equation

VXB ( 2 ) =j ' 2 )

to be solved for B(2).. Note that j ( n-n==0=j ( 2 )-n at r =a,
compatible with the insulating layer's presence there.
The fields v(2), B (2) will also obey all the boundary condi-
tions. B (2) will be an axisymmetric function of r with
only e,p and ez components. A constant must be added to
B(2) to guarantee zero second-order toroidal flux.

We now have the solution through the first two orders
beyond the axisymmetric state. Of course, the zeroth-
order solution, without any v(1), B(1>, etc., is still a solu-
tion also, for the same parameters. It is known to be the
minimum dissipation state for this problem,2'3 with v = 0
by assumption, for low enough £ e x t , providing that the
same boundary conditions are employed. We must now
compare the dissipation rates for the two states.

III. THE DISSIPATION RATES

The total dissipation rate before any expansions are
performed is

(24)

For the axisymmetric v = 0 state, R is just VJo=ElM/r].
The bracket ( ) will always mean a volume average.

Accurate through terms of second order, R becomes,
in terms of the expansion of Eq. (5) and (6),

(25)

since <j (0 )-j (1 )>=0. The last two terms.in Eq. (25) are
positive definite, and the question is whether 2TJ( j ( 0 )- j ( 2 ))
can be negative enough to pull the sum of the last three
terms negative. We may consider the ratio

277<j(O)-j(2)) 277<j(0)-j(2)>
(26)

If ft is negative and lies between 0 and — 1, the nonax-
isymmetric state will have a lower dissipation rate than
the axisymmetric one.

Since j ( 1 ) = A.B(1) and « ( 1 ) = Xv(1), all the quantities in
Eq. (26) can be calculated using Eqs. (20), (21), and (23b).
The dispersion relation (16) at ft=0 can be used to sim-
plify the result. After some algebra, we get

KL{A2+B2+C2)
4A. <AB)

(27)

where A, B, and C are denned between Eqs. (20) and (21).
Using some obvious properties of the Chandrasekhar-
Kendall functions, it can be straightforwardly shown that
( AB) =(kn/2k)( A2+B2+C2), so that

(28)

The simple result of Eq. (28) may be considered the
principal result of this paper, since it demonstrates that,
under the conditions assumed, the partially helical state
with flow has a lower dissipation rate than the corre-
sponding axisymmetric one, any time the stability thresh-
old is reached.

We close this section by displaying some computer-
drawn graphics which compare the nonaxjsymmetric
state calculated analytically in Sec. II with the results of
previous dynamical computations10 of solutions to the
driven MHD equations in the Strauss approximation.
Even though several details differ in the two situations,
we believe the similarities to be somewhat striking. Com-
parison is made with the Strauss-approximation compu-
tations rather than the full three-dimensional (3D) MHD
ones,7""9 because, in the latter ones, emphasis was on the
RFP state. It would not be expected that the perturba-
tion theory could be pushed to high enough amplitudes
to apprehend field reversal.

Figures 1 are two computer-drawn, three-dimensional,
perspective plots of a surface of constant j z . Figure l(a)
is obtained from the analytical function j ( 0 ) + j ( 1 ) + j ( 2 )

given in this paper, and has the following dimensionless
associated parameters: L z=4ir , a = t r / 2 , 5 0 = 4 . 8 ,
yo = 5.2, n = 1, m = 1, and ya s 4 . 4 5 . The displayed sur-
face is 7Z = 5.5. The overall multiplicative amplitude, by
which the helical magnetic field functions are multiplied
before being added to the axisymmetric zeroth-order
state, is 0.033. These parameters were chosen to match
as closely as possible those of Fig. Kb), which comes from

21



40 HELICAL, DISSIPATIVE, MAGNETOHYDRODYNAMIC STATES . . . 1519

(a)

FIG. 1. Three-dimensional perspective plot of a j'z=const surface, showing the helically kinked current channel: (a) the analytical
solution from this paper; (b) an instantaneous snapshot of the numerical solution of the Strauss equations reported in Ref. 10. The
circular-boundary analytical solutions are compared with the square-boundary computational ones by letting the circle be the largest
one that can be inscribed in the square of edge v. Outside the radius r = ir/2, the circular boundary solution has no physical mean-
ing.

22
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Figure 1.1: Threshold curve above which the zero-flow, uniform current profile is unsta-
ble. Axisymmetric zero-flow pinch ratio 6 0 is plotted versus inverse Hartmann number
squared. H~2 decreases linearly with decreasing rju and Go increases with increasing
toroidal voltage.

Notice the simple relation between the pinch ratio 6o and the safety factor at the edge

qa in the axisymmetric, zero-flow state,

Bv(a)
0O = ZZZ*. = a/qa

-DO
(1.23)

at the lowest order, namely H —* oo, the threshold given by Eq. (1.20) can be equivalently

expressed in terms of qa, the safety factor at the wall, as

2m
qa> —I- , ,

n aXa

(1.24)

which at the large aspect ratio (a ~^> 1) limit, is reduced to qa > m/n. This is not to

23



ICT

Figure 1.2: m, n and A value of the first unstable mode as ©o is raised above the threshold
shown in Fig. 1.1. Shown as functions of H~2 for the inverse aspect ratio a"1 = TT/4.

which at the large aspect ratio (a > 1) limit, is reduced to qa > m/n. This is not to

be considered as the same as the formally similar ideal stability condition derived for

each kink mode with mode numbers m and n. In Eq. (1.24), m and n are to be read off

Fig. 1.2 for given Hartmann numbers and are predicted as the mode numbers of the first

unstable mode when qa is lowered, or equivalently, when Go is raised.

The predictions of the principle of minimum energy dissipation rate are consistent

with the repeated appearance of the partially-helical states with vortical flow in several

fully three-dimensional computations [74, 75, 88-90] and are not inconsistent with the

data from some confinement experiments. Further exploration of these minimum energy

dissipation rate states will be one of the major tasks of this thesis.

24



equally among all the helical modes (Anmg with m2 •+ ri2 ^ 0). For the computation

shown in Fig. 3.1 and Fig. 3.2, there are 330 independent modes present, including all

those with ^\mq < 100 for m and n not both zero. The 00§ modes, up to q = 10, are

required for the development of the radial variation in the current and magnetic field.

7 . 8

7 . 7

7 . 6

7 . 5

7 . 4

7 . 3

7 . 2

7 . 1

7 . 0

6 . 9

6 . 8

6 . 7

6 . 6

s
N.

Linear Instability Threshold

jo(t)

Eo/Tl

10 20 30 40
time

50 60 70 80

Figure 3.1: Time history of averaged current density jo and applied electric field divided
by resistivity EO/T), which is what the current density would be in an axisymmetric
solution, plotted vs. t in poloidal Alfven transit times. For this step in the electric field,
the current crosses, between t = 5 and t = 10, the threshold for the appearance of the
first linearly unstable mode. The dashed horizontal line is the current stability threshold.

The dashed curve in Fig. 3.1 is the axial current jo(t), which is following EQ/TJ, and

by about t = 20 (times are always in poloidal Alfven transit times), jo(t) has adjusted

itself to the value EQ/T] ~ 7.78. Shown in Fig. 3.2 are the time histories of the kinetic,

25
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Figure 3.2: Time history of kinetic, magnetic and total energy for the same situation as
shown in Fig. 3.1.

magnetic and total energy for the same situation. The total kinetic energy (the scale is

on the right of the graph) is decaying from the initial random noise in the earliest stage

when the current density is below the linear threshold.

As the current density jo approaches its new uniform value above the threshold just

before t = 20, the kinetic energy begins to grow exponentially at a constant rate nu-

merically measured to be 0.555, compared with a theoretical value of 0.558 [81]; this is

thought to be satisfactory agreement. EQ is held at this constant (supercritical) value

and the kinetic energy ceases to grow at about t = 50. By t = 60, it has approached

a constant value and there has been an accompanying depression of jo(t) to a constant

value below EQ/T}, (the global plasma resistivity increased). The magnetic energy also de-

26



creases a little because of this depression of the current density. It can be seen that after

jo passes the linear threshold, the system undergoes a transition from the axisymmetric,

uniform-current-density, no-flow, steady state to another steady state which is helically

deformed and has finite amount of large scale vortical fluid motion. After t = 60, all

quantities become time-independent and this saturated state with flow will apparently

persist indefinitely.

1.40

1.35 -

1.30 -

1.25 -

1.20

1.15 -

1.10

1.05 -

1.00
80

Figure 3.3: Time histories of the ohmic, viscous and total energy dissipation rates when
the system undergoes a transition from the axisymmetric state to the helically deformed
state. Note the decrease in the total energy dissipation rate after the transition.

Shown in Figure 3.3 are the ohmic, viscous and total energy dissipation rates as

functions of time. It will be seen that the helical state the system bifurcated into has a

lower total energy dissipation rate.
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Figure 3.4: Time histories of the kinetic energies of the most energetic helical modes for
the same situation as shown in Fig. 3.1. At t = 0, 320 helical modes are present. Note
that a time-independent laminar state, where only a small number of modes are present,
has been achieved by about t = 65. The dominant mode has (m,n) — (1,1), and second
most dominant mode, down by over an order of magnitude, has (m,n) = (2,2).

Figures 3.4 and 3.5 show the time histories of the largest non-axisymmetric (i.e., those

with m and n not both zero) modal kinetic and magnetic energies respectively. In the

earliest subcritical stage, the majority of the modes simply damp away from the initial

small random noise in about ten Alfven times. At about t ~ 10 when the averaged current

density j0 is raised above the linear instability threshold (cf. Fig. 3.1), as predicted by

the linear theory, one single mode, identified as the first unstable mode (1,1,1), starts

to grow exponentially at a constant rate. In the period between t = 10 and t = 40,

when the departure from the uniform current density, zero flow equilibrium is small, the
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Figure 3.5: Time histories of the magnetic energies of the energetically largest helical
modes for the same situation as shown in Fig. 3.4.

system is approximately axisymmetric and the linear theory is valid. At t ~ 40, when

the amplitude of the largest helical mode becomes so high that the linear theory ceases

to apply, some other modes, identified either as (1,1) modes with higher radial mode

number or the higher harmonics of the (1,1) mode, begin to participate and form a final

helical equilibrium at t > 60.

Since the plot is logarithmic, it will be seen that for all practical purposes, the helical

part of the final state is characterized by only a single Chandrasekhax-Kendall function

and it is the Am mode (m = 1, n = 1, q = 1). The second largest mode is smaller than

the dominant mode by more than an order of magnitude. The single-mode, perturbation-

theoretic, helical equilibrium [80], which consists only the Am helical mode, appears to
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Figure 3.12: The three-dimensional perspective plot of a pair of the mass "flux surfaces."
At any point on these surfaces the velocity field is tangent to the surface. Each of these
surfaces defines a closed "flux tube." Axial cross sections of these surfaces are shown in
Fig. 3.16.
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Figure 3.14: The three-dimensional perspective plot of a pair of the "vortex tubes," at
any point on which, vorticity is tangent to the surface and the surface can be considered
to be composed of "vorticity lines." Axial cross sections of these surfaces are shown in
Fig. 3.18.
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Figure 3.22: Time history of kinetic, magnetic and total energy for the same situation as
shown in Fig. 3.21.

netic energies of the energetically largest helical modes. Similar to what has been shown

in Figs. 3.4 and 3.5, the majority of the modes damped away in a short period. The

largest mode which grows exponentially before t = 180 is identified as (3,1,1), the first

unstable mode. After t ~ 200 the (3,1,1) mode becomes nonlinearly saturated and the

system evolves into a helical equilibrium which consists of only the (3,1) modes and their

harmonics.

Figures 3.21 - 3.23 are the time histories of some of the global quantities plotted versus

time. Shown in Figures 3.21 are the averaged current density jo(t) and Eo/rj. Shown in

Fig. 3.22 are the global kinetic energy, magnetic energy and the total energy. Plotted

in Fig. 3.23 are the viscous, Ohmic, and the total energy dissipation rates. Initially the
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Figure 3.23: Time histories of the ohmic, viscous and total energy dissipation rates when
the system undergoes a transition from the axisymmetric state to the helically deformed
state.

system is in the axisymmetric equilibrium and jo = Eo/ij. As the kinetic energy grows,

the averaged current and the Ohmic dissipation rate grow above their axisymmetric state

values and decay rapidly below the axisymmetric state values when the kinetic energy

becomes saturated after t ~ 180, and then approach to steady values gradually. In

contrast, the magnetic energy keeps decaying in the whole process.

At the end of this high-Hartmann number run, namely at t — 700, a laminar steady

state, dominated by the single mode (3,1), is reached. The actual pinch ratio is measured

to be 0 = 0.278. Similar to the steady state shown in Fig. 3.11-3.18, this steady

state is also purely helically symmetric and can be characterized by a small number of
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