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Paradigm: incompressible Navier-Stokes equation

It is a nonlinear and dissipative PDE. We get rid of the pressure
by integrating the curl of this equation, and using

for appropriate boundary conditions.

Energy is an ideal invariant (E=const. for =0)

Theoretical description
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Turbulence efficient mixing

Diffusion equation
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Symmetry breaking
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Symmetry breaking

In 3D, the vorticity past a cylinder looks like
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Fluid instabilities

... for instance, Kelvin-Helmholtz

Linear stability: 

Generation of new scales

Nonlinear mode coupling
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Laminar structures in the
neighbourhood of walls

dominated by viscosity

Instabilities: Boundary layers

Stationary equilibrium (Blasius)
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Non-ideal instability: 
it dissapears for ∞=R

4000≅R

Rotating cilinder (in water) at R=100

Instabilities: Jets Instabilities: Taylor-Couette

Flow between two cylinders.

The external cylinder remains
static while the internal one
rotates at:
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Instabilities: Rayleigh-Benard

zoom

Thermal instability:
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Instabilities: 2D simulations

Kelvin-Helmholtz Jet instability

You are looking at vorticity vs. position and time.
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Randomness of turbulent flows

Velocity vs. time 
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for N repetitions of an experiment.

Assuming ergodicity
�>=<

�>=<

T

T

xd
L

0

3

3

)(
1

)(
1

��

�� for homogeneous turbulence

for stationary turbulence

Definition of statistical averages

Empirical laws: the 2/3 law

The relative velocity
between two points
separated by  l is
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A large number of experiments and simulations confirm this law.

... both for the longitudinal  structure function

�

�
�

��
�
���

���� ⋅−+=≈>≡< ))()(()(,|)(|)( //
2

//
// 3

2

2
rvrvvvS δδ

... and the transverse structure function.
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We define the structure function of order n as
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This is a very important experimental result, which is
consistent with Kolmogorov´s spectrum (Gagne et al. 1991).

Empirical laws: the 2/3 law
Empirical laws: Richardson´s law

To study the diffusion rate of tracers in the atmosphere, we can 
follow the separation between two Lagrangian points in time
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Richardson (1926), found that this separation grows like
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This empirical law is also consistent with Kolmogorov
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Empirical laws: finite dissipation rate

In the limit of negligible viscosity, theenergy dissipation rate
converges to a non-negligibleand finitevalue.

Experimentally, thedrag force
over an object of transverse
section S and velocity V, is

Themomentum transferred from the fluid in dt is

and measurestheefficiency of this transfer.
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Empirical laws: finite dissipation rate

Experimentally, cD shows the following behavior:

At high Reynolds, except for R=106 (separation of theboundary
layer) iscD=const. Thedissipated energy per unit mass is

independent of R.
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Energy cascade

Theenergy cascadecan be visualized as thesuccessivebreak up of
vortices into smaller vortices.

Energy cascade

Theenergy balance for
scales larger than 1−= κ�
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At the injection region and in
a stationary regime
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Kolmogorov´s hypotheses

Hypothesis 1: In the limit all theNS symmetries, which
werebroken by themechanisms that generated turbulence, are 
restablished at a statistical level and only for themicroscale.  
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Hypothesis 2: For , the flow displays a finiteenergy
dissipation rate
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Hypothesis 3: For , all statistical propertiesof the
microscale, are universally determined by thescale and
by theenergy dissipation rate .

∞→R
�

ε

Kolmogorov spectrum

Energy cascade
energy flux toward high k
vortex breakdown

Scale invariance
energy flux in k:
energy power spectrum:
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Kolmogorov spectrum
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inertial range

Oneof thesymmetriesof ideal NS 
isscale invariance (Hyp. 1)
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According to Hyp. 2, in the inertial
range
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From Hyp. 3, theenergy power
spectrum becomes
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The dissipative range

In the rangeof sizes for which
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In theasymptotic limit predicted by 
K41, thedissipative rangeextendsup to
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Consistent with this, theaccumulated enstrophy becomes
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Number of degrees of freedom

How many degreesof freedom are required to describe a 
turbulent flow ?
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Numerical requirements

Therequirement of CPU, measured as thenumber of floating
point operations, scales like
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Thememory requirements for thesimulation of turbulent
flows, scale likeN.

Thenumber of integration stepsalso increaseswith the
Reynoldsnumber. To resolve theshorter timescales
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For the3D runs weuse a parallel version compiled with MPI (message
passing interfase)

3D simulationsare run on bocha, a cluster of 40 nodesset up at the
Department of Physics (http://cesen.df.uba.ar/ ).

Weperform 2D and 3D simulationsof
the incompressibleNavier-Stokeseqn., 
assuming periodic boundary conditions.

Weuse pseudo-spectral techniques to
compute thespatial derivatives.

Weuse a 2nd order Runge-Kutta
schemefor the time integration.

Our numerical simulations 2D flows

In incompresible 2D flows, the velocity field can be derived
from a stream function, i.e.
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Thestream function satisfies thefollowing equation
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The ideal invariants for thisequation, are

2D flows: ideal invariants
When viscosity isconsidered, thedissipation of energy and
enstrophy isdescribed by

hypalinstropkuxdPwhere
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Theorem: An incompressible2D flow satisfies

Dem.: Let usstart from

Using definitionsof E,      and P
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Direct and inversecascades
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Theprevious theorem shows that ismore fragile than E. As 
a result,       isexpected to cascadedirectly, whileE followsan
inversecascade. 
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Externally driven simulations 

Global quantities vs. time

P
dt

d

dt

dE

ν

ν

2

2

−=Ω

Ω−=

Power spectrum vs. time

Externally driven simulations 

Stream function vs. time Vorticity vs. time

Lab. experiments: Soap films

Soap filmsare probably thebest 
empirical proxy for 2D flows.

A flat soap film isperturbed by a 
comb and the2D flow ismeasured
at variousdistances from thecomb
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Three dimensional turbulence 

In 3D turbulence, helicity isalso
an ideal invariant.

If theexternal force injectshelicity, 
it isexpected to cascadedirectly. 

Helical flowsare esential to
generatemagnetic fields through
dynamo mechanisms.

Ditlevsen & Giuliani (2001) claim
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that thehelicity dissipation length would alwaysbe larger than theenergy
dissipation length. We wanted to check thisnumerically. 

Conservation of helicity

It isassumed that E and H cascadewith equal transfer time
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Non-helical 3D turbulence 

Weperformed simulations with N=256
and non-helical forcing, concentrated on

Weconfirm that total helicity fluctuates
about

while total energy remainsat levels
comparable to thehelical runs.

Theenergy spectrum relaxes to a 
Kolmogorov power spectrum, i.e.
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Weapply helical forcing (ABC flow) to
all Fourier modes with

Weobtain direct energy and helicity
cascades(as conjectured by Brassaud
et al. 1973).

Weconfirm thehelicity spectrum obtained
by Borue& Orszag 1997, i.e.

However, we find that thedissipation scales
are equal, and thereforemicroscopic flows
in helical turbulence, are also helical!

Helical 3D turbulence 
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Helical 3D turbulence 

Sliceof energy Sliceof helicity

Conclusions

We presented a general overview of our cur rent understanding
of hydrodynamic turbulence.

Several experimental results are consistent with Kolmogorov´s
power spectrum.

We presented numerical simulations of 2D turbulence which
confirm a direct enstrophy cascade and an inverse energy cascade.

Our 3D simulations confirm the presenceof direct cascades
of both energy and helicity, with a K41 power spectrum.

Simulations also show that helicity dissipates at the same scale as 
energy. This persistence of helical motionsat small scales is
impor tant for dynamo mechanismsto operate. 


