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Theoretical description

t/ Paradigm: incompressible Navier-Stokes equation
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t/ Itisanonlinear and dissipative PDE. We get rid of the pressure
by integrating the curl of this equation, and using
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for appropriate boundary conditions.

g/ Energy isan ideal invariant (E=const. for 1V=0)
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The Reynolds number
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Symmetry breaking ) Symmetry breaking

J In 3D, the vorticity past a cylinder looks like
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Fluid instabilities

h/ ... for instance, Kelvin-Helmholtz ,mij%

v Linear stability:  A(t) = A" “R!

/ Generation of new scales

h/ Nonlinear mode couplin

t/ Laminar structuresin the
neighbourhood of walls

L dominated by viscosity

Instabilities: Boundary layers
/ Stationary equilibrium (Blasius)
L () =173 \/::X

V' Non-ideal instebility: =3 E

o . S =
it dissapearsfor R = oo Rotating cilinder (in water) at R=100

Instabilities: Jets

Instabilities: Taylor-Couette

Flow between two cylinders.

The external cylinder remains
static while the internal one

rotates at:
(a) «w=116a,, = Kk,
(b) w=85w,, = k,=6

Instabilities: Rayleigh-Benard

h/ Thermal instability:

L ge0T>0 ”
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Instabilities: 2D simulations

/ You are looking at vorticity vs. position and time.

Kelvin-Helmholtz Jet instability




Randomness of turbulent flows

Velocity vs. time

/ Definition of statistical averages
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for N repetitions of an experiment.

=Lrge
v <o >‘Ej () for homogeneous turbulence
Assuming ergodicity 1.
< >= T [e) for stationary turbulence
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Empirical laws: the 2/3 law
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Fig. £.1. log-logplotof in the i
data from the S| wind tunnel of ONERA. Courtesy Y. Gagne and E. Hopfinger.

/ A large number of experiments and simulations confirm this law.

Empirical laws: the 2/3 law

/ ... both for the longitudinal structure function

L Sl =V, (N F>=0%, oy, ()= (V(r+7f)—\7(r))E;é
h/ ... and the transverse structure function. '

L Sl =<|ov () F>= 0%, dv,(0)= Jv—av,%
/ We define the structure function of order n as

b s =<iou) > = (@0

/ Thisisavery important experimental result, which is
consistent with Kolmogorov’s spectrum (Gagne et al. 1991).
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Empirical laws: Richardson’s law

t/ To study the diffusion rate of tracers in the atmosphere, we can
follow the separation between two Lagrangian pointsin time

b 2 =<Int)-nt) >
t/ Richardson (1926), found that this separation grows like

2
o= ldi =5
2 dt
/ Thisempirica law is also consistent with Kolmogorov
(" d
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Empirical laws: finite dissipation rate

/ In the limit of negligible viscosity, the energy dissipation rate
converges to a non-negligible and finite value.

/ Experimentally, the drag force
over an object of transverse
section Sand velocity V, is

L F :%DpSlz, C, : CoNst.

/ The momentum transferred from the fluid in dt is

L dp=Fdt=pvsvd)
and %D measures the efficiency of this transfer.
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/ Experimentally, c, shows the following behavior:
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Empirical laws: finite dissipation rate

Fig. 5.11. Variation of drag cocfficient with Reynolds number for circular cylin-
ders.

At high Reynolds, except for R=10° (separation of the boundary

layer) is c,=const. The dissipated energy per unit massis
[ P FV _c V3
pSt 2 gk

independent of R.
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) Energy cascade

/ The energy cascade can be visualized as the successive break up of
vorticesinto smaller vortices.
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Fig 7.2 The cascade according to the Kolmogorov 1941 theory. Notice that at
each step the eddies are space-filling.
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) Energy cascade
The energy balance for E, M,
~/ scales larger than ¢ =« ™ -

OE +N =-2vQ +F
where  F_=[dkk® f + 0,

E.=[kK'E, f] o 1K
Q, =jdkk‘E,

/ Intheinertial range
tb HK:FmEg
/ In the dissipation range
bn=-20 +¢

/ At the injection region and in
astationary regime

B I-IX:FX

Kolmogorov's hypotheses

y/ Hypothesis 1: Inthelimit R - « dl the NS symmetries, which
were broken by the mechanisms that generated turbulence, are
restablished at a statistical level and only for the microscale.

v/ Hypothesis2: For R —. «, theflow displays afinite energy
dissipationrate (0<&<w)

Hypothesis3: For R - «, al statistical properties of the
microscale, are universally determined by the scale ¢ and
by the energy dissipation rate €.
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Kolmogor ov spectrum

/ Energy cascade 109
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)H Kolmogorov spectrum

/ One of the symmetries of ideal NS
isscaleinvariance (Hyp. 1)

r-Ar o-A" t-A""t p-A?p
/ According to Hyp. 2, intheinertial
range
MNe=kui=e = h=1

y/ From Hyp. 3, the energy power
spectrum becomes

E(K) =0
(LITYy:
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The dissipative range

/ In the range of sizes for which

u
L Vo =V = R =—t=1

v In the asymptotic limit & U kL], - Ct€ predicted by
K441, the dissipative range extends upto Ky, —

4
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J Consistent with this, the accumulated enstrophy becomes

ks
Q= [KEKk=64f = Q= £
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Number of degrees of freedom

h/ How many degrees of freedom are required to describe a
turbulent flow ?

h/ Since mm)p R=C0

/ We obtain —)

) Numerical requirements
t/ The memory requirements for the simulation of turbulent
flows, scalelike N.

t/ The number of integration steps aso increases with the
Reynolds number. To resolve the shorter timescales

k Nl:%:ijsT:R}/Z

Q/ The requirement of CPU, measured as the number of floating
point operations, scaleslike

(8 Ne =N.N, =R’
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Our numerical smulatlons

~/ We perform 2D and 3D simulations of
the incompressible Navier-Stokes eqn.,
assuming periodic boundary conditions.

~/ We use pseudo-spectral techniquesto
compute the spatial derivatives.

~/ We use a 2nd order Runge-Kutta
scheme for the time integration.

/ For the 3D runs we use a parallel version compiled with MPI (message
passing interfase)

J 3D simulations are run on bocha, a cluster of 40 nodes set up at the
Department of Physics (http://cesen.df.uba.ar/ ).
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) 2D flows

/ Inincompresible 2D flows, the velocity field can be derived
from a stream function, i.e.

u=0x(29)

/ The stream function satisfies the following equation

%—!“—[gﬁ w] +vl?w, where w=-0%

/ Theided invariants for this equati on, are

a
E=[d’ x| | §kjk2|¢k [: energy

Q=[d* xg lZk‘|¢| enstrophy

2D flows: ideal invariants

When viscosity is considered, the dissipation of energy and
enstrophy is described by

E_ g Qe
dt dt
where P =[d’x|0x(0xu)f= —Zk |¢. [+ palinstrop hy

/ Theorem: An mcomprbIeZD flow satisfies |%|>|E|
Dem.: Let us start from ;; k%2(k* ~k'®)? | ¢, [l ¢ 20

Using definitions of E, Q and P =N PE=2Q?

andsince |[E[F2vQ , |QF2vP == |8|>|E|

Direct and inver se cascades

The previous theorem shows that Q is more fragile than E. As
aresult, Q isexpected to cascade directly, while E follows an
inverse cascade.

/ For the direct enstrophy cascade

:ﬁzoons s E =
T k

b [ER= () K

/ Because of the inverse cascade,
energy accumulates at large scales,
with k. (t)progressing like
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Externally driven simulations
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Externally driven simulations

Stream function vs. time

Vorticity vs. time

Lab. experiments: Soap films

Soap fi

ilm tunnel - top view
Adofview  comb

h/ Soap films are probably the best
empirical proxy for 2D flows.

h/ A flat soap filmis perturbed by a
comb and the 2D flow is measured
a various distances from the comb

1 cm from comb

Thickness
Fluctuation velocity and streamlines 15

Vorticity

Three dimensional turbulence

/ In 3D turbulence, helicity is also
anided invariant.

H :ljd’ru-w ,E:}jd“ru-u
2 2

/ If the external force injects helicity,
it is expected to cascade directly.

t/ Helical flows are esentia to
generate magnetic fields through
dynamo mechanisms.

y/ Ditlevsen & Giuliani (2001) claim
that the helicity dissipation length would always be larger than the energy
dissipation length. We wanted to check this numerically.

Conservation of helicity

/ It is assumed that E and H cascade with equal transfer time 7, = (ku, )™

/ Therefore £K=&=Cte =) uk=(£J - Ekr—i:é‘gk;3
T, k k
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P
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Non-helical 3D turbulence

Spectrum at t=002

/ We performed simulations with N=256 2
and non-helical forcing, concentrated on .
IK|=k =3 =
/ We confirm that total helicity fluctuates g /\
about e
<H(t) >=0 : 1090
while total energy remains at levels B
comparable to the helical runs. i
/ The energy spectrum relaxesto a e
Kolmogorov power spectrum, i.e. .
AV
E, Oe*k™ :




Helical 3D turbulence Helical 3D turbulence

Spectrum at t=002

We apply helical forcing (ABC flow) to 2
&l Fourier modeswith |K [=k_ =3

logk £k}

/ We obtain direct energy and helicity j
cascades (as conjectured by Brassaud )
etal. 1973). oo

05 10 15
1og(k)

Energy

/ We confirm the helicity spectrum obtained
by Borue & Orszag 1997, i.e. a0

Hoo%E ,  S=k , EDKA
£ £

/However, we find that the dissipation scales i .
are equal, and therefore microscopic flows o s w15 w2 Slice of energy Slice of helicity
in helical turbulence, are also helical!

m Conclusions
We presented a general overview of our current under standing

of hydrodynamic turbulence.

Several experimental results are consistent with Kolmogorov's
power spectrum.

J We presented numerical simulations of 2D turbulence which
confirm adirect enstrophy cascade and an inver se ener gy cascade.

Our 3D simulations confirm the presence of direct cascades
of both energy and helicity, with a K41 power spectrum.

Simulations also show that helicity disspates at the same scale as
energy. Thispersistence of helical motionsat small scalesis
important for dynamo mechanismsto operate.




