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Singular perturbations on nonlinear systems, by providing a robust mechanism for creating pat-
terns at new characteristic scales, could be the underlying cause of physical phenomena whose
description requires an interacting hierarchy of scales. This attribute is the defining label for “com-
plexity”. By investigating the passage from a single fluid magnetohydrodynamics to a two-fluid
plasma model, we delineate a possible theoretical route to complexity.
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I. INTRODUCTION

Simultaneous existence, and interaction of structures
on disparate scales are the defining characteristic of com-
plexity; the scale hierarchy is likely to prevent the system
from being analyzed in terms of noninteracting indepen-
dent elements.

Interactions of different scales are created by “non-
linearity”. We can see the role of nonlinear terms by
Fourier analysis. For example, suppose that dynami-
cal variables u(x) and v(x) appear as a nonlinear term
u · v in the governing equation. Then, the Fourier
components û(k)eikx and v̂(k′)eik′x of both fields yield
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û(k)v̂(k′)ei(k+k′)x + û(k)v̂(k′)ei(k−k′)x in the equation. If
the independent variable x represents a coordinate, 1/k
gives the length scale of variation in the field u. We, thus,
see that the nonlinear term produce coupling with other
scales 1/(k ± k′), which may have disparate scales from
k and k′.

Note 1 (non-Hermitian system) When the variable
v is a known function, then u · v is a linear term. If
v is not a constant, however, the Fourier transform still
produce scale couplings (we call, then, k is a bad quan-
tum number). In a linear system, there is a possibil-
ity of using an appropriate set of functions (not neces-
sarily sinusoidal functions) to decompose the fields into
non-interacting “modes”. This is the notion of “spec-
tral resolution”. Due to von Neumann’s theorem, a “self-
adjoint (Hermitian) operator” can be completely resolved
into real spectra. However, general non-Hermitian sys-
tem cannot assume such resolution. In a sense that infi-
nite mode interactions may occur, a non-Hermitian lin-
ear system resembles nonlinear systems.

It is the “singular perturbation” that puts anchor on
unlimited scale conversions induced by nonlinearity. A
singular perturbation appears as a term with a higher-
order derivatives multiplied by a small “scale parame-
ter” ε. From a mathematical view-point, the nature of
differential equations is determined by the terms that
includes the highest-order derivatives. However, in stan-
dard understanding of physicists, terms multiplied with a
small coefficient may be negligible in “normal situation”.
Then, its contribution may be just perturbation (minor).

A singular perturbation has an intrinsic scale `. The
ε is called a scale parameter, because it is the ratio of `
and L, the latter is the scale of observer’s interest. Small-
ness of ε = `/L, thus, means that the role of such a term
is assumed to be out of the scope of the observer. How-
ever, “abnormal situation” occurs, when the system itself
highlights the scale `. Such an autonomous selection of
scales, obstructing observer’s prejudice, is the role of non-
linearity –the observer may no longer ignore the effects
stemming from the scale hierarchy of `.

The viscosity term multiplied by the Reynolds number
(ratio of the length scale where the viscosity dominates
and the L) is the most simple, but profound example of



2

singular perturbation. The ideal (inviscid, incompress-
ible, constant density) model of flow obeys the Euler
equation

∂tV + (V · ∇)V = −∇p. ∇ · V = 0. (1)

Adding a small viscosity term (singular perturbation), we
obtain the Navier-Stokes (NS) equation Euler equation

∂tV + (V · ∇)V = ε∆V −∇p. ∇ · V = 0, (2)

where ε is a positive number. For the Euler equation (1),
we have the conservation of energy; assuming that the
flow is confined in a bounded volume Ω, i.e., n · V = 0
on the boundary ∂Ω (n is the unit normal vector onto
∂Ω),

E(t) := ‖V (t)‖2 :=
∫

Ω

|V (x, t)|2 dx = constant. (3)

On the other hand, for the NS equation (2), the viscosity
dissipates the energy; assuming the adherent boundary
condition V = 0 on ∂Ω), we obtain

E(t) = ‖V (t)‖2 = E(0)− ε

∫ t

0

‖∇ × V (t)‖2 dt, (4)

which shows monotone decrease of the energy.
Figure shows the typical history of E(t) in the NS sys-

tem with various ε. It seems that E(t) for ε → 0 will not
approach to the conservation law that is predicted in the
Euler system. The reason why the effect of the viscosity
does not vanish in the limit of ε → 0 is clear –when ε
is reduced, the size of vortices created in the flow also
decrease, resulting in larger |∇ × V |.

The cooperation of nonlinear effects and singular per-
turbation creates an autonomous regulation of the scale
hierarchy. Self-organization of structures in nonlinear
systems must be understood on the axis of disparate
scales.

II. SINGULAR PERTURBATION

A. Scale invariance of ideal model

The role of singular perturbation is better highlighted
by comparing it with ideal models that have scale-
invariant nature.

Let us consider the simplest model of ideal flow in one
dimensional space (cf. (1):

∂tu + u∂xu = 0. (5)

This equation is “scale invariant” in the following sense.
Let L and U be (arbitrary) representative values of the
length and velocity, respectively. We “normalize” the
variables as

x̂ = x/L, û = u/U, t̂ = t/(L/U). (6)

In terms of these dimension-less variables, (5) reads

∂t̂û + û∂x̂û = 0. (7)

Since (7) is a universal form of the governing equation,
which is independent to the arbitrary scales L and U ,
the equation (5) has “scale invariance” with respect to
the normalization (6).

The following “singular solutions” are reflecting the
scale-less nature of the equation (5). Let us try to find a
propagating solution of the form of u(x, t) = ϕ(x − ct).
Plugging this expression in (5), we obtain

−cϕ′ + ϕϕ′ = 0 ⇔ 1
2
[(ϕ− c)2]′ = 0. (8)

The general solution to (8) must satisfy

(ϕ− c)2 = a (constant),

which allows any number switching between

ϕ = c±√a,

causing discontinuities (Figure 1).

Note 2 (Riemann Problem) Let us consider initial
value problem for (5) with a discontinuous initial con-
dition

u(x, 0) =
{ −1 (x < 0)

+1 (x > 0). (9)

We immediately find a stationary solution

u(x, t) =
{ −1 (x < 0)

+1 (x > 0), (10)

which shows that the discontinuity at x = 0 can persist.
There are other kind of solutions. Because the governing
equation (5) and the initial condition (9) are invariant
for transformation x → αx and t → αt, we may expect
that a solution in the form of u(x, t) = f(x/t). Indeed,
we have a solution such as

u(x, t) =




−1 (x < −t)
x/t (−t ≤ x ≤ +t)
+1 (x > +t),

(11)

which describes “expansion waves”.
Combination of these two types of solutions yields infi-

nite number of solutions: For t = T (> 0) we take (10),
and then, assuming that t′ = t−T = 0 is the initial time
for the expansion wave (11).

B. Non-ideal effect with intrinsic scale

The scale invariance or scale insensitivity (allowing dis-
continuity) of some class of equations is destroyed by ad-
dition of terms that is multiplied by scaling factors. The
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“Reynolds number” scaling the viscous dissipation is the
most well-known example of such scaling factors.

In a real system, there is a finite viscosity effect rep-
resented by a higher-order derivatives (cf. (2)). With a
positive constant ε, we consider

∂tu + u∂xu = ε∂2
xu. (12)

Because of the new term on the right-hand side, (12) is
no longer scale invariant –a different scale L changes ε.

The second-order derivative in (12) inhibits any dis-
continuity. It is shown that (12) has a smooth unique
solution uε(x, t) (so-called “viscosity solution”).

The function define by the limit

u0(x, t) = lim
ε→0

uε(x, t)

satisfies (5). Moreover, it “selects” a physically plausible
solution from the set of non-unique solutions to the ideal
model (5). This is the so-called “entropy condition” for
shock waves; The sustainment of discontinuity in (10)
cannot occur if the solution is constructed as the limit of
limε→0 uε(x, t).

C. Singular perturbation

Generally the physics controlling the microscopic scale
appears as a singular perturbation to the macroscopic
equations of motion, i.e, it enters through a term con-
taining higher order derivatives multiplying a small coef-
ficient (ε).

Here we make some general remarks. Let us call the
purely macroscopic model as the “0-model” and the more
comprehensive microscopic model as the “ε-model”. If a
solution fε of our ε-model converges to f0 that satisfies
the 0-model when lim ε → 0, the singular perturbation
has negligible effect on this solution and the 0-model
would be quite adequate. The “ε-model” may still be
useful in weeding out any unphysical f0 that does not
follow as a limit of fε. The“entropy solution” in the the-
ory of shocks is a well-known example.

The situation changes drastically if fε is singular (di-
vergent) as lim ε → 0. Now the 0-model is not aware of
important “physical” solutions that can be constructed in
the ε-model. The ε-model may have a far richer physical
content; the singular perturbation, then, is the harbinger
of new complexity. And we are likely to run into phenom-
ena which defy understanding in a purely macroscopic
model.

III. BELTRAMI FIELDS

A. Singular perturbation in Hall MHD

The physical system we choose is the simplest two-fluid
magneto-plasma with flows, the HMHD. In its general

form, it constitutes our ε-model with both the macro-
scopic and microscopic scales (the latter introduced as
a singular perturbation) [8, 17]. For negligible (or a a
specific kind of) flows, the system degenerates into stan-
dard magnetohydrodynamics (MHD) with a single rele-
vant scale (macroscopic) corresponding to the 0-model in
our argument.

Within the framework of this model we will com-
pare and contrast the virtues of two contending mech-
anisms for the creation of short-scale fields. Both these
models, the relative recent double Beltrami relaxation
mode [8, 17], and the well-known “current sheet” model
of Parker [12], have been invoked to explain the heating
of the solar corona. The former relies on the dissipation
of the short scale during the relaxation process [7]. It
describes a “pattern” generated by the cooperation of the
nonlinearity (convective type) and the dispersion (singu-
lar perturbation due to the two-fluid effect).

For simplicity, we consider a quasineutral plasma with
singly charged ions. Neglecting its small inertia, the elec-
tron equation of motion is

E + Ve ×B +
1
en
∇pe = 0, (13)

where Ve and pe are, respectively, the electron flow veloc-
ity and pressure, E (B) is the electric (magnetic) field,
−e is the electron charge, and n is the number density.
The ion velocity V obeys

∂

∂t
V + (V · ∇)V =

e

M
(E + V ×B)− 1

Mn
∇pi, (14)

where M is the ion mass (M À electron mass), and pi

is the ion pressure. We can eliminate E and Ve using
Ve = V − j/(en), j = µ−1

0 ∇ ×B (j is the electric cur-
rent), and E = −∂A/∂t − ∇φ, where A (φ) is the vec-
tor (scalar) potential. We assume barotropic relations to
write n−1∇pj = ∇Πj (j = e, i).

Choosing an arbitrary length scale L0 and represen-
tative magnetic field B0 and density n0, we normalize
variables as

x = L0x̂, B = B0B̂, n = n0n̂, t = (L0/VA)t̂,

p = (B2
0/µ0)p̂, φ = (L0B0VA)φ̂, V = VAV̂ ,

where VA = B0/
√

µ0Mn0 is the Alfvén speed. Equations
(13) and (14) transform to

∂

∂t̂
Â =

(
V̂ − ε

n̂
∇̂ × B̂

)
× B̂ − ∇̂

(
φ̂− εΠ̂e

)
, (15)

∂

∂t̂
(εV̂ + Â) = V̂ ×

(
B̂ + ε∇̂ × V̂

)

− ∇̂
(
εV̂ 2/2 + εΠ̂i + φ̂

)
,(16)

where the scaling coefficient ε = δi/L0 is the ratio of the
intrinsic scale, the ion skin depth

δi =
c

ωpi
=

√
M

µ0ne2
,
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to the macroscopic scale.
In what follows, we remove ˆ to simplify notation.

In the present purpose, constant density incompressible
model is sufficient, so we assume n = 1 and Πj = pj

(j = e, i).
We will assume that ε is much less than unity implying

that system of equations (15) and (16) constitutes our ε-
model. Notice that in the lim ε → 0, the terms of order
unity, and the terms of order ε respectively reproduce the
Induction and the Lorentz force equations of MHD. The
standard form is obtained by first taking the curl of the
order unity equation and then writing them in terms of
fields (rather than the potentials)

∂tB + (V · ∇)B − (B · ∇)V = 0, (17)
∂tV + (V · ∇)V − (B · ∇)B = −∇(p + B2/2);(18)

where the incompressibility closure ∇ · V = 0 has been
used. The lim ε → 0 MHD system is clearly scale-less
(that is it has no scale apart from the macroscopic sys-
tem size) and represents the 0-model for the current in-
vestigation.

B. Beltrami solutions –linear structure built in
nonlinear system

The two-fluid model can be cast in a symmetric system
of vortex transport equations; taking the curl of (15) and
(16), we obtain

∂tΩj = ∇× (Uj ×Ωj) (j = 1, 2), (19)

where a pair of “vorticities” and their corresponding flows
are

{
Ω1 = B,
U1 = V − ε∇×B,

{
Ω2 = B + ε∇× V ,
U2 = V .

We note that the distinctness as well as coupling of the
two vorticities (Ω1 and Ω2) is induced by the singular
perturbation scaled by ε. For ε = 0, the sets (Ωj , Uj)
become degenerate, and the system (19) reduces into a
single vortex dynamics, the “0-model”

Here, we explore a “linear structure” built in the non-
linear dynamics equations (19), that is the “kernel” of
the generator (right-hand side) of the evolution equation
(19). General stationary solutions (null set) of the ε-
model (19) are characterized by the equations

Uj ×Ωj = ∇φj (∃φj ; j = 1, 2).

The “Beltrami conditions” impose more restrictive rela-
tions:

Uj = µjΩj (j = 1, 2), (20)

implying the alignment of the vorticities with the cor-
responding flows [8]. Writing a = 1/µ1 and b = 1/µ2,

and assuming that a and b are constants, the Beltrami
conditions (20) read as a system of “linear equations”

B = a(V − ε∇×B), (21)
B + ε∇× V = bV . (22)

Combining (21) and (22) yields (u = B or V ) [8]

ε2∇× (∇×u)+ ε(a−1− b)∇×u+(1− b/a)u = 0. (23)

Defining “Beltrami fields” by

∇×G± = λ±G±,

λ± =
1
2ε

[(
b− a−1

)±
√

(b− a−1)2 − 4(1− b/a)
]

,

the general solution of (23) is given by the linear combi-
nation u = c+G+ + c−G−. In view of (21), we obtain

B = C+G+ + C−G−, (24)
V =

(
a−1 + ελ+

)
C+G+ +

(
a−1 + ελ−

)
C−G−,(25)

where C± are arbitrary constants. The fields (24) and
(25) are called “double Beltrami (DB) fields”.

It is shown that the totality of the Beltrami fields
(eigenfunctions of the curl operator) span the Hilbert
space of solenoidal fields [15]. A DB field, which is an ex-
act stationary solution to the nonlinear evolution equa-
tions (19), contains only two components of the eigen-
functions, implying that it is a condensate state. Unlike
linear dynamical systems, such as the Schrödinger equa-
tion, any further superposition of eigenfunctions make
the state nonequilibrium –the nonlinear generator will
spread the spectrum over all eigenfunctions

It is interesting to note that Beltrami fields, with ap-
propriate boundary and flux conditions defines an in-
variant measure of the nonlinear vortex transport in the
Hilbert space of vortices [5]. We can consider a canonical
statistical distribution on this invariant measure [5, 9]..

On the other hand, condensation into a single eigen-
function is just the so-called “Taylor relaxed state” [13]
(with a generalization including a magnetic-field-aligned
flow) that is a stationary solution to the 0-model, ideal
MHD.

In this section, we have introduced the DB fields from
a rather formal considerations. They are particular sta-
tionary solutions characterized by two scalars C±. These
parameters will be related to “constants of motion” of
the evolution equation in the latter discussion on “self-
organization”; see Sec. IV. Before discussing the physical
scenario to convince realization (self-organization) of the
DB fields in two-fluid plasmas, we shall use them as par-
ticular solutions to reveal the scale separation caused by
the nonlinearity and the singular perturbation.

Remark 1 (linear structure in nolinear system)
Some nonlinear systems are “integrable” in a sense that
a linear structure built in the nonlinearity can produce
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infinite number of constants of motion that are complete
to construct general solution. Such a field is the so-called
“soliton”. The motion of a soliton is described by a
commutation law of two Hermitian operators L and H,
called “Lax pair”, i.e., the evolution equation can be
cast in the form of ∂tL + i[H, L] = 0. This equation
implies that the “observable” L is conserved for the wave
generated by the Hamiltonian H. Hence, the spectral
resolution of L will give the total set of constants of
motion.

C. Scale separation

The parameter λ+ (λ−), being the eigenvalue of the
curl operator, characterizes the reciprocal of the length
scale on which G+ (G−) changes significantly. As the
“Beltrami parameters” a and b vary, λ± can range from
real to complex values of arbitrary magnitude.

To view the solution and the associated scale lengths
as explicit functions of the small parameter ε, let |λ−| =
O(1) so that G− varies on the system size. The terms of
order ε in (21) and (22) must, then, be negligible for the
G− –parts of B and V dictating a ≈ b to have a signifi-
cant large-scale component in the solution. Consequently
the inverse of the second scale, λ+ ≈ (a − a−1)/ε. Bar-
ring the case a ≈ b ≈ 1 (Alfvénic flows –the normalized
flow speed of order unity), we observe limε→0 |λ+| = ∞,
i.e, the short scale shrinks to zero. Writing b/a = 1 + δ
[δ = O(ε)], we can approximate

λ− ≈ δ

ε

(
1
a
− a

)−1

, λ+ ≈ −1
ε

(
1
a
− a

)
. (26)

Since in the limit ε → 0, the current (∇×B) and the
vorticity (∇ × V ) diverge in the small-scale (G+), the
0-model cannot ever capture the essence of the ε-model.
The divergence of these small-scale components implies
that the resistive and viscous dissipations can be very
large even when resistivity and viscosity coefficient are
relatively small. More over, the jittery magnetic fields in
the length scale of the ion skin depth can produce a large
chaos-induced dissipations [10].

Let us now derive the condition for which the singu-
lar part of the solution vanishes (i.e., C+ = 0 ). To do
this we will relate C± with the energy E and the helic-
ity H of the fields [17], and express this condition as a
relation between E and H. Here we assume that B and
V are confined in a simply connected domain (normal
components vanish on the boundary). The resulting or-
thogonality

∫
G− ·G+ dx = 0 (integral is taken over the

total domain) [15] helps simplify the analysis. We can
evaluate

E ≡
∫

(B2 + V 2) dx

=
[
1 +

(
a−1 + ελ−

)2
]
C2
−

+
[
1 +

(
a−1 + ελ+

)2
]
C2

+,

H ≡
∫

A ·B dx =
C2
−

λ−
+

C2
+

λ+
,

and solve these equations for C±,

C2
− = −λ−

D

{
E −

[
1 +

(
a−1 + ελ+

)2
]
λ+H

}

→ Λ−H,

C2
+ =

λ+

D

{
E −

[
1 +

(
a−1 + ελ−

)2
]
λ−H

}

→ 1
(1 + a2)

[
E − (

1 + a−2
)
Λ−H

]
,

where D ≡ b(b + a−1)(λ+ − λ−), Λ− = limε→0 λ− [see
(26)], and the limit is for ε → 0. If E and H satisfy the
relation

E =
(
1 + a−2

)
Λ−H, (27)

the singular component vanishes (limε→0 C+ = 0), and
the solution converges to the “relaxed state”

B = C−G−, V = B/a.

The energy E satisfying (27) is the “minimum energy”
accessible for given helicity H and cross helicity K ≡∫

V ·B dx [13] The single Beltrami parameter a is de-
termined by a + a−1 = E/K.

These relations clearly show that the singular (small
scale) part of the double Beltrami field, which can pro-
duce a large resistive and viscous dissipations [7], disap-
pears as the field relaxes into the final minimum energy
state for given helicity and cross helicity.

D. Cauchy characteristics

We now turn our attention to the mechanisms that cre-
ate small scales by analyzing the Cauchy characteristics
of the “0-model”. This analysis will also highlight the dif-
ference between the double Beltrami model of two-scale
vortices and the “current sheet” model of Parker.

The “0-model” consists of the ideal MHD equations
(17)-(18) together with the incompressibility condition
∇ · V = 0. With ϕ(x, t) denoting the eikonal function,
∂t and ∇ are replaced by ∂tϕ and ∇ϕ, respectively, and
we obtain a system of homogeneous algebraic equations
in seven variables (B, V , p) (∂tϕ and ∇ϕ appear as co-
efficients). The characteristic equation, demanding the
solvability of the homogeneous equation, reads

(∇ϕ)2(∂tϕ + V · ∇ϕ)[∂tϕ + (V + B) · ∇ϕ]2

× [∂tϕ + (V −B) · ∇ϕ]2 = 0. (28)

The propagating eikonals represent hyperbolic parts of
the system – the characteristics (rays) are the streamlines
of the flow V , as well as those of the Doppler-shifted
Alfvén waves propagating in the directions of V ±B
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The incompressibility closure is sufficient in the present
purpose of analysis. For the standard MHD character-
istics, see [14]. . Eliminating the short time scales of
waves (and possible instabilities), we may analyze struc-
tures that can persist for longer times. Setting ∂t = 0 in
(17) and (18), we can formulate a static model, in fact, a
quasi-static model allowing slow variation of parameters
or boundary conditions:

∇× (V ×B) = 0, (29)
(V · ∇)V − (∇×B)×B +∇p = 0, (30)
∇ · V = 0. (31)

The corresponding characteristic equation is obtained by
setting ∂t = 0 in (28);

(∇ϕ)2(V ·∇ϕ)[(B−V ) ·∇ϕ]2[(B+V ) ·∇ϕ]2 = 0. (32)

The eikonal ϕ(x) gives the characteristics that are the
projections, onto the coordinate space, of the rays given
by (28).

E. Nonlinear dispersive interference

Using the characteristics, we may construct the
Cauchy solutions that represent the “propagation” of
Cauchy data (initial conditions) along the characteristics
(static structures may be regarded as standing waves).
Here we encounter two essential problems:

1. Non-integrability (chaos): The characteristic ordi-
nary differential equations (ray equations) may not
be integrable.

2. Nonlinearity: The characteristics are determined
by the fields themselves (unknown variables).

The first problem does not exist in two-dimensional
spaces, where streamlines of divergence-free fields are al-
ways integrable. Let us begin with this simple case. If
the problem were linear, the construction of the Cauchy
solution is straightforward –the general solution is given
by the superposition of d’Alembert solutions represent-
ing the propagation along given integrable rays. Multi-
ple characteristics may cause intersections, resulting in
a pattern produced by the “interference” of superposed
different waves. In a nonlinear system, however, a simple
superposition fails to describe the intersection of different
waves.

The nonlinear two-dimensional analysis can be most
simply done following the Grad-Shafranov recipe based
on the Clebsch representations of incompressible fields.
Assuming ∂z = 0 in the x-y-z coordinates, we set B =
∇ψ × ez + Bzez and V = ∇φ × ez + Vzez (ez = ∇z).
Substituting these representations in (17) and (18), and
setting ∂t = 0, we find that solvability constraints de-
mand

φ = φ(ψ), Bz = Bz(ψ), Vz = Vz(ψ), p = p(ψ), (33)

and a generalized Grad-Shafranov equation

−∆[ψ − φ(ψ)] = F ′(ψ), (34)

where F (ψ) = Bz(ψ)2/2−Vz(ψ)2/2+p(ψ) is the Cauchy
data

Taking φ = 0 and Vz = 0 (no flow), (34) reduces into
the well-known Grad-Shafranov equation; see [1]. In the
two-fluid model, the equilibrium equation becomes a cou-
pled two elliptic PDEs for ψ and φ, because the Hall effect
raises the order of the system. .

Since F (ψ) is a combination of “arbitrary” functions
of ψ, it may contain any arbitrary small scale. Parker’s
model of current sheets can, then, be represented by
“wrinkles” in [Bz(ψ)2/2]′ (force-free current), which may
be produced by merging flux tubes.

We notice that the Cauchy solutions given by (33)-
(34) are rather limited. Under the condition φ = φ(ψ),
the rays degenerate into a single direction that parallels
the contour of ψ everywhere. This means that the two-
dimensional projections of V and B (and hence, V ±B)
are parallel. This restriction, limiting the perpendicular
components of the flow, does not allow intersections of
characteristics. One must ask, then, if this restricted
class of mathematical solutions exhausts the possibilities
available to a physical system, or have we omitted other
viable alternative solutions?

The scope of Cauchy solutions (underlying Parker’s
model of current sheets) becomes even narrower when we
consider general non-integrable characteristics in three-
dimensional systems. When the characteristic curves
(magnetic field lines) are embedded densely in a space,
inhomogeneous Cauchy data leads to pathology, and the
homogeneous Cauchy data yields only the relatively triv-
ial Taylor relaxed state (with a parallel flow).

More general solutions with intersecting rays, may be
found if we allow singularities. The essential nature of the
“nonlinear interference” produced by ray crossing can be
seen in shocks. Since the rays are functions of the fields
(variables B and V ), changes in the ray directions neces-
sarily imply inhomogeneity of the fields. On the contrary,
fields must be constant along the rays. One way out of
this dilemma is to allow appropriate discontinuities at the
intersecting points of the rays. For the elementary shock
problem, the imposition of Rankine-Hugoniot conditions
restores consistency. Generally, discontinuities (shocks)
may not intersect, and hence, the discontinuous solutions
with perpendicular flows (intersecting rays) are still lim-
ited.

The restriction of constructing self-consistent solutions
is much relaxed in a system with a higher degree of free-
dom. A singular perturbation, represented by higher-
order derivatives, introduces non-local effects that help to
remove the inconsistency produced by ray crossing in the
models without the singular term. By introducing disper-
sion, the singular perturbation present in the two-fluid (ε-
) model heals discontinuities in MHD,the “0-model”. The
cooperation of nonlinearity and dispersion determines a
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specific structure with a characteristic length scale (soli-
ton is an analogy)

If Ωj and Uj (j = 1, 2) were independent, the system
(19) is linear hyperbolic. The Beltrami conditions, then,
yield two independent vortices that may have arbitrary
length scales. In relating Ωj and Uj with B and V ,
however, the system becomes nonlinear and dispersive
(derivatives are included). For the general solvability of
the double Beltrami equations (21)-(22), see [15, 16]. The
small-scale part (G+) of the double Beltrami field is the
pattern created by this mechanism. This structure is,
thus, singular (infinitely oscillating) in the limit ε → 0;
see (26). Ignoring the flow, or assuming only parallel
flows (in two dimension, the x-y components of B and
V are parallel) one would fail to predict this structure,
because the singularity is an expression of ray crossing.

It is remarkable that the elementary double Beltrami
solution exists in any three dimensional geometry. This
is due to the assumption that Beltrami parameters µj (a
and b) are constant. The divergence-free conditions on
Ωj and Uj demand Uj ·∇µj = 0 (j = 1, 2) implying that
the Beltrami parameters are the required Cauchy data
–they are assumed to be constant, and hence, the double
Beltrami fields are robust in chaotic characteristics. This
is in marked contrast to Parker’s model that considers
wrinkles of Cauchy data as the origin of small scales.
In the double Beltrami field, the inhomogeneity stems
from nonlinear dispersive interference produced by the
intersections of the ideal characteristic curves.

Note 3 (singularities in ideal MHD) The ideal
MHD equations (0-model) has complicated nonlinearity
causing rather serious singularities. Singularities are
due to the “hyperbolic” part of the generator, which
allows fields to have discontinuities or divergence. In
the linearized equations, they appear as a type of b · ∇
operators with some (given) vector b, and they are
translated into k‖ (‖ means the direction of b) in the
dispersion relations. The Alfvén singularity associated
with the continuous spectrum of Alfvén waves is due to
such a term reflecting the hyperbolicity of the generator.
In the framework of stationary nonlinear equations
(∂t = 0, or ∂t = −C∂x modeling propagating solutions),
the hyperbolicity of the MHD generator brings about a
mathematical difficulty if the space dimension is two or
three. The two dimensional equilibrium equation (34)
may be written in a variational form δψL = 0 with a
Lagrangian

L =
∫ [

1
2
(1−M2(ψ))|∇ψ|2 − F (ψ)

]
dx,

where M(ψ) = φ′(ψ) is the Alfvén-Mach number. If
M = 1 occurs in the domain, the convexity of L is
destroyed. The resultant singularity corresponds to the
Alfvén singularity. If the compressibility is included to
the MHD equations, the structure of the generator be-
comes even more complicated –the M and F in the La-
grangian L includes ∇ψ, and the equation δψL = 0 may

switch between elliptic and hyperbolic, implying creation
of shocks.

These difficulties are primarily due to the degeneracy
of the two essential hyperbolicity B · ∇ and V · ∇ in
the static nonlinear equations –only parallel flows B ‖ V
are allowed in ideal MHD equilibrium. In the two-fluid
MHD, this degeneracy is resolved. In the two dimension
case, the hyperbolic parts are immediately integrated by
Casimir invariants (Cauchy data associated with Cleb-
sch potentials), and the remaining part of the equations
become two regular elliptic equations.

IV. SELF-ORGANIZATION

A. Constants of motion

Relaxation is a general notion of dynamical process
where stresses, inhomogeneities, or inconsistencies are
gradually removed to reach stable equilibriums. It is,
therefore, a temporally irreversible process associated
with some finite “dissipation”. In ideal (for example,
Hamiltonian) dynamics, initial conditions are the essen-
tial restrictions determining the history of each particu-
lar evolution. If all data in the initial state are perfectly
preserved in a future state, the evolution is temporally re-
versible. Irreversibility of evolution is, thus, due to some
“coarse graining” of the dynamical law, i.e., reduction of
the degree of freedom that we “observe”

The notion of “open system” means that we observe
only a subsystem that may interact with external world.
Then, we must model the interaction in terms of rather
small number of parameters, such as an equilibrium tem-
perature (canonical ensemble), or chemical potentials
(grand canonical ensemble)..

In chaotic systems, the relation between the initial
state and a future state becomes totally un-describable.
Even then, only a few information contained in the ini-
tial condition may play an important role to characterize
some aspects of future states. For example, the energy
(Hamiltonian H) of the initial state is conserved if the
system is autonomous (∂tH = 0). This conservation law
says that the future state must not have a different en-
ergy –the system is restricted in an ensemble of states
with the given same energy (so-called energy shell in the
phase space).

If the number of such restrictions, posed by conserva-
tion laws, is smaller, the system may relax more. The
relaxation proceeds with “homogenizing” the initial data
–the “mixing paradigm”; if future states are not sensitive
(in some average sense) to particular values of certain ini-
tial data, these data are homogenized.

To formulate the problem in a more mathematical
shape, let us consider an abstract transport equation such
as

∂tu + U · ∇u = 0, (35)
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where u(X, t) is a density distribution function (X is
the phase space coordinate). The “flow” U(X, t) on the
phase space must be incompressible (∇ · U = 0j, when
u(X, t) is constant along the stream lines of U that are
determined by solving the “characteristic ODE”:

d

dt
X = U(X, t). (36)

Each streamline represents the orbit of individual parti-
cle.

For a Hamiltonian system, the phase space coordinates
are the canonical pair X = t(x,p) (x is the position and
p is the canonical momentum). The phase space flow can
be written as

U =
(

∂pH
−∂xH

)
,

with a Hamiltonian H(x,p, t). Then, (35) reads as the
Liouville equation

∂tu + {H, u} = 0, (37)

where {a, b} = (∂pa) ·(∂xb)−(∂pb) ·(∂xa) is the “Poisson
bracket”.

Let ν be the dimension of the phase space. If we have
ν + 1 of constants of motion (ψj(X, t) (j = 0, · · · , ν)),
then the general solution of (35) is given by

u(X, t) = f(ψ0, · · · , ψν). (38)

Apparently, a constant number C is a constant of motion,
we need ν of nontrivial constants of motion. When (36)
is “integrable”, we can find the total set of constants of
motion.

When we have a smaller number of constants of mo-
tion (then, we say that the system is “non-integrable” or
“chaotic”), we have only “special solutions” in the form
of

u(X, t) = f(ψ0, · · · , ψM ) (M < ν). (39)

In general, nonlinear systems are not integrable. In a
non-integrable system, some constants of motion plays an
even more important role in characterizing the system.
It is because the constants of motion are derived from the
“symmetry” of the system, not from analyzing individual
dynamics for specific initial conditions. Such “a priori”
conservation laws may deduce universal understanding of
the complexity in a chaotic system

In a “dissipative” system, we may study how the con-
stancy of these quantities are destroyed –So called “se-
lective dissipation arguments” is a generalization of such
a priori estimates..

B. Statistical mechanical picture of
self-organization

Statistical mechanical approach is the most natural
consideration to utilize a small number of constants

of motion in developing a “coarse grained” picture of
chaotic systems. The Gibbs distribution function is de-
rived from only two constants of motion in a many-body
system, i.e., the total number N of particles and the total
energy E. Assuming that there are no other constants
(constraints) of motion, i.e., invoking the “ergodic hy-
pothesis”, one can find the most probable state (in the
sense of Kinchin’s axiom) by maximizing the Shannon
entropy

S = −
∫

f(X) log f(X)dX,

where f(X) is the probability density in the phase space.
The variational principle is

δ

[
S + α

∫
f dX + β

∫
fH dX

]
= 0,

where H is the Hamiltonian. The maximizer of S is given
by

f(X) = Z−1 exp[−βH(X)] (Z = 1 + α). (40)

If we have another constant of motion G, the ensem-
ble of possible states (where we maximize S) becomes
smaller. This allows the system to sustain a structure
avoiding the “thermal death” of ultimate relaxation to-
ward the Gibbs distribution. Let a macroscopic constant
G be given in terms of a microscopic quantity G(X) as

G = N

∫
f(X)G(X) dX.

Then, the maximum entropy state becomes

f(X) = Z−1 exp[−βH(X)− γG(X)]. (41)

In comparison with (40), this state may have a richer
structure. Let us see some examples.

Example 1 (non-neutral plasma trap) Let us con-
sider a single-species non-neutral plasma in a homoge-
neous magnetic field. In the cylindrical coordinates r-θ-
z, the magnetic field is represented written as B = Bez

(B = constant). For a single particle motion in an
axisymmetric system, the canonical angular momentum
pθ = mrvθ + qrAθ is a constant of motion (Aθ is the θ
component of the vector potential A). Let us “assume”
that the sum of the angular momentum over all particles
are conserved, i.e.,

G =
∫

pθf dX

is constant. Then, the maximum entropy state (41) be-
comes

f = Z−1 exp[−β(H− ωpθ)], (42)
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(βω = γ: Lagrange multiplier). The number density n(x)
is related to the scalar potential φ(x) through the Poisson
equation

−∆φ = ε−1
0 qn = ε−1

0 q

∫
f(x,p) dp, (43)

where q is the charge of the particle. This φ is included
in the Hamiltonian H, and hence, (43) is a nonlinear
equation.

Writing the velocity V = Ṽ + U with U = rωeθ (ro-
tation with an angular velocity ω), we observe

H̃ := H− ωpθ =
m

2
ṽ2 − m

2
(rω)2 − qrωAθ + qφ. (44)

The function H − ωpθ is just the canonical transform
of the Hamiltonian H in the rotating frame with angu-
lar velocity ω, and hence, the distribution (42) is Gibbs’
thermal equilibrium in the rotating frame.

For a constant density n, the potential determined by
(43) is φ = −(qn/4ε0)r2. Since A = (rB/2)eθ for the
homogeneous magnetic field

Here we consider a low density plasma, so the cur-
rents in the plasma is too weak to change the magnetic
field generated by external coil system., the three terms,
excepting the first one, on the right-hand side of (44)
are proportional to r2. Hence, an appropriate vale of ω
may make all of them cancel. Then, the H̃ becomes inde-
pendent to the coordinates, and (42) gives the hoped-fore
constant density n. One can easily verify that such an ω
is given by solving

ω2 + ωcω +
1
2
ω2

p = 0 (45)

(ωc = qB/m, ω2
p = nq2/mε0

If ωp/ωc ¿ 1, we obtain two solutions ω ≈ ωD, ωc +
ωD, where ωD = ω2

p/(2ωc) (diocotron frequency) is the
E × B drift frequency in the self-electric field E =
qnr/2ε0. .

Here, we must note that the conservation of the macro-
scopic “canonical” angular momentum G is NOT war-
ranted mathematically. In a macroscopic system where
particle collisions reads the system relax into an equi-
librium, the symmetry in θ is no longer valid. In-
stead, the macroscopic “mechanical” angular momentum
G′ =

∫
rmvθf dX is the well known constant of mo-

tion of the macroscopic (fluid) system. The use of G′ in
the place of G to determine the maximum entropy state
fails to obtain the rotating thermal equilibrium (omitting
the term −qrωAθ in (44), we lose the term omegacω in
(45), and then, we have no real solution ω). Implication
of these observations is that the constancy of G, possi-
bly achieved with avoiding macroscopic θ inhomogeneity
in the relaxation process, is the key to obtain a confine-
ment of non-neutral plasma in the magnetic field. The G
is rather fragile, so experimentalists must carefully opti-
mize the system to keep it constant.

Example 2 (Harris sheet, Bennet pinch) Let us
consider a neutral plasma in a slab geometry that is
homogeneous in the coordinate y. The magnetic field
has only the z component. The vector potential is
A = Ay(x)ey. For a single particle, the canonical
momentum py = my′ − qAy(x) is conserved. Assuming
that the macroscopic canonical momentum in y direction
is conserved, as well as the total energy, the maximum
entropy state (41) reads

f = Z−1 exp[−β(H− Upy)]. (46)

(βU = γ: Lagrange multiplier). Since

H̃ = H− Upy

=
m

2
ṽ2 − m

2
U2 − qUAy + qφ,

H̃ is the Galilean transform of the Hamiltonian in the
inertial frame of velocity U = Uey. Hence, (46) reads

f ∝ e−βq(φ−UAy(x))e−βṽ2/2m, (47)

which is the drift Maxwellian with the velocity U .
Calculating the currents in each spices using (47), and

solving −∆A = µ0j (j is the total current), we obtain
the vector potential Ay(x)ey that must be consistent to
the Ay in (47). The self consistent solution is the well-
known Harris sheet.

Similar calculations in cylindrical geometry with z-
homogeneity, we obtain the Bennet pinch equilibrium.

C. Self-organization in function space

To consider a continuous medium and to discuss self-
organization of fields (member of functions spaces with
infinite dimension), we pick up the general “homogeniz-
ing” property of the relaxation, which we have developed
invoking the statistical mechanical framework

For statistical mechanics in function spaces, see [5, 9].
The creation of Beltrami fields can be described by max-
imizing an entropy defined on a functions space with re-
stricting the ensemble by helicity conservation law., and
formulate variational principles in the sense of Dirichlet’s
principle for diffusion equations.

Let us start with a most simple example. The projec-
tion of the kinetic phase space x-p onto the coordinate
space is the coarse-graining of a many particle system.
The homogenization of the density n(x, t) (we consider
one dimensional system for simplicity) is described by the
“diffusion equation”

∂tn = D∂2
xn (48)

where D (diffusion coefficient) is assume to be a posi-
tive number. Assuming that particles are confined in an
interval (0, 1), we impose boundary conditions

∂xn(0, t) = ∂xn(1, t) = 0 (∀t ≥ 0). (49)
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Multiplying the solution n(x, t) on both sides of (48), and
integrating over (0, 1), we obtain, using (49),

d

dt

∫ 1

0

n(x, t)2 dx = 2
∫ 1

0

(∂tn)n dx

= 2
∫ 1

0

∂x (D∂xn)n dx

= −2
∫ 1

0

D(∂xn)2 dx ≤ 0. (50)

Let us call the integral
∫ 1

0
n(x, t)2 dx the “energy inte-

gral” for the equation (48)
The integral ‖n‖2 =

∫ 1

0
n(x, t)2 dx is the norm of the

Hilbert space L2(0, 1).. Because the right-hand side of
(50) can become 0 only when n is homogeneous in x,
we find that the energy integral decreases monotonically
until the final relaxed state

lim
t→∞

n(x, t) = n∞ (= constant)

is achieved. By the conservation law of the total number
of particles, we can calculate n∞ =

∫ 1

0
n(x, 0) dx. The

relaxed state is, thus, determined by only one constant
of motion (particle number).

This simple example is a linear system, so the realiza-
tion into the homogeneous distribution was shown as a
rigorous mathematical theorem. However, the final re-
laxed state is rather trivial –the distribution is totally
homogenized. In a nonlinear system, we may expect
richer structures are created through relaxation, and they
may sustain for an appreciably long time. Such self-
organization of structures may no longer be rigorously
proved for arbitrary given initial conditions. What we
will be able to prove is the existence of a “relaxed state”
under the ansatz that a relaxed state is the minimizer of
the energy integral (norm of the function space), imply-
ing the most homogeneous state, under some dynamical
constraints imposed by conservation laws.

In the next section, we will test this concept in two-
fluid MHD, and show that the DB fields are such relaxed
states.

D. Self-organization of DB fields

Before discussing the self-organization in plasmas, we
must note that self-organization is not a general tendency
of plasmas. Since many of the relaxed states in recent lit-
erature follow from seemingly standard variational prin-
ciples, one could draw the erroneous conclusion that self-
organization occurs universally in any plasma. We shall
presently show that it is not so; self-organization, in fact,
may occur only under rather restrictive conditions –Not
all variational principles are well-posed, and even when
they are, not all solutions to variational principles lead to
stable equilibriums (even to equilibriums) –an essential
minimum qualification for “relaxed states”.

Here, we repeat the two-fluid MHD equations in the
form of vortex transport equations (see Subsec. III B)

∂

∂t
ωj −∇× (Uj × ωj) = 0 (j = 1, 2) (51)

in terms of a pair of generalized vorticities and the cor-
responding flows

{
ω1 = B,
U1 = V −∇×B,

{
ω2 = B +∇× V ,
U2 = V .

Here, we have set ε = 1 choosing L = δi.
One can easily verify, under appropriate boundary con-

ditions (here, we assume periodic boundary conditions
for simplicity), the invariance of the three integrals

E =
∫

Ω

(|V |2 + |B|2) dx, (52)

H1 =
∫

Ω

A ·B dx, (53)

H2 =
∫

Ω

(A + V ) · (B +∇× V ) dx, (54)

representing the energy (the incompressibility condition
eliminates the thermal energy), the magnetic helicity,
and the helicity of the generalized vorticity.

The target functional (TF) we minimize to characterize
the relaxed state is the norm of the function space of
vortices Ωj (j = 1, 2):

F = ‖Ω1‖2 + ‖Ω2‖2

=
∫
|∇ ×A|2 + |∇ × (V + A)|2 dx, (55)

which is the “canonical enstrophy” of the two-fluid sys-
tem.

This functional is a measure of dissipation in the con-
trolling dynamics (an almost ideal system is very different
from a dissipation dominated system such as a diffusion
equation for which the dissipation determines the struc-
ture of the relaxed states). Further F is also be a mea-
sure of turbulence –the relaxed state should be as free of
turbulence as possible

Note that F is a hybrid functional combining the
magnetic and fluid aspects of the plasma and can be
equivalently thought of as the energy associated with
the generalized magnetic field seen by the ions. This
choice may be seen either as an extrapolation to three-
dimensional fluids of the two-dimensional fluid dynamics
where the fluid enstrophy serves as the TF or equiva-
lently as the magneto-fluid reincarnation of the one-fluid
Taylor model..

A well-posed variational principle results when we min-
imize F keeping E, H1, and H2 constant. The general
solution for arbitrary values of the three invariants is not
necessarily an equilibrium solution. We find that sta-
ble equilibrium solutions result when the three invariants
obey a certain relationship, i.e, on well-defined surfaces
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in the three space spanned by the invariants. The pa-
rameter space for the existence of stable solutions is still
very large. Physically it implies that starting from arbi-
trary values, one of the invariants must adjust (in this
case H2, the most fragile one) as F is minimized so that
it can find the value dictated by the original values of E
and H1. If H2, for instance, is initially far away from its
desired final value, the system may not find its way into
a relaxed state. These ideas will become clearer in later
parts of the paper.

The minimization of F keeping E, H1, and H2 constant
is carried out through the variation

δ(F − µ0E − µ1H1 − µ2H2) = 0,

where µ0, µ1, and µ2 are Lagrange multipliers (con-
stants). This variational principle is well-posed because
of the “coercive” term F that makes the functional
F − µ0E − µ1H1 − µ2H2 to be convex having a unique
minimizer (we will see examples of ill-posed variational
principles in the next section, where the notion of “coer-
civity” will become clear). Calculating independent vari-
ations in A and V , and after a manipulation, we obtain

∇×∇× V − µ0V − µ2∇× V = −∇×B + µ2B,

(56)
µ0V = µ0∇×B + µ1B. (57)

The general solution will be a “triple Beltrami field” -a
linear combination of three Beltrami functions;

B =
3∑

j=1

CjGj , V =
3∑

j=1

DjGj , (58)

where (57) demands Dj = [λj − (µ1/µ0)] Cj ≡ djCj .
Since the general triple Beltrami field (58) may not

even be an equilibrium state, we must strive to find a
sub-class which span the double Beltrami states -known
to be stable equilibriums for eigenvalues (λ1 and λ2) suf-
ficiently small that the resulting magnetic and flow shear
do not drive kink and Kelvin-Helmholtz instabilities. We
know from the toy model that this may be achieved by
the adjustment of the constraints; the generalized helic-
ity H2, containing the higher order derivatives, will be
affected the most.

Because the relation between V and B includes λj

(j = 1, 2, 3) and µ` (` = 0, 1, 2), the algebra for carry-
ing out the adjustment process is rather complicated[11].
Let us consider a simpler case when the system has no
harmonic (external) field. Then, the eigenfunctions Gj

are orthogonal[15], and we obtain
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3


 , (59)

where Xj = (1 + λjdj)2/λj . Solving (59) for C1 and
C2 with C3 = 0, we obtain a relation among E, H1,

and H2. Denoting the matrix on the right-hand side of
(15) by M and writing L = M−1, µ′1 = −L3,2/L3,1, and
µ′2 = −L3,3/L3,1, the equation for C2

3 = 0 reads as

E − µ′1H1 − µ′2H2 = 0,

which determines the adjusted value of H2 for a pre-
scribed E and H1. This “adjustment” is formally equiv-
alent to solving

δ(E − µ′1H1 − µ′2H2) = 0, (60)

because all functionals are symmetric bilinear forms.
The variational principle (60) yields the double Bel-
trami equation (23). We have finally obtained the self-
organized relaxed states through a mathematically well-
posed variational principle.

We must emphasize that the adjustment condition of
the last paragraph is not a variational principle to “min-
imize” either E (ill-posed, because H2 is “fragile”) or H1

or H2 (not lower bounded). It is the adjustment of the
ideal constants of motion to yield a minimizer of F on the
corresponding hyper-surface (ensemble) where the state
vector is restricted.

E. Self-organization and topology –remarks on
ill-posed variational principle

Finding a suitable TF is the essential input for the
theory of self-organization. It follows from the preceding
discussion that the TF cannot be one of the constants
of motion. This point is the essential difference of the
present theory from the so-called selective dissipation ar-
guments. The TF is the “norm” measuring the com-
plexity in the relevant topology of the function space.
Mathematically, it is a “coercive” form to formulate the
well-posed variational principle.

It would appear that the DB equations may be “de-
rived” by minimizing the total energy E keeping H1 and
H2 constant (we call VP2). Two questions arise: 1) What
could be the possible significance of a minimum energy
state? 2) Since E, H1 and H2 are on an equal a priori
footing, all being the exact constants of ideal dynamics,
what dictates the choice of using E as the target func-
tional (TF) for minimization -remember that the target
functional Em for VP1 is not a constant of motion.

If one could define an appropriate “free energy” in
a statistical mechanical framework, a minimum energy
state (as distinct from a minimum potential energy state)
could acquire an important connotation in relaxation the-
ory. Several authors[5, 9] have constructed such a statis-
tical mechanics in a Hilbert space of single-fluid MHD.
The success of the procedure is contingent upon find-
ing a suitable “free energy” function which is bounded
from below. When the theory is applied to the current
system, we find that the free energy is not bounded in
the energy norm because of the ion-flow helicity term (a
part of the invariant H2). Thus the minimum free en-
ergy route is not available for relaxed states to emerge in
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a magneto-fluid. This characteristic of the ion-flow he-
licity will render VP2 to be a mathematically ill-posed
problem; a demonstration will be given soon.

To understand the essence of the second question we
remind that we are dealing with a near ideal but not a
perfect ideal system. The dissipation, however small, is
the primary agent for leading the system toward relax-
ation. Simulations of the single fluid system reveal that
during the relaxation process (as the system evolves from
an initial state to a relaxed state) the magnetic energy
Em goes through a severe adjustment (decrease) while
H1, the collisionless constant of motion, changes only
mildly[4]. This is totally consistent with the demands of
the variational principle; the system is driven to equilib-
rium by changes (even drastic) in the value of TF. Differ-
ent responses to dissipation have given rise to the notion
of “selective dissipation” which may be used to order the
“fragility” of the invariants[2]. The most fragile (suffering
the most from dissipation) invariant could, then, be used
as TF, because it is “least invariant” among invariants.
This criterion, however, would pick H2 as TF because of
the higher derivatives in the ion- flow helicity contribu-
tion. A variational principle like VP2 with E as TF (and
H1, H2 as constraints) will be physically unsound and
will turn out to be mathematically ill-posed.

One cannot get out of this difficulty by simply switch-
ing the roles of E and H2; the latter, though more fragile
than the former, is unsuitable as TF because it is not
bounded below. In the two fluid dynamics, therefore, the
invocation of “selective dissipation”, by itself, does not
lead to a well-posed variational problem; some additional
input is sorely needed.

Here, we examine a simple example of ill-posed vari-
ational principle, and show how we can overcome the
pathology, which will highlight the mathematical aspect
of the variational principle we have developed in the pre-
vious subsection. Let us consider two functionals

G(u) =
∫

Ω

|∇u(x)|2dx, H(u) =
∫

Ω

|u(x)|2dx

with u = 0 on ∂Ω where Ω is a bounded domain in RN .
First, we seek for a minimizer of G(u) with the constraint
H(u) = 1. This is a well-posed problem; The minimizer
is found from the variational principle,

δ[G(u)− λH(u)] = 0 (61)

where λ is a Lagrange multiplier. The Euler-Lagrange
equation −∆u = λu with the above-mentioned bound-
ary condition constitutes an eigenvalue problem. We
can easily show that the eigenvalue λ > 0. Let λj be
an eigenvalue and ϕj be the corresponding normalized
eigenfunction (‖ϕj‖2 ≡

∫
Ω
|ϕj |2 dx = 1). With setting

u = aϕj , and demanding H(u) = 1, we obtain a = 1 and
G(u) = λj . The smallest λj , then, yields the minimum
G(u).

The complementary problem of finding a minimizer
of H(u) with the restriction G(u) = 1 turns out to

be ill-posed. The inherent pathology of the problem
is exposed when we set up the variational principle
δ[H(u) − µG(u)] = 0 (µ is a Lagrange multiplier), and
analyze the Euler-Lagrange equation −∆u = µ−1u. Let
µ−1 = λj (an eigenvalue of −∆), and u = aϕj . The
condition G(u) = 1 yields a = λ

−1/2
j , and H(u) = 1/λj .

Hence, the minimum of H(u) is achieved by the largest
eigenvalue that is unbounded, viz., infH(u) = 0 and the
minimizer limλj→∞ λ

−1/2
j ϕj = 0 is nothing but the min-

imizer of H(u) without any restriction. The constraint
G(u) = 1 plays no role in this minimization problem[6].

These examples demonstrate that unless the con-
straints are less fragile (fragility being determined by the
number of derivatives) than TF[6], the constrained mini-
mization is meaningless at best. The variational principle
simply does not “see” the constraint because an infinitesi-
mal perturbation with a small length scale can contribute
any required value to the constraint.

If the second problem is to be properly posed, i.e, for
it to lead to a nontrivial manifestation of constrained
minimization, the mathematical requirement is the exis-
tence of a higher order (coercive) TF. Generalizing our
toy model let us affect the minimization of the higher
order functional

F(u) =
∫

Ω

|∆u|2 dx (62)

with restrictions G(u) = g and H(u) = h and with the
additional boundary condition −∆u = 0 on ∂Ω. Now the
well-posed variational principle

δ[F(u)− µ1G(u)− µ2H(u)] = 0 (63)

yields the Euler-Lagrange equation

(−∆− λ+)(−∆− λ−)u = 0

with λ± = (µ1 ±
√

µ2
1 + 4µ2)/2. The general solution is

u = C+ϕ+ + C−ϕ−, where ϕ± are the eigenfunction of
−∆ belonging to the eigenvalue λ±. The set of double
eigenfunction solutions extends the single eigenfunction
solution of the previous problems. However by adjusting
either g or h, the general solution can collapse to a single
eigenfunction solution. If g = λ2

1h (λ1 is the smallest
eigenvalue), we obtain C2

+ = h and C− = 0, and the
double eigenfunction solution degenerates into u = hϕ1.
This solution gives the minimum of F(u) under the given
constraints.

The addition of a coercive TF, and the subsequent pro-
cedure of adjustment, has accomplished two desirable ob-
jectives: 1) the pathology of the earlier ill-posed problem
is removed, and 2) the direct influence of the added co-
ercive term on the equation of motion is also removed.
The desirability of the latter cannot be overemphasized:
without this the theory would have become arbitrary and
quite undependable. Notice that the matching condition
G(u) − µH(u) = 0, converting the solution to a single
eigenfunction of −∆, renders the larger problem entirely
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equivalent to the original problem δ[G(u) − µH(u)] = 0
(because both G(u) andH(u) are homogeneous quadratic
forms) but with perfect mathematical rigor.

In this section, we have derived a well-posed vari-
ational principle that reproduces the double Beltrami
states characterizing the relaxed states of a two-fluid
plasma. The coercive target functional (F ) is the mea-
sure of complexity in the relevant topology (norm) of
the function space. This is not to be confused as se-
lective dissipation of F ; selective dissipation occurs in
the fragile quantity (primarily H2) through the adjust-
ing process. The system can self-organize to a quiescent

state, minimizing F , if the constants of motion are ap-
propriately adjusted through a weakly dissipative pro-
cess. This logical characterization of self-organization is
naturally built in our formulation of the variational prin-
ciple. We have shown that the required adjustment is
not the minimization of energy. The conventional model
of finding an energy minimizer constitutes an ill-posed
problem. This mathematical observation has profound
consequences suggesting that the conventional “energy”
is not the principal variable whose minimization charac-
terizes self-organization in vortex dynamics.
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