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) Whet is adynamo? ) Homopolar dynamo

CAr ) s

+ Dissipative timescale of amagnetic field ) [, + Itis probably the simplest dynamo.
n n It consists of arotating disk connected
toawireat pointsA & B. Hall current
= 3 ~ 5

For the Earth: Rarin =6.10"cm =) 7= 2.10° years + The current | induces a vertical magnetic

¢ : Neore = 2_105 % field B which in turn creates an electromotive
force. Under proper conditions, this EMF

+ Astrophysical magnetic fieldsseem g Magneticfields need can cause the exponential growth of B.

to live much longer than their T to be re-generated dl M

n L—+R =22
dt 2

Efficient conversion from

Dynamo mechanism — - h
¢ g kinetic energy into magnetic energy

#+ Theinclusion of aHall current in the disk, also induces a magnetic

field which can cause further enhancement of this dynamo (Heintzmann 1983).

5 MHD & Hall-MHD

M In atwo-fluid description (electrons and protons), the equation of motion
for the electrons (neglecting their inertia) becomes

1 -
E+ig,xB=nJ
+ Therefore, the Hall-MHD equationsin units of L, and U, are

@:—(u- D)u—le+i(DXB)><B+vDZU
ot P 4o

%:Dx(uex8)+qDZB, Oea=0=0+B
where o, =o-e0xB

+ The relevance of the Hall term is measured by the dimensionless parameter
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Kinematic dynamo

+ |f we assume B to be negligibly small, we can decouple the MHD equations.
We can first integrate the Navier-Stokes equation

o—u:—(u-D)u—EDpﬂﬂzu , Oea=0
ot P

* Once O(X,t) isknown, we integrate the induction equation to obtain B(X,t)

%?:DX(UXB)+/7DZB, 0.B=0

#* This approximation is known as kinematic dynamo. Note that the induction
equation is linear. For stationary flows, we have dynamo whenever

B(xt)=B,(x)¢* , y>0
What kind of permanent flows are present in astrophysical objects ?




‘5 Rotation

+ Rotation is ubiquitous among astrophysical objects. ==
* Thereis plenty of kinetic energy in most rotating

objects to drive dynamos and generate magnetic fields
(Omega effect). However, for axisymmetric cases.

B=0Ox(@+¢B, , 0a=wrsindg
# Theinduction equation reduces to

B, _ %8, = Dx(ax0x (@)

ot
A Growth of toroidal field requiresthe
2
i -no*A=0 poloidal component to be non zero.

which expresses Cowling’s anti-dynamo theorem:

“An axisymmetric magnetic field cannot be mantained via dynamo action”

+ Convective motions involve smaller scales.

+ Flowsrising to the surface carry magnetic
fields, which will be predominantly toroidal
(if the Omega-effect succeeded).

+ The Coriolis force produces helicoidal or
cyclonic motions, which will tilt these toroidal
fieldlines and return the poloidal component
part of its energy (Parker 1955).

# Therole of the small scales on the generation
of the large scale magnetic field can be

modeled through an electric field

E=ag-B

which acts on the induction equation. This is called the alpha effect.
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) The solar tachocline
480
#+ Helioseismic observations show the
rotation profiles at different latitudes 0
and depths. “o
. " . ;: 420
* Theradial gradient concentratesin 5
=1

anarrow layer at 0.70-0.75 solar radii, 200

called tachocline.
380
-
# The core of the Sun (below the 380 ‘ ‘ ‘ ‘
convective region) rotates like a o5 ot o7 o8 080 100
solid body. R

# Since the Omega-effect is concentrated in the tachocline, we developed amodel for
the dynamics of this region, using the shallow water approximation.

The SMHD equations

%(M h) =-00@+ h)d]
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a=u (X y)R+u(x,y)y u, =-Z1la
B=B.(xy)%+B,(xy)y B, =~

2
O=2%3,+9, D(p+%):gHD(l+h)

Numerical simulations

+ Two dimensional box with periodic
boundary conditions.

‘ #+ Pseudo-spectral scheme for spatial

derivatives,
+ Fully dealiased using 2/3.

+ Second order Runge-K utta for temporal
integration.

+ The code satisfies energy balance with
high accuracy.
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) Amplification of magnetic enerqy

12000
10000
000

6000

Energia

4000

2000

o S0 w0 0 =0 20 S0 G0 a0 40 500
Tiempo

Mechanic and magnetic energies vs. time.
Parameters: ks=7, Pr=1 y N=256

B

M acroscopic magnetic field

Emotaay

‘ Simulation with Pr=10 y N=192

Emal-755)

= 1
.

Ematetedd) S o

|
K |

ﬁ . Emetctedsd)

Ematete0)

£

Simulation with Pr=1 y N=256

Time evolution

A )

FElectric current density

Dynamo efficiency

Energia Magnetica

Tiempo

Simulations with different intensities of helicity.
Parameters: k=7, Pr=1000 y N=128

V4
) Mean field theory

+ |t provides a quantitative expresion for the coefficient alpha. The first assumption
isthat there is a scale separation between the large scale magnetic field being
generated and the small scale convective motions, i.e

B_B+b , u-U+uo , <b>=0=<0>

where<...> isan average over small scales. To compute the evolution of the
mean field, we average the induction equation

0B

E:Dx(UxB)+Dx<ux5> , O«B=0
# The extraterm can be interpreted as an electromotive force exerted by small
scale motions
Egye =<0xb >

+ Wetill need to obtain an expresion for electromotive force, and that requires
some assumptions (Steenbeck, Krause & Radler 1966).

Mean field theory

N # Let ussubstract the averaged equation from the general induction equation

@—/XQ@{S)+DX(UXB)+DX(|]/XB,4UXS>)  OeB=0
o Ay 2]

[1] Can be removed with a Galilean transformation.
[2] It’s adeparture from average of a second order quantity (FOSA).

4 Let usfurther assume that this system evolvesin atypical correlation
time of these small scale convective motions. Therefore

Eoe =T<0OxOx(@xB)>=ae«B-B«0xB
where we neglected the gradient of the large scale magnetic field.

+ For anisotropic state of these small scale flows, these tensors become

qiz—%<u-Dxu>ojj .5‘1=%<U'U>5U

The kinetic helicity of convective flowsisimportant for dynamo activity. ]




5 MHD dynamos

+ Stretch-twist-fold (Vainshtein-Zeldovich 1972)

(i; © @(d)
-+ Ponomarenko (1973) 9.44

U:{(O,wr,V) r<r ”

0 r>R —:‘4

+ 3D helicoidal flows

Turbulent dynamos

+ We developed a 3D code to integrate the
equations of incompressible MHD with
and without the Hall effect.

+ The boundary conditions are periodic, the
spatial derivatives are computed with a
pseudo-spectral scheme and the time
forwarding is performed with Runge-Kutta,

+ Wefirst perform aHD run (the magnetic
field is set to zero), with a helical forcing
at small wavenumbers.

+ Weintegrate until aturbulent stationary regime is established, and add aweak
magnetic seed at large wavenumbers. The movie shows the growth of magnetic
energy in time aswell as its spatial distribution.
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) Energy and helicity
+ Transfer from kinetic to magnetic energy. G s -

+ Initially, magnetic energy grows exponentially
fast, as expected for akinematic dynamo.

+ Theefficiency is higher at larger Reynolds.

+ Magnetic helicity grows from zero to finite
values because of the preferential dissipation

of helicity of one sign. - e

Energy power spectrum

H( k) »
+ Themagnetic energy spectrum grows until it reaches
equipartition at each scale.
+ Full lineiskinetic energy and dotted line is total energy.
) 4
) Energy power spectrum Hall dynamo

+ The magnetic energy spectrum grows
until it reaches equipartition at each
scale.

# Full lineiskinetic energy and dotted
lineistotal energy.

# When the forcing is at intermediate
scales, the preferential accumulation
of magnetic energy at the largest
scales can be observed.

* Furthermore, these magnetically
dominated states are approximately
force-free.
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» Dense molecular clouds (Wardle & Ng 1999)
» Accretion disks (Balbus & Terquem 2001)

> Neutron stars (Urpin & Y akovlev 1980)

> Early universe (Tgjimaet a. 1992)

# The Hall effect is expected to
be relevant in anumber of =)
astrophysical plasmas

+ However, it was not being
properly included when »>MFT Hall-MHD (MGM 2002, ApJ 567, L81)
Ssnzdzﬁggtdhynaro ?Ct‘I:V'IHV-E‘I—D »Dynamo waves (MGM 2003, ApJ, 584, 1120)
‘e studied the role of the . .
term on turbulent dynamos »3D simulations (MGM 2003b, ApJ, 587, 472)

+ Wefind that it can strongly affect the properties of the dynamo.




MFT on Hall dynamos

+ Wealso use scale separation but adopt the reduced smoothing approximation
(RSA, Blackman & Field 1999) rather than FOSA, since quadratic small-scale
quantities are not necessarily small.

B B+6+B, , u-U+o+qg,
where U, ,50 are the small-scale equilibriain the absence of Uo ) B[)

+ For the full MHD equations, the obtained alpha is (Frisch et al. 1976)
T
a=—§(<uo- Oxa, >-<B« OxB{, >)
which cancels out if the system reaches an alfvenic state 0, = iﬁo

# When the Hall effect is considered, we obtain

a:—%(<u§-DXU§>—<50'DX50>+<50'D><&)§>)

which does not vanish for alfvenic states.

MFT on Hall dynamos

# We assume the microscopic states Uy, , 50 to be given by double-Beltrami
stationary solutions of the Hall-MHD equations, i.e.

0,-e0xG,= 26, G+elxg,=dy,

+ Asafunction of parameters (a,d), the figure

shows: /' T
> Region of large scale separation

a—
» Theratio @yar | Oyip /
e
»>Theratio Yo / Uy \

+ Regions of strong intensification of alpha
can be be observed for a — Oe, which
corresponds to caseswhere Ug /Uy >>1 —

Hall-enhanced dynamos

* Magnetic and kinetic energy vs. time for
different Hall intensities. Equipartition is
obtained for all these cases. /

# The dynamo enhancement is larger as -/ ¢
epsilon is gradually increased. However, 4 ‘
this behavior is not monotonic.

+ We haverunsfor € = 0.066, 0.1, 0.2, 0.5, 1.
We classify these runs according to
® Ly > Ligree > Lee - Hall isrelevant
at al scales (massively-Hall dynamo)

o [

# Ligree > Lijay > Leg s Hall isrelevant in
the microscale (microscale-Hall dynamo)

¥ Ligree > Loy ™ Ly - Quasi-MHD dynamo? kF ks kv

Magnetic energy

Kinetic energy

Magnetic energy

. Kinematic
<+ dynamo

Magnetic energy as afunction of time
« MHD: Equipartition between magnetic and kinetic energy
« Hall-MHD: Equipartition with twice the magnetic energy

+ Magnetic field intensity at
different times (t=0,1,5 and
12) for £ =0.2 are shown.

# Theinitial magnetic field is
located at small scales. Both
an enhancement of magnetic
intensity and the formation
of large scale patterns can be
observed.

# We performed several runs
with different values of the
Hall intensity (epsilon).

Energy power spectrum

+ Kinetic and magnetic energy
spectrafor the case £=0.1

#* Full lineis kinetic energy and
dotted lineis total energy.

+ The magnetic energy spectrum
grows until it reaches equipartition 0.100
at each scale.

+ Asfar aswe know, thisare the
first results for Hall-MHD L . " y
turbulence. The energy spectrum 2001 : 3 +
is consistent with Kolmogorov's. N




) The Hall length scale

+ Massively Hall dynamo ~ ===p  inhibits dynamo activity
+ Microscale Hall dynamo  ===p  enhances dynamo activity
+ Ase 0 ==p classica MHD dynamo
+ At higher Reynolds, the dynamo is more efficient at smaller €

. Magnetic helicity in mean field

+ From the mean field induction equation (MHD & Hall-MHD)
H = ==
% = 2j(aB -n,J EB)d“x

+ Mean field helicity grows with the ssme signasa

* Net magnetic helicity is conserved (except for difussion):

+ The Alpha-effect creates opposite amounts of micro an macroscale helicity.
+ At small scales, dissipation of microscale helicity takes place with

[Ah|_ At

< [—
n =7 (Berger, 1999)

) Magnetic helicity

H( k)

s 8 2 H k)

# Ase increases generation of net magnetic

helicity decreases.

+ Dissipation destroys short scale helicity.

. Conclusions

+ We performed a brief (and incomplete) overview of our understanding
on the dynamo problem.

+ We developed amean field closure for the Hall MHD dynamo. We find
that the Hall effect can enhance dynamo activity. Thisresult is relevant
to astrophysical systems such as accretion disks, neutron stars or
molecular clouds, for which Hall is non-negligible.

+ Our 3D simulations also show dynamo enhancement caused by Hall.
We find that the enhancement takes place when the Hall scale remains
smaller than the forcing scale.

* Incidentally, our simulations also show that both MHD and Hall-MHD
stationary turbulent regimes display a Kolmogorov energy spectrum.




