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Main features of turbulent flows

1) Randomness both in space and
time.

2) Turbulent "structures” on all
scales within the sea of a
random background.

3) General unpredictability and
instability to very small
perturbations.

Turbulence is the result of nonlinear dynamics in
DETERMINISTIC (but chaotic) systems

While the details of turbulent motions are extremely sensitive to
triggering disturbances, statistical properties are robust quantities

Predictability is reintroduced at a statistical level (via the ergodic
theorem and the properties of chaos !).




The Richardson's picture

Richardson's phenomenology: break down of
eddies at large scales and transfer of energy.

' ' Energy injection range

' ' ' ' Inertial range

Energy dissipation range




Leonardo's view on fluid turbulence

(around 1500 ):

“dove la turbolenza dell'acqua si genera,
dove la turbolenza dell'acqua si
mantiene piu a lungo,

dove la turbolenza dell'acqua si posa”

"where the turbulence of water is
generated,

where the turbulence of water
maintains for long,

where the turbulence of water comes
to rest”




Modern views on fluid turbulence

(1932):
“"When I die and I go to Heaven, there are two matters
on which I hope for enlightment. One is Quantum
Electro-dynamics, and the other is the turbulent

motion of fluids. And about the former I am really
optimistic”

(Nature, 344, 192; 1990):
"One no longer needs to go to Heaven to seek

enlightment about Q. E. but, on the Earth turbulence
still defies satisfactory description”




Two-points correlations

= DEm> ‘“"”T“-; é!;. -

\_ e /,.__,(ﬂ S '“:?:’3?:9"
- / S el :

u(x) u(x+r)

g/}?:'cnegzgcl:yesgs tools: two-points 514,, ()C) _ u(x n If') . M(X)

Fluctuations associated to eddies at the scale r .

the 2-th order moment of two-

Statistical homogeneity points differences is related to
the energy spectrum
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Statistical predictability: universal energy spectrum
Energy input
at large scale L

Energy cascade
in the inertial range
due to non linear
terms

Energy dissipation S AT
at small scale |, e

A.N. Kolmogorov:
in the inertial range
universal feature




Solar wind data

Solar wind: a wind tunnel
SUPCI"SONIC and ULYSSES/SWOOPS Speed (kms')
superalfvenic flow

250 km/s <V, < 800 Km/s

In situ measurements of
high amplitude fluctuations
of velocity and magnetic
fields over 6 decades of
frequencies (up to ion
cyclotron frequency)

EIT {NASAESA)

106 Hz < f < 1Hz e N e

LABCO C2 (NASAESA)




Heliospheric current sheet

A is embedded in
the slow wind

In the equatorial region (most \\

widely studied by space
experiments):
Bending of the current structure

Fast streams: Slow streams:

v ~ 600 - 800 Km/s v ~ 250 - 400 Km/s
n~1-4cms3 n~ 10 - 40 cm-3
T ~ 104 - 105 oK T ~ 103 - 104 oK




Power law spectrum

e
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Magnetic and velocity

days hours minules seconds

fIUCTUGTionS dlSp'Cly a 32168 & 2 1168 ¢ 2 132168 62 121686 2 1
spectrum extending over more
than 5 decades

(106 Hz < f < 1H2): .

W~ f -

Signhature of NL turbulent

A AY

X
intermed iate A<,
e Mariner &

o "\. iz
quiet™, ) BJF
ARG

power spectral density («";Hz}

From Taylor hypothesis:
L~V /f

Scale range:
400 Km<« L <1 AU : iy )




Alfvenic Correlation

e
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In :
velocity and magnetic
fied fluctuations
highly correlated

Sv ~ c 6B /(4np)l/2

o= +, -

The sign corresponds
to

(SB /BO ~ 1) time(h)
propagating away
from the sun. Low level of density and magnetic field intensity
fluctuations &p/p ~ 5|B|/B, ~ few percents
NL effects reduced

In : (i) almost no dv - 6B correlation
(ii) high level of compressive fluctuations Sp/p ~ 3|B|/B, ~1




MHD equations

. . B
Elsasser's variables: VARG Ne i

MHD equations:

Nonlinear term Dissipative term

R = nonlinear ~ é The Reynolds number is

dis Sl'pative v the only parameter of the flow

MHD equations display the same "structure”
as Navier-Stokes equations




Alfvenic fluctuations

e
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In a statistically homogeneous medium: <B>=B,

B <v>=(
A, NP Mt [ |sasser's variables fluctuations
4 7o

for o =+1, -1
: B’
Ideal MHD NL solutions: [ idipsmsy
8T
oB
and either
V —

4o
4o




Ideal MHD quadratic invariants

e
mE 4=

Energy per mass unit

Cross helicity

and cross helicity conservation is equivalent to
conservation

. o2
Pseudoener‘gles- EG — j z dV for' o = +1, . |
2

In 3D magnetic helicity is also invariant sl (A : B)dV
2
In 2D the third invariant is H= ‘A‘ dV




Non linear MHD cascade 1

Both pseudoenergies are conserved in
the NL cascade along the spectrum

interacting eddies move in opposite directions in a
large scale magnetic field
[

OZ;
Interaction stops after
atime  Ti~ [/vV,

After N uncorrelated interactions, i.e.
after a time T, ~ N1/

A significant variation of
0z° requires 0z°~ Az° IS
thus




Non linear MHD cascade 2

The energy flow along the spectrum is
independent of o

The spectrum is formed when there is a sufficient energy on
both modes of propagation, i.e. 0z, ~ 0z,"~ 0z, then

&, ~&"v, I Efk) oc k™"

After the spectrum formation are transferred
along the spectrum ( ) at the same rate

In the final state [JhasE—.y OV = \/él;
- 47p




Fourier analysis in a cubic box
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_2n
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In a periodic cubic box of size L k

zo(r, ) =D 20 (K, t)e™"
x

n

Fourier analysis
22 (k1) = L | 22 (r,0)e ™ dr

Divergenceless condition

3D

2° (k1) = D22 (k,0)e, (k)
a=1.2 z° (k1) =z (k,1)e(k)

k-e (k)=0 K- e(K) = 0
.e —

kxB k
o, <200 =

el (k) — ‘k‘




MHD equations for Fourier modes

e
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The evolution of the field for a single wave vector is related to fields
of  other wave vectors (convolution term) for which k = p + q.

0 . o 3 o —c
(__ 10K - Vot Uksza (kat) = Z ZMaﬂy(kapaq)Zy (pat)z (qa t)

ot B.y=1 p+q=k

M., (kp,q) = (k- e, (@) )e, (p)-e,(Q)

Infinite number of modes involved in
honlinear interactions for inviscid flows




Direct numerical simulations 1

Pseudospectral methods:
> Time integration in Fourier space;
> Non linear terms evaluated in physical space;

> From Fourier space to physical space and viceversa Fast
Fourier transforms (FFT) are used.

From phenomenological arguments:

High performance computers:
> 2D Re ~ 10*
> 3D Re ~ 103




Direct numerical simulations 2

e
mE 4=

Velocity field Magnetic field
From Grappin, 1986

/ /’/":\ \{ o
@)

’,
[:

Velocity and
magnetic field lines
are parallel in the
final state

. o -~ .\‘.‘U/’
SN2
~, ™ S
AR /A / /

UOILN|OA2 W1 |

Acontours 9 T = 7.5000 4 0D

Growth of v - B
correlation

\




Dynamical (shell) models 1

Shell models are dynamical models representing a simplified
version of the spectral equations for turbulence

Introduce a logarithmic spacing
in the wave vectors space (shells)

The intershell ratio in general
is set equal to A = 2.

We are not interested in the
dynamics of each wave vector
mode of Fourier expansion, rather
in the gross properties of
dynamics at small scales.

In this way we can investigate properties of turbulence at
very high Reynolds numbers.




Dynamical (shell) models 2

Assign to each shell ONLY two dynamical variables

The possibility to investigate both spatial
and temporal properties of turbulence is
ruled out

Velocity field Magnetic field

These fields take into account the averaged effects of velocity modes
between k, and k,,;, that is fluctuations across eddies at the scale r, ~ k!

Write quadratic NL equations for these variables where only
nearest and next nearest coupling interactions are retained

dz, (1) =ik, ZM,- z, (t)Z;Zj(t)

,]Zn+i

dt

i, j=12,+1




Dynamical (shell) models 3

Fix the coupling coefficients M;; imposing the conservation of
ideal quadratic invariants (ener'gy cross helicity, magnetic helicity)

du,
dt
1

Z/ln — lkn[(un+lun+2 n+l n+2)

1
_Z (un—lun +1 bn lbn+1)_ g (un—Zun—l _ bn—an—l )]* + f;7

db, Forcing terms

dt 2b o lk [(un+1bn+2 bn+1un+2)

_(un—lbnﬂ _ bn—lun+1)+ (un—2bn—1 _ bn—2un—1 )]* + gn




Dynamical alignment in shell models

A forced simulation:
Time evolution of mode n=7,

A decay simulation . '
with constant forcing terms.

fa
e
2]
=
)
E_

t{'.'\': L2 l’l‘l-'{ L"ql:l

Velocity (diamonds) and
magnetic field (crosses)
amplitudes strongly
correlated

The cross helicity to
energy ratio grows in fime




Dynamo action in shell models

e
mE 4=

What "turbulent dynamo action” means in the shell model

Magnetic energy 3D

Magnetic energy 2D

gt g
B

0.5

A

There exists some
“invariant subspaces” which
can act like “"attractors”
for all solutions (stable
subspaces).

The fluid subspace is stable
(in 2D case) or unstable (in
3D case).




Alfvenic correlation: a different scenario 1

mE 4=

, i.e. states of high correlation between velocity and
magnetic field fluctuations are spontaneously formed in MHD
turbulence

Solar wind turbulence evolves in the reverse way:
»Highly correlated near the sun up to 1 AU
» At larger radial distances from 1 AU to 10 AU:

Sr, &|B|

Possible solution to such paradox:
Solar wind is neither incompressible nor statistically homogeneous
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Alfvenic correlation: a different scenario 2

___ 1

Commonly accepted scenario:
» Main source of fluctuations inside the critical point (solar
photosphere)

> Critical point filters out inward propagating waves, only outward
propagating Alven waves arrive in the solar wind

Large amplitudes Alfven waves generated at the foot
points of open magnetic field lines

> either converge towards the heliospheric current sheet
(slow wind)

> or propagate in the fast solar wind




Alfvenic correlation: a different scenario 3

Two interesting physical problems
Fast wind

Slow wind:
current sheet

Large amplitude Alfven waves converging on the current sheet
interact with the associated large scale inhomogeneity

Large amplitude Alfven waves propagating in fast wind could be
subject to parameftric instability




Turbulence in the heliospheric current sheet 1

-
[

Space observations close to the heliospheric current sheet:
> depletion of dv - 8B correlation

> higher level of compressive n, 5|B| fluctuations

> Kolmogorov - like spectra for v, B, n, |B|

Numerical simulations to study compressive effects (Malara et
al., 1996, 1997)

Model:
> A large scale current sheet

> An initial alfvenic perturbation (outward propagating waves on
both sides of the current sheet

> An initial uniform [B|=|B,,+ & B| (no initial ponderomotive force)




Turbulence in the heliospheric current sheet 2
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L.-—'” + % - (pw) =1
T T

Model equations:
X (v O)y = —LT(T) + (T x b) x b+ T
i ‘ T f." Ir ] ,I!-I ‘L} .

ab

= Vxi{vxb)+ ..LT"h
T . S\,

ar R e B [ TR [ T T
Gr TV VIT Ay - TV - v) = P [HT T+3 [:

ik ey )

+ %[ﬁ? :t bﬁF]
Numerical method:

> 2-1/2 D code

> Pseudospectral: Fourier in the homogeneity direction, Chebshev
across the current sheet

» Multidomain: a matching performed to increase resolution inside
the current sheet




Turbulence in the heliospheric current sheet 3
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Initial conditions: bix, . 0) = A {c cos(p(y)]| e, + sin(a)Fir) e, +

Magnetic field + 1= sin? (a) F2{x) + e sin® [ y)] ]’

Velocity field ) = () DL 0)
- el e 0)

Density and temperature plr g, =1 and Tiz y.0)=Ty

Where €:=05 ,

F(x)=tanh(x)

The equilibrium magnetic field B, is obtained by setting € =0
and rotates by an angle ot in the plane yz




Turbulence in the heliospheric current sheet 4

The initial correlation
between 6v and 6B is
strongly reduced in the
current sheet region

Compressible fluctuations
5p and |B| are generated

Inside neutral sheet the
spectra for E*, E-and 5p
are superposed.

The spectral index is 5/3.

Fig. 8. The Fourier spectra of psendoenergies Guctuation &) (1) (circles), e, (z. 7]
(triangles ), density fuctuation e}, {sgquares) and magnetic feld intensity Auctuation
e [erosses) are represented as functions of the wavenumbers at = = (1.2 (full lines)
and at r = 5.01 {dashed lines} at the time 7 = 1.2 for =102




Density magnetic field intensity correlation 1
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Simulation vs solar wind
data analysis

For B<1

Sp and §|B|:

> anticorrelated at smail
scales inside current
sheet (slow mode
fluctuations)

> correlated at large
scale outside the current
sheet (fast mode
fluctuations

Y | '
230055 735
DoY 1976 J
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Density magnetic field intensity correlation 2

Simulation vs solar wind
data analysis

For B>1

Sp and §|B|:

> anticorrelated at all
scales and almost
everywhere (slow mode
fluctuations)

INZE AL
[ == — Ab=13}

—~— Ak=2h

. Ap=3h

101.5

=
102:0
DoY-1976

=
1025 -

103.0




Density Temperature fluctuation correlation 1

mE 4=

At small scale &p - 8T correlation mainly positive in the
fast streams while it dispays both signs in slow streams

(Bavassano et al., 1995):
where does the negaative correlation come from ?

In an ideal fluid entropy S
is advected by velocity
field like a passive scalar

S initially uniform

+ isoentropic flow

* polytropic equation of state
- only positive correlation are
allowed

Small amplitude modes:
both fast and slow modes display &p - 3T positively correlated




Density Temperature fluctuation correlation 2
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Zank and Matthaeus 1991, 1993:

heat conduction term allows for a negative correlation
also in a statistically homogeneous configuration (Nearly
Incompressible MHD aapproach)

Malara et al., 1998:
Large scale (~1 day ) variations
of density and temperature
furnish a reservoir of entropy
fluctuations

T

,07/_1 cyrrent

S ocl

sheel

Plasma turbulence can mix S, moving the S modulation from large
to small scales (small amplitude entropy waves display negative
dp - 8T correlations)




Density Temperature fluctuation correlation 3
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The sign of &p - 8T correlation results from
competition between :

> production of magnetosonic compressive
fluctuations <&p 8T> > O
> entropy cascade <6p dT> < O

Numerical model (Malara et al., 1998) :
> Large scale current sheet
> Density and temperature large scale modulation

IniTiGI CondiTionS: l|g'_|{j-::_ _!fi' = ||I| = o4 1+ A [

|

] v .
cosh™{rfa,.)

Tie, gyt =0 = poTh/ple,p.t =0)

Pressure and magnetic field intensity are constant
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Density Temperature fluctuation correlation 4

At large scales <dp 8T> < O
in the whole domain

Numerical
simulation

At small scales

« <§p 6T> < Ointhe
current sheet

- NL inferactions more
effective inside current |
sheet where entropy e e SA——
cascade prevails s\ data
+ <p 8T> > O outside the |

current sheet (fast

magnetosonic fluctuations

propagate outside)

196 19.8 200 202
Time DoY



Parametric Instability of Alfvenic fluctuations 1

mE 4=

Fast speed stream and polar wind much more homogeneous
then current sheet region, but E*/E- increases with the
distance from the sun;

can parametric instability be responsible for this ?

Mother coherent Alfven wave decays in

> an Alfven wave propagating in the opposite direction

> a sound wave

What happens when starting with a broad band initial wave ?

Non linear numerical oB=B, [cos(¢(x))ey +sin(g(x))e,
investigation of evolution

of initial conditions




Parametric Instability of Alfvenic fluctuations 2

mE 4=

Simulation results:

T
10 S0 A0 A S0 G 7 () TR RO )
t

Inward propagating Alfven wave, density and magnetic field
intensity fluctuations all grow in time

At instability :
> for small B, E- grows to the same level as E*

> for intermediate 3 , E- level grows but it remains lower then E*, the
parametric process is unable to completely destroy v - B correlation




Parametric Istability of Alfvenic fluctuations 3

[

Ulysses
[ f

Bavassano et al., 2000

Data analysis: saturation seems to occur at 2.2 AU radial
distance at a level E-/E* ~ 0.5




Parametric Instability of Alfvenic fluctuations 4
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Spectra:

» Both direct and
inverse cascades are
observed

> At large and small
scales E* and E-
spectra finally
superpose

> At infermediate
scales E* still
dominates

> The spectral index
of E* progressively
decreases and : e R
approaches 5/3 - S i 3 Y

—-+==Trace P{z7) ‘

H : H
pasal 1 ocrasud IR RTIT)

- 5 o 10°¢ 103 10
¢ Frequér%; (Hz) Frequency (Hz)

a 3
w




Conclusions
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Analysis of space data has stimulated a lot of theoretical work
devoted to understand the oberved properties of MHD
turbulence

Numerical simulations are able to explain several observed
features of MHD turbulence in solar wind.

In slow wind the interaction of Alfven waves with Heliospheric
current sheet produces:

> The depletion of Alfvenic correlation

> The generation of compressive fluctuations

> The spectral features of fluctuations

> The behavior of both r - |B| and r - T fluctuation correlations

In fast wind parametric instability allows to understand
> The time evolution of Alfvenic fluctuations

» The spectral features of both Alfvenic and compressive
fluctuations generated
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MHD Turbulence in heliosperic plasma:
Intermittency and small scale structures

ey
[

Solar wind: a wind tunnel
Supersonic and
superalfvenic flow

250 Km/s <V, <800 Km/s

In situ measurements of
high amplitude fluctuations
of velocity and magnetic
fields over 6 decades of
frequencies (up to ion
cyclotron frequency)

106Hz < f < 1 Hz

ULYSSES/SWOOPS

Speed (kms')

.”
g
__ _-;,,_L ; 1000

EIT {NASAESA)
Mauna Loa M3 (HAD)
LASCO G2 (NASAESA)

From Taylor hypothesis: L~ V., /f Scalerange 400 Km< L <1AU




Two-points correlation : higher order moments

“’*";._ﬁ“‘"w.p & ﬁ%

e
-

—

) =t

ou (x)=u(x+r)—u(x)

Gaussian process: the 2-th order moment is sufficient to fully determine
probability density functions (pdf). High-order moments are uniquely
defined from the 2-th order (in this sense energy spectra are interesting!)

High-order moments of two-points

differences are probes for non- S (r) = <[§u (x)]n> N

gaussian behaviour of fluctuations

Kolmogorov's standard turbulence: & =n/3 = E(k)= 33
n




Self-similarity of fluctuations

e
mE 4=

Non linear cascade = Pdf for fluctuations should be
self similar (fractal) process invariant under a scale change

Higher order moments: probes of
self similarity

S, (r)= T (6u,)' P(Su,)d(du,)=

—Q0

ou. )" [ du ou
n/ 7 7 r n/
=7 3T( 1/3) P( 1/3) 1/3j:Anr :

r r r

—0o0




Self-similarity of fluctuations

e
mE 4=

Fluctuations are stochastic r .
variables, high-order moments Sn(’”) — j(&ll) p(é‘”;ﬂ)d&h
can be defined in terms of pdfs: —o

Anomalous scaling exponents - pdfs have also anomalous scalings
ou. =u(x+r)—u(x)

Changing the scale r — Ar, it can be shown that, in a pure fractal situation,
pdfs at two scales are related

pdf (ow,) = pdf (ow,)

/.e. the pdfs of normalized fields increments at different scales
collapse on the same shape (self-similarity)




Departure from Kolmogorov's scaling

The departure is SIGNIFICANT, and has been attributed
to INTERMITTENCY in fully developed turbulence

The temperature
field (passive), is
different from
velocity field.

Intermittency
(measured as
the difference
between the actual
—m— Velocity scaling exponent and
—*— Temperature (passive) | | the Kolmogorov's
3 4 & & 7 & law), is stronger
p for passive scalar

(2}
i}
c
()
c
o
o
x
()
(®)]
=
®
O
0p)]




Laboratory data

Plasma generated for nuclear fusion, confined in a Reversed Field
Pinch configuration (RFX, Padua).

High amplitude fluctuations of magnetic field and floating potential
measured at the edge of the device.




Anomalous scalings in plasmas turbulence

1| —®— magnet ic fast
]| —e—velocity

T ¥ T X T
1| —e— magnet ic slow

Kolmagar o law: nds

Solar wind

Intermittency is stronger
for magnetic field than for
velocity (magnetic field like
a "passive vector” ?)

--g-- Ha=093 | 7

2 pfa =090 | J

Laboratory plasma

Intermittency for magnetic
turbulence is stronger near
the wall




Departure from self-similarity

Anomalous scalings > absence of global
self-similarity

PDFs of normalized
fluctuations are
not Gaussians

PDFs changes with scale

Small scales

PDF(&E)

Inertial range

The role actually played
by the energy spectrum E(k) is
limited in real turbulence,
the phenomenon CANNOT be
described taking into account
only the 2-th order moment

PDF(&E)

Large scales




What is “intermittent” ?

Solar Wind data
H
E o
3
" Small scale:
STRUCTURES
=10 T T T T I T T T T . .
o.o*on” 1.0%0° 2.0410° a.0%10° 4000 moMo E.0%10° T.040° &.040’ a.n*1o 1.0%10° 1140
g
Ep
3
[
I I [ I | I [ I I I
o.o*on° 1.0%0° 2.0410° a.0410° 4000 moMo E.0%10° T.040° el a.n*10 1.0%10° 1140
Large scale:
] random signal
£ m
=Zp
3
2
| I [ [ [ I I I | [ [ [
i} 00 1000 1500 2000 2500 3000 3500 4000 4500 s000 . RE0O0D EOOD
Velocity increments at 3 different scales Increasing scales

Intermittency is due to strong fluctuations confined to small

scales. Scaling law depends on position: (MULTIFRACTAL)



Wavelet analysis of intermittent "structures”

e
mE 4=

Intermittent "coherent” events within turbulence, on all scales, can be
identified through wavelet analysis.

BITE!
Wavelet transform W(b,a)=C, V2 7o T

O0<x<l1/2
for 1/2<x<1

elsewhere

Haar basis

a=2m scaledilation b=2mi position traslation

Signature of intermittency: |Wm (i) |2

Wavelet coefficient classification:

Passive \W"f(i)\st<\W"1(i)\2> Intermittent ‘W’"(i)‘z>F<‘Wm(i)‘2>




Intermittent "structures” and background

Wavelet coefficients classification (F =5) allows to split the time

signal
Complete signal

Gaussian background Isolated Structures




Fractal vs multifractal behavior

e
mE 4=

! jg‘;c.aling Exponents (All Data)
After elimination of [
the intermittent
isolated structure
from the signal J
Scaling exponents
are linear functions !
of the order of
moment T

The time signal
displays a fractal
(selfsimilar)
behavior




Waiting times between structures

Laboratory plasma The times
between events
are distributed
according to a
power law
Pdf(At) ~ At P
The turbulent
energy cascade
generates
intermittent
“coherent”
events.

The underlying cascade process is NOT POISSONIAN, this
means that the intermittent (more energetic)
bursts are NOT INDEPENDENT (memory)




What kind of intermittent structures ?

-
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Minimum variance analysis around isolated structure allows to
identify them

Solar Wind: shock el

(compressive structures)

Velocity Fluctuat.

e

Compress. Fluctuat.
: =
]

[~}
(=}
|
in
]

L 1
324.786
Time (days)-

<
|

&
=
3]
Q=1
2
g
5 20—
=
7 100
By
=
2>

(=
|

Solar wind: tangential
discontinuity (current
sheet)

—
|

C(v,B)

1 ] 1 1 1 ) L L | !
120.158 120.162 120.166

Time (days)




Intermittent structures in laboratory plasmas

RFX edge turbulence:
current sheets

Magnetic eld Auctuations [T]

Current sheets are
naturally produced
as coherent,
infermittent
structures by

7
=
=
=

=
=
2
i
=

2

=

Magnetic field fluctuations (7]




A Statistical approach to Solar Flares

-
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Ratio of EIT full Sun
images in Fe XTI
195A to Fe IX/X
171A.

Temperature
distribution in the
Sun's corona:

- dark areas cooler
regions

- bright areas hotter
regions




Solar flares are impulsive events

: : Hard X-ray (> 20
Time series of flare events keV):

Intermittent spikes

Duration 1-2 s,
|
\

| \ Emax ~ 1027 N

) H I

°F l\l ll \ | rr'HJU-.'i | U\mb {! Numerous smaller
- ‘__Muk Il J.J»J [l Ui M oo spikes down to 1024
erg (detection limit)

2000

X-ray corona: superposition of a very
large number of flares

Nano flares




Power laws for statistics of events

100.000 F

Power peak distribution

10,000 E
1,000 £

Duration distribution o100k

1818 ewvants
Slope —1.89 +/— 0.5

Flare Frequency

0.010

Total energy distribution T L
100 1CG0 1a000
Peak Count Rate [counts.s™)

10.0000 F

1,0000

L 1518 avaents =
ﬂJﬂﬂﬁi Flat part: Slope —1.15 +7— .04
F Steep part: Slope —2.25 +/— 0.08

a.n100k
1518 events F Power — Exponential fit

Slope —1.39 +/— 0.02 | Powar—law index —1.09 +/— Q.03
0.00M0F Eipanentlal eut—aff 2100 +/— 100 &

||||||_|J ||||||,|J Illluja

Flare Frequency
Flare Frequency

107

108 . : . R ottty G
102 107 10+ 107 100 1000
Tatal Counta Total Guration (a}




Parker's conjecture (1988)

Nanoflares correspond to dissipation of many small current
sheets, forming in the bipolar regions as a consequence of the

continous shuffling and intermixing of the footpoints of the field
in the photospheric convection.

Current sheets: tangential discontinuity which become
increasingly severe with the continuing winding and interweaving

eventually producing intense magnetic dissipation in association
with magnetic reconnection,




Self-Organized Criticality (. Bak et al., 1987)
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w Sand Pile model for Solar Flares:

~ Fall of grains give rise to an avalanche whose
 dimension is that of the marginally stable region

TYPICAL AVALANCHES

Lack of any Avalanches of all size i.e.
typical length FRACTAL PROCESS

DOMAIN-FREQUENCY RELATION

Size, lifetimes and number of sand grains in
each avalanche are power law distributed.




Sand Pile Model for Solar Flares (Lu & Hamilton., 1991)

Cellular Automata model for reconnection :
> Vector field B. on a 3D lattice

> Local slope dB, = B, -2; w; B,

When | dB,| > some treshold: instability at position i :
> Field readjusted in the nearby positions so that the
grid point i becomes stable

» The readjustment can destabilize nearby points
producing an avalanche

Power peak, total energy and duration are
power law distributed.




Waiting time distribution

10' 10° 10’

T, (hours)

Waiting time distribution of soft X-
ray nanoflares displays a power law
(Boffetta et al., 1999)

SOC models naturally give rise to an
exponential distribution

Waiting time distribution of soft X-
ray nanoflares can be fitted with a
Levy function (asymptotically power

law) ( Lepreti et al., 2001)




Parker's conjecture modified

Nanoflares correspond to dissipation of many small current
sheets, forming in the nonlinear cascade occuring inside
coronal magnhetic structure as consequence of the power
input in the form of Alfven waves due to footpoint motiont.

Current sheets: coherent intermittent small scale
structures of MHD turbulence




Turbulence modelling

Dynamical shell models:

Simulations of the cascade process through the dynamics of
nonlinear couplings.

Allow us to obtain the time evolution of fluctuations, to
find scaling laws and to describe the chaotic dynamics
on the attractor in the phase space.

Geometrical description is neglected but nonlinear
interactions are described at best




MHD equations in the wave vectors space

oz: (K, t)

= M, () 22 (p0)z, (K= p,1)

pP

M, (K)=—ik;(0,, —
B

a

A4 70

Infinite wave vectors involved in the sum,
but the presence of dissipation intfroduces
a maximum wave vector

Even in this case we have a large
number of variables N = (k

diss

/k) zR9/4




Dynamical (shell) models

e
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1) Introduce a logarithmic spacing of
the wave vectors space (shells):;

2) Assign to each shell ONLY TN
two dynamical variables; z, (t) = U, (t) + bn (t)

3) Write a nonlinear equations with couplings
among variables belonging to local shells;

dz, (1)

=ik, Y M, z..(t)z. (1)

dt i, j=12,+1

4) Finally fix the coupling coefficients imposing
the conservation of ideal invariants.




Properties of MHD shell model

The shell model
is able to
capture

the intermittent
behaviour of real
turbulence

!

Chaotic dynamics
during the

S B energy cascade
R e e e generates non

At (arbitrary units) At (arbitrary units) pOiSSOHian even.rs




Isolated bursts of dissipation in shell model
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The energy &(1) = Vz knz‘un‘z T 772 k,b,

dissipation rate is
infermittent.
Energy is dissipated
through impulsive
isolated events
(bursts).

—
[

2

Bursts can be

isolated through a
threshold process
to make statistics.

Time (*10")




Solar Flares: intermittent dissipative events within
MHD turbulence?

P(e), P(p) and P(73)

The time between two
bursts is t, we calculate the

pdf p(z).

1) Total energy of bursts

2) Time duration
3) Energy of peak

In all cases we found power laws.




MHD Turbulence in Coronal Loops

e
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In a coronal loop:

Small beta values

Large aspect ratio

Small perpendicular
to parallel magnetic
field ratio

»Incompressible MHD in perpendicular variables
> Alfven wave propagation along background magnetic field




A Hybrid Shell Model

e
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RMHD equations in the wave vector space perpendicular to By:

2 or, L, (k) =3, Mo, (R) 2, o)z, (ko) =z, (o)
X

A shell model in the wave vector space perpendicular to B, can
be derived:

d S, n ]
(E fj’]') Z {1 ” Yﬁft £ ) {j ” {\!{}

19
ikn( Zi1Zmy Zu+lz:;rr+£ —~Znt1Zn1

mn+2 } 24 48 n+1

(T 19 (T T T 3
Z.u—l—lzﬂ 1 { EZ?? lZ?i' 2 0f Zﬂ+lzu lj)

(Hybrid : the space dependence along B, is kept)




Boundary Conditions

e
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Space dependence along B, allows to chose boundary conditions:

Total reflection is imposed at
the upper boundary

A random gaussian motion with
autocorrelation time t, = 300 s is
imposed at the lower boundary
only on the largest scales

The level of velocity fluctuations
at lower boundary is of the
order of photospheric motions
v ~5104c, ~1Km/s

Model parameters: L ~3 10*Km, R~6, c,~2 103 Km/s




e
[ 1]

After a transient a
statistical equilibrium
is reached between
incoming flux,
outcoming flux and
dissipation

The level of
fluctuations inside the
loop is considerably
higher than that
imposed at the lower
loop boundary

Dissipated power
displays a sequence of
spikes

Energy balance
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Energy spectra

A Kolmogorov spectrum is formed Magnetic energy dominates
mainly on magnhetic energy with respect to kinetic energy




Statistical analysis of dissipated power

Power Peak Burst duration

Power laws are recovered on Power peak, The obtained energy range
burst duration, burst energy and waiting correspond to
time distributions energy range




Dissipation mechanism ?

Explicit form of dissipation terms in RMHD:

Viscous term in V, equation

Viscous term in V, equation

Resistive term

in B, equation Reynolds

Numbers
Resistive term

in B, equation Lundquist

Number

But n; term does not contribute to dissipation !
Dissipation lengths much smaller than ion Larmor radius

We need an efficient Kinetic dissipation mechanism |
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Conclusions

o

Physical understanding of complex nonlinear phenomena
occurring in plasmas require the coordinated utilization of
different tools: space and laboratory data analysis,
simplified dynamical models, numerical simulations.

Dynamical models, in particular, are usefull to describe
turbulence, intermittency, anomalous scalings of pdfs, etc.

The intermittent behavior observed in turbulent fluid flows
seems to represent a key to explain some burstly phenomena
occurring in space, laboratory and solar corona plasmas.

The signature of non linear interactions seems to be a
multifractal behavior: SOC models being intrinsecally
fractal cannot adequately describe the complexity of
turbulent systems. In particular they cannot naturally
describe the correlations between the intermittent
coherent small scale structures of turbulence.





