
Nondissipative simulation methods for
collisionless electrostatic plasmas 1

Tomo-Hiko Watanabe2

National Institute for Fusion Science / The Graduate University
for Advanced Studies, Toki, Gifu, 509-5292, Japan

October 11, 2003

1This document is prepared as a lecture note for Autumn College on Plasma Physics:
Long-Lived Structures and Self Organization in Plasmas at International Centre for Theoret-
ical Physics, Trieste, Italy. All of our works described here are based on collaborations with
Dr.H.Sugama (NIFS).

2E-mail: tomo@nifs.ac.jp



Contents

1 Introduction 2

2 Numerical Scheme for the Hamiltonian system 4
2.1 Basic schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Conventional approach . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Symplectic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 First-order method . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Higher-order methods . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Non-separable Hamiltonian system . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Implicit method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Higher-order methods . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Application to 3-mode equations . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Numerical simulation of the Vlasov-Possion system 13
3.1 Phase mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Vlasov simulation method with symplectic integrator . . . . . . . . . . . . 14
3.3 Application to the plasma echo . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Numerical simulation of the drift kinetic system 19
4.1 Time-reversible scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Application to the ion temperature gradient driven system . . . . . . . . . 21

4.2.1 Model settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 3-mode ITG system . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Drift wave echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.4 Remarks on ITG turbulence simulation . . . . . . . . . . . . . . . . 24

5 Kinetic fluid simulations models 26
5.1 Closure models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Application to the 3-mode ITG system . . . . . . . . . . . . . . . . . . . . 27

1



Chapter 1

Introduction

According to the development of computer technologies, numerical simulations of plasma
dynamics have rapidly grown as a powerful tool for studies of various nonlinear phenomena
in fusion, astrophysical, and laboratory plasmas. In the field of the magnetic confinement
fusion, for example, the anomalous transport studies based on the computer simulation
have been very actively promoted in the last decade. A collisionless micro-scale turbulence
is one of the key issues in the anomalous transport research, where one needs to taken into
account the kinetic effects. However, there are various difficulties in simulations of the
collisionless plasma dynamics even with the electrostatic approximation. A main purpose
of this lecture is to explain methods of the collisionless plasma simulations, and to provide
an opportunity for considering their importance.

Generally speaking, a simulation study consists of several steps. The first step is
to find governing equations which are applied to a physical phenomena being interested
in. The second is to consider a numerical method employed for finding an approximate
solution of the governing equations. Implementation and execution of the simulation code
are included in the third step. After obtaining the results, finally, one can go to the step
for studying the phenomena reproduced by the numerical simulation. Although many
physicists seem to pay more attention to the first and the last steps than the others,
the second step is also indispensable and important to obtaining a correct result. If an
inadequate method is employed, all of the efforts in the other steps may come to nothing.

Numerical simulation methods for the Vlasov-Possion and the collisionless drift kinetic
systems are discussed in the latter part of this lecture. Since both of the kinetic equations
for the one-body velocity distribution f can be represented as

∂f

∂t
= −{f,H} (1.1)

by using the Hamiltonian H and the Possion brackets {, }, it is considered that numerical
methods suitable for collisionless plasma simulations is related to that for a Hamiltonian
system. Thus, let us first learn numerical integration schemes suitable for the Hamilto-
nian system with a small number of variables, where we discuss the symplectic numerical
integration method which provides a basis of the nondissipative simulation schemes for
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the Vlasov and the collisionless drift kinetic equations. One will find a close relationship
between the numerical method and the classical mechanics. Benchmark tests of simula-
tions shown in the lecture are made for problems of a nonlinear oscillator (described by
the Jacobi elliptic functions) and the plasma echo. The results are useful to check whether
the time-reversibility and the phase mixing process intrinsic to the collisionless plasmas
are correctly simulated or not. Finally, the closure problem in kinetic-fluid models will
also be briefly discussed.
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Chapter 2

Numerical Scheme for the
Hamiltonian system

Before going to investigate simulation methods for the collisionless plasmas with infinite
degrees of freedom, it is instructive to learn numerical approaches to Hamiltonian systems
with a small number of variables. Since all of the examples shown here has analytical
solutions, it will be able to check accuracy and efficiency of numerical schemes and their
limitations.

2.1 Basic schemes

2.1.1 Harmonic oscillator

One of the simplest examples of the Hamiltonian system is the harmonic oscillator,

d2x

dt2
≡ ẍ = −x , (2.1)

which is also represented as

{
dq/dt ≡ q̇ = ∂H(q, p)/∂p
dp/dt ≡ ṗ = −∂H(q, p)/∂q

with H(q, p) =
1

2

(
p2 + q2

)
. (2.2)

In this section, let us consider a numerical solver for Eq.(2.1) or (2.2) with the initial
condition of x(t = 0) = q(t = 0) = 1 and v(t = 0) = p(t = 0) = 0. The analytical solution
is trivial,

q(t) = cos t , p(t) = − sin t . (2.3)

Eq.(2.2) is more suitable for the numerical time-integration than Eq.(2.1), since it contains
only the first derivative for the time variable t.

Whenever we numerically solve equations as an initial-value problem, we need to
discretize the time variable t with finite spacing ∆t (that is assumed to be constant
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hereafter). A mapping generated by the harmonic oscillator in Eq.(2.3) for a discretized
time step from t = tn ≡ n∆t to t = tn+1 ≡ (n + 1)∆t is given by

(
qn+1

pn+1

)
=

(
cos ∆t sin ∆t
− sin ∆t cos ∆t

) (
qn

pn

)
(2.4)

≡ MH

(
qn

pn

)
, (2.5)

where the super scripts denote the time step number.

2.1.2 Conventional approach

Forward Euler method The most primitive numerical integration method of the or-
dinary differential equation (O.D.E.) is the forward (explicit) Euler methods,

{
qn+1 = qn + ∆tpn

pn+1 = pn −∆tqn , (2.6)

where only the variables at t = tn are employed in calculation of the right-hand side
(r.h.s.) of the O.D.E’s. An important property of the forward Euler method can be
analyzed by substituting q(t) = q0 exp(iωt) and p(t) = p0 exp(iωt) into Eq.(2.6). Then,
one finds a complex amplification factor of q (or p) within a time step, g ≡ exp(iω∆t). It
is straightforward to obtain

g = 1± i∆t =
√

1 + ∆t2e±iθ for θ = tan−1 ∆t . (2.7)

Since |g| > 1 for any ∆t > 0, the forward Euler method is unstable when it is applied
to the harmonic oscillator. It means that the oscillation amplitude as well as the total
energy monotonically grows in time. The numerical solution, then, has a spiral orbit in
the (q, p)-phase space as is seen in Fig.2.1 (a). In the Taylor expansion of |g|, the leading
order term in difference from the analytical solution in Eq.(2.3) is proportional to ∆t.
Then, the forward Euler method is a first-order scheme.

Backward Euler method Similar to Eq.(2.6), the backward Euler scheme is given by
{

qn+1 = qn + ∆tpn+1

pn+1 = pn −∆tqn+1 . (2.8)

Equivalently, (
qn+1

pn+1

)
=

1

1 + ∆t2

(
1 ∆t

−∆t 1

) (
qn

pn

)
. (2.9)

This is an implicit time integrator, since both qn+1 and pn+1 are used on the r.h.s. of
Eq.(2.8). Using the same procedure as given above, one finds

g =
1

1± i∆t
=

1√
1 + ∆t2

e±iθ for θ = tan−1 ∆t . (2.10)
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Contrary to the previous case, |g| < 1 for any ∆t > 0 in the backward Euler method.
Thus, the oscillation amplitude as well as the total energy monotonically decreases in time
as is seen in Fig.2.1 (b). Therefore, the backward Euler scheme turns out to be stable and
involves numerical dissipation. This is also the first-order scheme.

Remedies Generally speaking, stable methods are more preferable than unstable ones
in actual applications, since one can continue numerical calculations no matter how dissi-
pative the employed scheme is. If one uses a higher-order scheme, such as the Runge-Kutta
method that is widely used in numerical integration of O.D.E.’s, the numerical error could
be suppressed in a small level. Such approach is effective if the numerical dissipation is
negligibly smaller than the real dissipation contained in the governing equations. The dis-
sipative integrator, however, breaks the conservation properties of the Hamilton system.

There is a very simple remedy for the numerical dissipation in solving Eq.(2.2). Com-
bining the above two Euler methods, one may try to use

{
qn+1 = qn + ∆tpn

pn+1 = pn −∆tqn+1 . (2.11)

This is an explicit method, since, in order to obtain pn+1, one can use qn+1 that is calcu-
lated only from qn and pn. By a similar analysis in the above, one finds

(
eiω∆t/2 − e−iω∆t/2

)2
= −∆t2 . (2.12)

If ∆t ≤ 2, then ω is real-valued, ω∆t/2 = ± sin−1(∆t/2). This means that the scheme is
marginally stable, |g| = 1, for ∆t < 2. It is also straightforward to find an invariant

1

2

(
p2 + q2

)
+

∆t

2
qp = const. , (2.13)

while the energy (p2 + q2)/2 is not conserved but oscillates around a constant level (with
no secular increase nor decrease). Then, the trajectory in the (q, p)-phase space is given
by a closed elliptic orbit as is shown in Fig.2.1 (c).

2.2 Symplectic approach

2.2.1 First-order method

Why can the integration method given in Eq.(2.11) work so well in calculation of the
Harmonic oscillator? Is it also effective to other Hamiltonian systems? Answers to these
questions would be found by considering the properties of the Hamiltonian system.

Let us remember the canonical equation of Hamilton represented by the symplectic
formulation, [1]

η̇ = J
∂H

∂η
, (2.14)
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Figure 2.1: Numerical simulation results of the harmonic oscillator obtained by (a) the
forward Euler, (b) the backward Euler, and (c) the symplectic methods. The simulations
are run up to t = 6π with ∆t = π/100.

where

η =

(
q
p

)
and J =

(
O I
−I O

)
. (2.15)

O and I denote the zero and unit matrices, respectively. Consider a coordinate transform
from η to ζ given by the Jacobian matrix M,

Mij =
∂ζi

∂ηi

. (2.16)

Then, Eq.(2.14) is transformed as

ζ̇ = MJM̃
∂H

∂ζ
, (2.17)

where M̃ means the transposed matrix of M. If the symplectic condition

MJM̃ = J (2.18)

is satisfied, the transformation from η to ζ is canonical.
The matrix denoted by MH in Eq.(2.4) satisfies the symplectic condition, Eq.(2.18),

since the solution of the Hamilton’s equation generates the canonical transform. It is also
trivial that det MH = 1. Now, rewriting Eq.(2.11) to

(
qn+1

pn+1

)
=

(
1 ∆t

−∆t 1−∆t2

) (
qn

pn

)
(2.19)

≡ MS

(
qn

pn

)
. (2.20)

then, one can easily confirm det MS = 1 and MSJM̃S = J. It means that that a mapping
of (qn, pn) to (qn+1, pn+1) given in Eq.(2.11) is a symplectic (canonical) transform. This
is why the numerical integration scheme in Eq.(2.11) is called a symplectic integrator.
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The first-order symplectic integrator in Eq.(2.11) can also be applied to a separable
Hamiltonian system with H(q, p) = T (p) + V (q),

{
qn+1 = qn + ∆t(∂T/∂p)p=pn

pn+1 = pn −∆t(∂V/∂q)q=qn+1
. (2.21)

Rewriting Eq.(2.21) into a matrix form,

(
qn+1

pn+1

)
=

(
1 0
B 1

) (
1 A
0 1

) (
qn

pn

)
(2.22)

≡ MBMA

(
qn

pn

)
(2.23)

≡ MAB

(
qn

pn

)
, (2.24)

where A = ∆t(∂T/∂p)p=pn/pn and B = −∆t(∂V/∂q)q=qn+1/qn+1. For any A and B,
one finds that MAB and MA as well as MB satisfy the symplectic condition, and that
det MAB = det MA = det MB = 1. This is because MA as well as MB represents a
generalized free motion in the phase space (namely, the trajectory is parallel to the q
or p axis), and thus, generates the canonical transform. Since successive operations of
canonical transforms is also canonical in total, MAB satisfies the symplectic condition.

2.2.2 Higher-order methods

Using the notation of z = (q, p), the canonical equation with the separable Hamiltonian
H(q, p) = T (p) + V (q) can be represented as

ż = {z, H(z)} ≡ (DT + DV )z , (2.25)

where operators DT and DV are defined as DT ≡ { , T} and DV ≡ { , V }, respectively.
Then, a formal solution of Eq.(2.25) from t = tn to tn+1 is written as

zn+1 = exp[
∫

dt(DT + DV )]zn , (2.26)

which can be approximated by

zn+1 =
k∏

i=1

exp(ci∆tDT ) exp(di∆tDV )zn +O(∆tk+1) . (2.27)

Thus, one obtains the k-th order symplectic integrator, [2]

k∏

i=1

{
qi = qi−1 + ci∆t(∂T/∂p)p=pi−1

pi = pi−1 − di∆t(∂V/∂q)q=qi

, (2.28)
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for i = 1 to k with (q0, p0) = (qn, pn) = zn and (qk, pk) = (qn+1, pn+1) = zn+1. The
transformation from zn to zn+1 is symplectic, since it is a product of each symplectic
mapping for the free motion.

For the first-order (k = 1), one finds c1 = d1 = 1, which leads to Eq.(2.11). The
second-order scheme can also be obtained by expanding the r.h.s of Eqs.(2.26) and (2.27)
and comparing the coefficients up to the second-order terms. The result of c1 = c2 = 1/2,
d1 = 1, and d2 = 0 constructs the following mapping,





qn+1/2 = qn + (∆t/2)(∂T/∂p)p=pn

pn+1 = pn −∆t(∂V/∂q)q=qn+1/2

qn+1 = qn+1/2 + (∆t/2)(∂T/∂p)p=pn+1

. (2.29)

This is equivalent to the leap-frog integrator,

{
qn+1/2 = qn−1/2 + ∆t(∂T/∂p)p=pn

pn+1 = pn −∆t(∂V/∂q)q=qn+1/2

, (2.30)

which is widely used in particle-in-cell (P.I.C.) simulations [3].
The fourth-order integrator S4(∆t) has been obtained by Forest and Ruth [4] such

that

c1 = c4 =
1

2(2− 21/3)
, c2 = c3 =

1− 21/3

2(2− 21/3)
,

d1 = d3 =
1

2− 21/3
, d2 = − 21/3

2− 21/3
, d4 = 0 . (2.31)

It is also known that S4 is represented by successive operations of the second-order one,
S2(∆t), [2]

S4(∆t) = S2(d1∆t)S2(d2∆t)S2(d1∆t) . (2.32)

2.3 Non-separable Hamiltonian system

2.3.1 Implicit method

In the previous section, we have considered a separable Hamiltonian system with H(q, p) =
T (q) + V (q). However, no explicit integrator is known for a general type of the Hamilto-
nian. Then, let us consider an implicit scheme. The implicit midpoint rule,

Un+1 = Un + ∆tF (Ū ) with Ū = (Un+1 + Un)/2 . (2.33)

is the second-order method which can be applied to O.D.E.’s of dU/dt = F (U ). If we
employ Eq.(2.33) for integrating the canonical equation of Hamilton with H(q, p),

(
qn+1

pn+1

)
=

(
qn

pn

)
+ ∆t

(
∂H/∂p|q̄,p̄

−∂H/∂q|q̄,p̄

)
, (2.34)
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where q̄ = (qn + qn+1)/2 and p̄ = (pn + pn+1)/2. Let us see that the mapping (qn, pn) →
(qn+1, pn+1) in Eq.(2.34) is a canonical transform [5]. Consider a generating function of
the third kind, G(qn+1, pn), that defines a canonical transform [1]

{
qn = −∂G/∂pn

pn+1 = −∂G/∂qn+1 . (2.35)

Substituting

G(qn+1, pn) = −qn+1pn + ∆tH(q̄, p̄) +
1

2
∆t2Hq(q̄, p̄)Hp(q̄, p̄) (2.36)

into Eq.(2.35), one finds

qn = qn+1 −∆tHq
∂q̄

∂pn
−∆tHp

∂p̄

∂pn
− 1

2
∆t2

∂

∂pn
[Hq(q̄, p̄)Hp(q̄, p̄)] ,

pn+1 = pn −∆tHq
∂q̄

∂qn+1
−∆tHp

∂p̄

∂qn+1
− 1

2
∆t2

∂

∂qn+1
[Hq(q̄, p̄)Hp(q̄, p̄)] ,

where Hq = ∂H/∂q|q̄,p̄ and Hp = ∂H/∂p|q̄,p̄. If we define

{
q̄ = qn+1 − (∆t/2)Hp(q̄, p̄)
p̄ = pn − (∆t/2)Hq(q̄, p̄)

, (2.37)

one finds that Eq.(2.35) reduces to Eq.(2.34), namely, Eq.(2.34) is a canonical transform
generated by G(qn+1, pn).

2.3.2 Higher-order methods

Extension of Eq.(2.34) to the 4th-order method is straightforward by using the same
successive operations as in Eq.(2.32),

S4(∆t) = S2(d1∆t)S2(d2∆t)S2(d1∆t) .

The higher-order methods can be constructed in a similar way to Eq.(2.32).

2.4 Application to 3-mode equations

In this section, let us consider the following set of ordinary differential equations (so-called
3-mode equations in literatures of the drift wave turbulence),





ȧ = b

ḃ = a− δac
ċ = 2δab

. (2.38)

The above equations can be obtained by keeping only (±1,±1) and (0,±2) modes in the
continuity and vorticity equations for the Rayleigh-Taylor (interchange) instability while
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truncating the higher modes. In section 4.2.2, the same equations are also derived from
the drift kinetic equations for the ion temperature gradient (ITG) driven instability [6].
It is easy to confirm that Eq.(2.38) has two independent conserved quantities, such that

c− δa2 = D1 (2.39)

b2 +
1

2
c2 − 1

δ
c = D2 . (2.40)

Then, Eq.(2.38) is integrable, and its analytical solution is given by the Jacobi elliptic
functions (see, for example, Ref.[6]). By substituting Eq.(2.39) into the second equation
of Eq.(2.38) to eliminate c, one also finds that Eq.(2.38) reduces to the canonical equation
for a and b with a separable Hamiltonian

H(a, b) =
1

2
b2 +

1

2
(δD1 − 1)a2 +

1

4
δ2a4 , (2.41)

that is, {
ȧ = ∂H(a, b)/∂b = b

ḃ = −∂H(a, b)/∂a = (1− δD1)a− δ2a3 . (2.42)

A benefit of the implicit midpoint rule in Eq.(2.33) is applicability to a general form
of O.D.E., such that dU/dt = F (U ). One can directly apply Eq.(2.33) to Eq.(2.38)
by setting U = (a, b, c). On the other hand, the explicit symplectic integrator can also
be used for integrating Eq.(2.42), since the Hamiltonian H(a, b) is separable for a and b.
Results of the numerical time integration is given in Fig.2.2, where three different methods
are compared; the leap-frog integrator, the implicit midpoint rule, and the Runge-Kutta
method. One can clearly see that the first two methods successfully reproduce the periodic
solution of the 3-mode equations, while the Runge-Kutta scheme fails in spite of its higher-
order accuracy than the others.
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Figure 2.2: Time evolutions of a in the 3-mode equations obtained by (a) the leap-frog
integrator, (b) implicit midpoint rule, and (c) the 4th-order Runge-Kutta method.
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Chapter 3

Numerical simulation of the
Vlasov-Possion system

In this chapter, we consider numerical simulation methods for the one-dimensional Vlasov-
Poisson system,

∂f

∂t
+ v

∂f

∂x
+

∂φ

∂x

∂f

∂v
= 0 , (3.1)

−∂2φ

∂x2
= 1−

∫
fdv , (3.2)

where f = f(x, v; t) is the one-body velocity distribution function of electrons. Back-
ground immobile ions are assumed. As is well known, since f is a constant of motion,
Eq.(3.1) is represented as,

∂f

∂t
= −{f,H} (3.3)

for the conjugate pair of the coordinates, (x, v), where the Hamiltonian H(x, v) = v2/2 +
φ(x). While f is constant along the particle motion, it is stretched and folded by the
Hamiltonian flow (particle trajectories) in the phase space. Then, fine-scale structures of
f are generated in the phase space, while fluid variables given by velocity-space integrals
are damped. This is known as the phase mixing.

3.1 Phase mixing

The phase mixing causes a severe problem in numerical simulations of collisionless kinetic
plasmas (Vlasov, drift kinetic, gyrokinetic etc.). Historically, this point has been more
clearly recognized in the Vlasov simulation rather than P.I.C. Let us see the difficulty in
simulation of the Vlasov equation by considering a case of the neutral gas with no electric
field (φ = 0). Under the periodic boundary condition for x, an analytical solution of
Eq.(3.1) with φ = 0 is given by

f(x, v; t) =
∑

k

f(k, v; t = 0) exp(ikx− ikvt) , (3.4)
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where f(k, v; t = 0) is a Fourier component of the initial condition f(x, v; t = 0). k
denotes the wave number. A scale-length of f along the v-axis becomes smaller with the
time t, which is related to the ballistic motion of particles. In a case with a monotonic
perturbation, f(x, v; t = 0) = 1 + f0(v) cos kx, the solution is given by

f(x, v; t) = f0(v)[1 + cos(kx− kvt)] . (3.5)

For the Maxwellian initial distribution, f0(v) = exp(−v2/2)/
√

2π, one finds that the
density perturbation monotonically decays in time, n(x; t) = exp(−k2t2/2) cos kx.

Now, let us consider what happens in numerical simulations with finite resolution ∆v
in the velocity space. In the discretized velocity space, v = j∆v (j is integer), Eq.(3.5) is
represented as

f(x, j; t) = f0(j∆v)[1 + cos(kx− kj∆vt)] . (3.6)

It is applicable not only to the Vlasov simulation but also to the (δf) P.I.C. method,
since f can be dealt with only at a finite number of particle positions. At glance, one will
find that Eq.(3.6) is periodic in t. At every t = 2π/k∆v, f(x, j; t) returns to its original
form, f(x, j; t = 0), which is called recurrence [7]. Schematic plots of the recurrence are
shown in Fig.3.1 for the case with f0(v) = const. This is an artificial effect due to the
insufficient resolution for the velocity space, and is similar to the aliasing error that may
arise in discretization of continuous data. Thus, numerical simulation of this system is
valid only for t < tr/2 = π/k∆v (tr is called the recurrence time).

In a case with finite electric field [φ 6= 0 given by Eq.(3.2)], the phase mixing process is
much more complicated, since Eq.(3.1) contains a nonlinear term. A nonuniform electric
field leads to inhomogeneous acceleration of particles depending on their positions, and
generates fine-scale fluctuations of f in the real x-space as well, which is also regarded as
a nonlinear mode coupling through the electric field.

3.2 Vlasov simulation method with symplectic inte-

grator

Keeping the above discussion in mind, let us consider the Vlasov simulation method which
directly solves Eq.(3.1) as a partial differential equation in the (x, v)-phase space. In
1970’s, Cheng and Knorr proposed the splitting scheme which consists of three successive
transforms of f [7], 




f ∗(x, v) = fn(x− v∆t/2, v)
f ∗∗(x, v) = f ∗(x, v −∆t∂φ/∂x)
fn+1(x, v) = f ∗∗(x− v∆t/2, v)

. (3.7)

Since numerical simulations are carried out with finite resolution, an interpolation method
is necessary to evaluate f at the position referred in the transformations. Here, we have
used the Fourier series expansion in applications given below, while the cubic splines
interpolation [8] is also widely employed. The coordinate transformation of x − v∆t/2
can be accurately calculated in the Fourier space by multiplying a phase shifting factor of
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Figure 3.1: Schematic view of recurrence of the initial condition due to discretization of
the velocity space.

exp(−ikv∆t/2). Similarly, the transformation of v−∆t∂φ/∂x is carried out in the velocity
wave number space by multiplying exp(−i`∆t∂φ/∂x). Here, ` denotes a wave number in
the velocity space. Because of the finite resolution, the above simulation scheme works
well only when the scale lengths in the phase space are much greater than the grid spacing
(k ¿ π/∆x and ` ¿ π/∆v).

By comparing Eqs.(2.29) and (3.7), one will note that Eq.(3.7) is no more than a
mapping of f generated by the leap-frog integrator. In other words, f is just advected
in the x (v) space by Eq.(3.7) with the velocity v (the acceleration ∂φ/∂x) which is
independent of x (v). Thus, it is straightforward to extend the splitting scheme into
higher-orders. A formal solution of Eq.(3.3) is approximated by

fn+1 =
k∏

i=1

exp(−ci∆tDT ) exp(−di∆tDV )fn +O(∆tk+1) . (3.8)

Then, the higher-order scheme is given by

k∏

i=1

{
f ∗i−1(q, p) = fi−1(q − ci∆t ∂T/∂p|f=fi−1

, p)

fi(q, p) = f ∗i−1(q, p + di∆t ∂V/∂q|f=f∗i−1
)

, (3.9)
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which is a generalization of the splitting scheme.
In order to see accuracy of the higher-order method, we have performed a simulation

of the nonlinear Landau damping [9]. The initial condition is given by f(x, v; t = 0) =
FM(v)(1 − A cos kx), where A = 0.5, k = 0.5. In a system with length of L = 2π/k,
we set 64 grid points (∆x = L/64) with the periodic boundary condition. The velocity
space of −vmax ≤ v ≤ vmax with vmax = 10 is discretized by grid points with spacing of
∆v = vmax/512. The time integration is carried out by using the 2nd- (leap-frog) and
4th-order symplectic methods with the time step of ∆t = 0.125.

Fluctuations of the total energy in the 2nd- and 4th-order simulations are shown in
Fig.3.2. One can see that the energy conservation is largely improved by using the 4th-
order integration scheme.

Contour plots of the distribution function in the phase space are shown in Fig.3.3. As
we have discussed in the above, fine-scale structures of f in the velocity space become
dominant due to the phase mixing. Then, one can see folding of f which shows the particle
trapping. Under the physical and numerical parameters given above, the simulation
should be stopped at t = 40, when the fluctuation scale-length becomes as small as the
grid size.
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Figure 3.2: Fluctuation of the total energy in simulations of the nonlinear Landau damp-
ing. Solid and dashed curves represent results of 2nd and 4th-order schemes, respectively.

3.3 Application to the plasma echo

Here, we try to simulate the temporal plasma echo [10] which is considered to be one of
the most difficult problems in simulations of the Vlasov-Poisson system. The initial dis-
tribution function is given by the Maxwellian homogeneous in the x-space. The boundary
condition in x is periodic. Electrostatic potential of Φ cos k1x is externally added at t = 0
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Figure 3.3: Contour maps of the distribution function in the phase space obtained by a
simulation of the nonlinear Landau damping at t = 0, 10, and 40ω−1

pe (from the left to the
right).

with a duration time τD. The second pulse is given at t = τ with the wave form of Φ cos k2x
for the same period. We expect a temporal echo appears at t = techo = τk2/(k2−k1) with
the wave number of k3 = k2−k1. In the results shown below, we set τ = 30ω−1

p , k1λD = π,
k2λD = 5π/4, Φ = 0.1 and τD = 0.125ω−1

p . Thus, techo = 150ω−1
p and k3λD = π/4.

The x-space with the length of 16λD is discretized by 64 grid points. The velocity
space of −10vt ≤ v ≤ 10vt is represented by 4097 grid points. The time step is set to be
∆t = ω−1

p /8.
A time-evolution of the plasma echo obtained by the Vlasov simulation is shown in

Fig.3.4 (left). The appearance time techo and the wave number k3 are consistent with the
theoretical estimates. In the right panel of Fig.3.4, horizontal axis is magnified for clear
plotting, where one can see a non-symmetric profile of the echo [10]. In this simulation, it
is essential to employ huge numbers of grid points in the velocity space in order to keep
sufficient resolution to the phase mixing process. Otherwise, no clear echo is observed.
The obtained result verifies that the phase mixing process with the time-reversibility is
successfully reproduced by the Vlasov simulation based on the symplectic integrator.

17



-0.004
-0.003
-0.002
-0.001

0
0.001
0.002
0.003
0.004

0 50 100 150 200

Pu
ls

es
 a

nd
 a

n 
E

ch
o

Time

1st Pulse
2nd Pulse

Echo

-0.004
-0.003
-0.002
-0.001

0
0.001
0.002
0.003
0.004

140 145 150 155 160 165

E
ch

o

Time

Echo

Figure 3.4: Time evolutions of input pulses and an echo (left). A detailed profile of the
echo is plotted with magnified horizontal axis (right).

18



Chapter 4

Numerical simulation of the drift
kinetic system

The collisionless electrostatic drift kinetic equation on f(x, v‖; t) in a slab geometry with
uniform magnetic field B

∂f

∂t
+ v‖∇‖f + vE×B · ∇f + E‖

∂f

∂v‖
= 0 (4.1)

(in normalized units) also has the parallel advection term which generates fine-scale struc-
tures of f in the velocity space. v‖ and vE×B denote the parallel (to the magnetic field)
and the E ×B drift velocities, respectively. E‖ means a component of the electric field
E parallel to B. The gyrokinetic equation also has the same structure as Eq.(4.1). In
this chapter, let us consider a simulation scheme suitable for solving Eq.(4.1).

4.1 Time-reversible scheme

In the electrostatic case, E = −∇φ, the Hamiltonian of a particle is given by

H(x⊥1, x⊥2, x‖, v‖) =
1

2
v2
‖ + φ(x⊥1, x⊥2, x‖) . (4.2)

Since the E ×B drift motion is represented as
{

ẋ⊥1 = −∂φ/∂x⊥2

ẋ⊥2 = ∂φ/∂x⊥1
, (4.3)

(x⊥1, x⊥2) is a conjugate pair of the coordinates. Then, by using a compact form of the
coordinates, z = (x⊥2, x‖, x⊥1, v‖), the equation of motion of an E × B drift particle is
written as

ż = {z, H(z)} . (4.4)

Similarly, the drift kinetic equation is rewritten as

∂f

∂t
= −{f, H} , (4.5)
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which is the same as Eq.(3.3). In the drift kinetic system (as well as the gyrokinetic
system), however, the Hamiltonian H(z) is non-separable for (x⊥1, x⊥2). Thus, we need
to use an implicit symplectic scheme instead of the explicit one that is applied to the
Vlasov-Poisson system.

Let us remember the implicit midpoint rule, Eq.(2.33). Applying Eq.(2.33) to the
equation of motion of a drift particle, Eq.(4.4), one finds

zn+1 = zn + ∆t {z, H(z̄)} with z̄ =
zn+1 + zn

2
, (4.6)

which generates a mapping of f , such that

fn+1(z) = fn [z −∆t {z, H(z̄)}] . (4.7)

From a viewpoint of the numerical scheme, a direct calculation of Eq.(4.7) is difficult,
because the splitting technique explained in section 3.2 can not be applied to the non-
separable Hamiltonian system.

Instead of the direct calculation of Eq.(4.7), then, it is more straightforward to apply
the implicit midpoint rule, Eq.(2.33), to f (not to z), which gives

fn+1 = fn −∆t
{
f̄ , H̄

}
with f̄ =

fn+1 + fn

2
. (4.8)

This method apparently preserves the time-reversibility of the drift kinetic equation,
Eq.(4.1).

It is important to note that, when the operator F in Eq.(2.33) represents the advection
term by an incompressible flow, such that F (Ū ) = −V ·∇U with ∇·V = 0, the implicit
midpoint rule exactly satisfies the conservation law of energy, |U |2, that is,

∣∣∣Un+1
∣∣∣
2
+ |Un|2 = −∆t∇ ·

(∣∣∣Ū
∣∣∣
2
V

)
. (4.9)

Since the Hamiltonian flow is also incompressible in the phase space, Eq.(4.8) leads to

∣∣∣fn+1
∣∣∣
2 − |fn|2 = −∆t

{∣∣∣f̄
∣∣∣
2
, H̄

}
. (4.10)

In a system with the periodic boundary for the real space, or, if the surface integrals can
be omitted, the integral

∫
d3xdv‖f 2 (where f → 0 for v‖ → ±∞) is conserved throughout

the numerical time-integration. Therefore, the time-integration method in Eq.(4.8) is
nondissipative. This is the advantage in simulations of collisionless kinetic plasmas, while∫

fmd6z for any integer m as well as
∫

f ln fd6z is also conserved in the real Vlasov and/or
drift kinetic systems.
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4.2 Application to the ion temperature gradient driven

system

4.2.1 Model settings

Here, we consider the drift kinetic equation for the perturbed ion distribution function
f̃k with a wave number k in a two-dimensional slab geometry with the uniform magnetic
field in the y-z plane,

∂tf̃k + iΘv‖kyf̃k +
∑

k=k′+k′′

(
k′yk

′′
x − k′xk

′′
y

)
Ψk′ f̃k′′

= −ikyΨk

[
1 +

ηi

2

{
v2
‖ − 1− k2

}
+ Θv‖

]
FM(v‖) (4.11)

Ψk = e−k2/2φk , (4.12)
[
1− Γ0(k

2)
]
φk = e−k2/2

∫
f̃k(v‖)dv‖ − ñe,k , (4.13)

where k2 = k2
x+k2

y and Γ0(k
2) = exp(−k2)I0(k

2). I0(z) denotes the zero-th order modified
Bessel function of z. Here, the periodic boundary condition is employed both for the x
and y directions. The above set of equation is normalized as follows; x = x′/ρi, y = y′/ρi,
v = v′/vti, t = t′vti/Ln, ηi = Ln/LT , and φ = eφ′Ln/Tiρi with the elementary charge
e and the background ion temperature Ti (= miv

2
ti; mi means the ion mass). We have

also taken Ti = Te. Parameter ηi is defined by the ratio of scale lengths of background
ion density and temperature gradients, Ln and Lt. Θ = θLn/ρi where θ = By/Bz ¿ 1
and ρi is the thermal ion gyroradius. Equations (4.11)-(4.13) are obtained by integrating
the gyrokinetic equation [11] for v⊥, assuming f̃k(v‖, v⊥) = f̃k(v‖)FM(v⊥) where k⊥ =√

k2
x + k2

y. The electron response is adiabatic,

ñe,k =

{
φk for ky 6= 0
0 for ky = 0

. (4.14)

The above set of equations describes the ion temperature gradient (ITG) instability driven
by the fixed temperature gradient of background ions with the Maxwellian distribution
FM . The same model is also used for simulations of the ITG turbulence which is considered
to be a possible mechanism for the anomalous ion heat transport in high-temperature
plasmas.

4.2.2 3-mode ITG system

In this subsection, we consider a reduced set of Eq.(4.11) obtained by keeping only
(m,n) = (±1,±1) and (±2, 0) modes with the following symmetry conditions of f̃1,1 =
f̃−1,1 = f̃ ∗1,−1 = f̃ ∗−1,−1 and f̃2,0 = f̃ ∗−2,0. Here, (m,n) denotes mode numbers in the (x, y)
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space. We also assume Re(f̃2,0) = 0. From Eqs.(4.11) to (4.13), in the long wavelength
limit (k2 → 0, e−k2/2 → 1, and Γ0 → 1), we find the 3-mode ITG system

(∂t + ik0Θv)f(v, t) + 2ik2
0φ(t)h(v, t) = −ik0φ(t)G(v) , (4.15)

∂th(v, t) = 4k2
0Im[φ∗(t)f(v, t)] , (4.16)

φ(t) =
∫

dv f(v, t) , (4.17)

where f and φ are complex-valued while h is real-valued. Also, we have taken k0 = kx =
ky. G(v) is defined as

G(v) ≡
[
1 +

ηi

2
(v2 − 1) + Θv

]
FM(v) . (4.18)

This problem has often been examined in benchmark tests of many simulation codes for
the ITG instability (see references in Ref.[6]).

A class of exact solutions of the nonlinear 3-mode ITG equations is derived in terms of
the real and imaginary parts of the linear eigenfunction fL(v) and the real eigenfrequency
ωr as [6]

f(v, t) = [a(t)fLr(v) + ib(t)fLi(v)] exp(−iωrt),

h(v, t) = c(t)fLi(v),

φ(t) = a(t) exp(−iωrt) , (4.19)

where a(t), b(t), and c(t) are real-valued functions of the time t. Here, the linear solution
is given by

fL(v) ≡ fLr(v) + ifLi(v)

≡ k0G(v)

(ωr − k0Θv) + iγ

≡ k0G(v)[(ωr − k0Θv)− iγ]

(ωr − k0Θv)2 + γ2
, (4.20)

hL(v) ≡ 0, and φL ≡ 1 (normalization) , (4.21)

The complex eigenfrequency ω = ωr + iγ is determined by the dispersion relation

∫
dv fL(v) ≡

∫
dv

k0G(v)

(ωr − k0Θv) + iγ
= 1 , (4.22)

where γ > 0 is assumed.
Substituting these into Eqs.(4.15)–(4.17) and using Eq.(4.20), we obtain the ordinary

differential equations for [a(t), b(t), c(t)],

da/dt = γb ,

db/dt = γa− 2k2
0ac ,

dc/dt = 4k2
0ab, (4.23)
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Figure 4.1: Comparison of the implicit midpoint scheme with the predictor-corrector and
the Runge-Kutta-Gill methods for k0 = 0.1, ηi = 10, Θ = 1, and ε = 10−5 [9].

which is equivalent to Eq.(2.38) discussed in section 2.4. Then, its solution is given by
the Jacobi elliptic functions and is periodic in time.

Numerical simulations of the 3-mode ITG system given by Eqs.(4.15)-(4.17) are carried
out by means of three different time-integrations schemes. Let us compare the simula-
tion results with each other, where the implicit midpoint rule in Eq.(4.8), the predictor-
corrector, and the Runge-Kutta-Gill methods are used. The last two methods are second
and fourth-order explicit schemes, respectively. The predictor-corrector method used here
is written as [12] {

U ∗ = Un−1 + 2∆tF (Un)
Un+1 = Un + ∆tF [(U ∗ + Un)/2] ,

(4.24)

which is known to be weakly dissipative.
The initial condition is given by f±(v, t = 0) = εFM(v) and f2(v, t = 0) = 0. The

velocity space of −5vt ≤ v ≤ 5vt is represented by 129 grid points. The time step is
∆t = 0.25. Figure 4.1 shows the simulation results for k0 = 0.1, ηi = 10, Θ = 1, and
ε = 10−5. For these parameters, the analytical solution predicts the period of T = 353.
With respect to the linear growth rate and the first peak level of |φ|, the three methods
give the same results. After the peaking, |φ| decreases with the same rate as in the linear
growth phase. The nondissipative simulation with the implicit midpoint rule in Eq.(4.8)
(as well as its fourth-order version) can accurately reproduce the analytical solution of
the 3-mode ITG equation. In the case of the predictor-corrector method, however, the
exponential decay stops at |φ| = 4.63× 10−2 due to the numerical dissipation, and then,
the mode grows again. The periodic behavior of |φ| is lost by the predictor-corrector
scheme. Thus, time interval of the first and second peaks of |φ| is shorter (T = 143) than
a half of the period given by the analytical solution. Although the fourth-order Runge-
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Kutta-Gill method is less dissipative than the predictor-corrector, the periodic solution is
not correctly reproduced. The minimum value of |φ| is 4.45×10−4, and the interval of the
first and second peaks is T = 256. The above comparison with the dissipative integrators
highlights the success of the nondissipative scheme in Eq.(4.8).

4.2.3 Drift wave echo

In order to verify the accuracy of the nondissipative scheme in Eq.(4.8) for the phase
mixing process, let us consider a temporal plasma echo in the drift kinetic system. The
simulation model is the same as that described in section 4.2.1. The initial perturbed
distribution function is set to be zero. We also assume the symmetry of fkx,ky = f−kx,ky .
Electrostatic potential of Φ cos k1x cos k1y is externally added at t = 0 with a duration
time τD. The second pulse is given at t = τ with the wave form of Φ cos k2x cos k2y for
the same period. We expect that a temporal echo appears at t = techo = τk2/(k2 − k1)
with the wave number of k3,x = k1 + k2 and k3,y = k2 − k1 (the ion diamagnetic drift is
in the −y-direction). We choose parameters of ηi = 0 and Θ = 1. In the results shown
below, we set τ = 30Ln/vt, k1ρi = 0.4, k2ρi = 0.5, Φ = 0.1 and τD = 0.2Ln/vt. Thus,
techo = 150Ln/vt, k3,xρi = 0.9, and k3,yρi = 0.1.

The minimum and maximum wave numbers are, respectively, 0.1ρ−1
i and 1.0ρ−1

i with
the 3/2-rule for de-aliasing. The velocity space of −5vt ≤ v‖ ≤ 5vt is represented by 2049
grid points. The recurrence time is estimated as tr ≡ 2π/k∆v‖ = 2048π/5 ∼ 1286Ln/vt

which is much longer than the simulation time. Then, we have enough resolution for the
velocity space. The time step is set to be ∆t = 0.1Ln/vt.

Time history of (kx, ky) = (k1 +k2, k2−k1) mode is shown in Fig.4.2. The appearance
time of the echo techo and the wave numbers k3,x and k3,y agree with the theoretical
estimates. The obtained result shows that the phase mixing process with the time-
reversibility is successfully reproduced by the simulation with the nondissipative time
integration scheme.

4.2.4 Remarks on ITG turbulence simulation

Eqs.(4.11)-(4.13) are also employed for simulations of the ITG turbulent transport [6].
The nondissipative simulation method based on the implicit midpoint rule, Eq.(4.8), has
a benefit of preserving the entropy balance.

By multiplying f̃ ∗k/FM to Eq.(4.11), and using Eqs.(4.12) and (4.13), we find

d

dt
(δS + W ) = ηiQi , (4.25)

where δS ≡ ∑
k

∫
dv‖|f̃k|2/2FM ; the potential energy W is defined as W =

∑
k[1 −

δky ,0 + (Te/Ti)(1− Γ0)]|φk|2/2. The perpendicular ion thermal transport flux Qi is Qi =∑
k

∫
dv‖(−ikye

−k2/2φk)v
2
‖ f̃−k/2. Also, δS is rewritten as δS = SM − Sm where SM =

− ∫
d3vFM ln FM and Sm = −〈∫ d3vf ln f〉, with f = FM + δf , represent macroscopic and

microscopic entropy per unit volume, respectively. 〈· · ·〉 denotes the ensemble average.
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Figure 4.2: Drift wave echo found in potential evolution of (k1+k2, k2−k1) mode of which
amplitude peaks at t = 150Ln/vt as is expected by the theoretical estimate.

The entropy variable δS is the opposite sign of the excess entropy defined by Glansdorff
and Prigogine [13]. Thus, Eq.(4.25) is called the entropy balance equation.

As is seen in Eq.(4.10), the nondissipative scheme guarantees conservation of δS.
Therefore, by using the simulation scheme given in Eq.(4.8), the entropy balance equation
can be accurately calculated. It should be noted that the entropy production rate d(δS)/dt
balances with ηiQi if a constant transport flux Qi is observed in a steady turbulent flow
(dW/dt = 0). This means that precise evaluation of δS is a key to understand a mechanism
of the collisionless plasma turbulent transport. Results of the nondissipative simulation
of the ITG turbulence are found in Ref.[14].
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Chapter 5

Kinetic fluid simulations models

In this chapter, let us consider kinetic-fluid simulation models which are designed with
the aim of reproducing behaviors of low-order velocity-space moments of f in terms of
fluid variables such as density, momentum, temperature, etc.

5.1 Closure models

By taking 0th to 2nd order velocity-space moments of Eq.(4.11) in the long wavelength
limit (k2 → 0, e−k2/2 → 1, and Γ0 → 1), we find the following set of fluid equations,

∂tnk + ik‖uk − ik⊥ · b̂× n̂φk −
∑

k=k′+k′′
b̂ · k′ × k′′φk′nk′′ = 0 , (5.1)

∂tuk + ik‖(nk + Tk + φk)−
∑

k=k′+k′′
b̂ · k′ × k′′φk′uk′′ = 0 , (5.2)

∂tTk + ik‖(2uk + qk)− iηik⊥ · b̂× n̂φk −
∑

k=k′+k′′
b̂ · k′ × k′′φk′Tk′′ = 0 , (5.3)

where nk =
∫

dv‖f̃k, uk =
∫

dv‖f̃kv‖, Tk =
∫

dv‖f̃k(v2
‖ − 1), and qk =

∫
dv‖f̃k(v3

‖ − 3v‖).

b̂ and n̂ denote unit vectors in directions of the magnetic field and the density gradient,
respectively. Here, the quasi-neutrality condition with the adiabatic electron response
is given by nk = φk without considering the exceptional treatment for the zonal flow
components with ky = 0. Since the parallel heat flux qk appears in Eq.(5.3), in order
to close the fluid equations, one needs a closure model which represents qk in terms of
lower-order moments, nk, uk, and Tk. This is called the closure problem.

It is an important subject in kinetic-fluid simulations of turbulent transport what
kind of closure model should be employed. From Eqs.(5.1) to (5.3), one finds the entropy
balance equation in the kinetic-fluid system,

d

dt

∑

k

( |nk|2
2

+
|uk|2

2
+
|Tk|2

2

)
+

dW

dt
= ηiQi +

∑

k
Re

(
ik‖
2

Tkq
∗
k

)
, (5.4)
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which corresponds to Eq.(4.25) in the long wavelength limit. Since the left hand side of
Eq.(5.4) vanishes in a steady state, the transport flux Qi balances with a correlation term
between Tk and q∗k which depends on the closure model itself.

Hammett and Perkins (H-P) proposed a simple kinetic-fluid closure model [15], that
is,

qk = −i

√
8

π

k‖∣∣∣k‖
∣∣∣
Tk , (5.5)

which can reproduce the linear Landau damping as well as the linear dispersion relation
of the slab ITG mode. One finds that the H-P closure model brings the dissipation
(irreversibility) into Eq.(5.3), while the kinetic equation is nondissipative with the time-
reversal symmetry.

Contrary to the H-P closure model, a nondissipative closure model (NCM) for linearly
unstable modes is also considered [16], such that,

qk = CTkTk + Cukuk , (5.6)

with real-valued coefficients, CTk and Cuk, which are determined so as to reproduce the
linear dispersion relation of the ITG mode. Thus, the time-reversibility of the unstable
modes can be preserved even in the kinetic-fluid system.

5.2 Application to the 3-mode ITG system

In order to see effects of the closure models, let us consider the 3-mode ITG problem in the
set of kinetic-fluid equations. The model setting is the same as that in section 4.2.2. Then,
one finds the same set of O.D.E.’s as Eq.(4.23). The implicit midpoint rule is employed
for the time-integration. Results of the numerical simulations with three different closure
models are shown in Fig.5.1, where the potential amplitude of (1, 1) mode is plotted for the
H-P closure, NCM, and the adiabatic closure model of qk = 0. The NCM result exactly
agrees with the analytical solution given by the Jacobi elliptic function. The potential
amplitude in the H-P model is, however, saturated at a certain constant amplitude, while
a periodic behavior of the solution is also preserved even with the adiabatic model of
qk = 0. The qualitative difference found in simulations of the H-P closure and the other
two models is due to the breaking of the time-reversibility introduced by Eq.(5.5). The
obtained result demonstrates that keeping the time-reversibility is essential to the test
nonlinear problem of the 3-mode ITG system. For comparison between the kinetic and
fluid simulations of the ITG turbulence, one may refer to a recent work given in Ref.[17].

In summary, preserving the time-reversibility is important in considering the kinetic-
fluid closure model. As seen in previous chapters, one also needs to take care of the
time-reversibility of the numerical time-integration scheme employed in the kinetic-fluid
simulation. Otherwise, all efforts to construct the closure model may come to nothing.
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Figure 5.1: Numerical solution of the 3-mode ITG problem in kinetic-fluid models. Time-
evolutions of the potential amplitude given by the H-P closure (dashed), NCM (solid),
and the adiabatic closure model of qk = 0 (dotted) are plotted as functions of the time t
[16].
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[8] M.Shoucri and R.Gagné, J.Comput.Phys. bf 27, 315 (1978).

[9] T.-H.Watanabe, H.Sugama, and T.Sato, J.Phys.Soc.Jpn 70, 3565 (2001).

[10] S.Ichimaru, “Statistical Plasma Physics Vol.I: Basic Principles” (Addison-Wesley,
Redwood City, 1992) Chap.5 and references therein.

[11] D.H.E.Dubin, J.A.Krommes, C.Oberman, and W.W.Lee, Phys. Fluids 26, 3524
(1983).

[12] W.W.Lee and H.Okuda, J.Compt.Phys. 26, 139 (1978).

[13] P.Glansdorff, and I.Prigogine, “Thermodynamic Theory of Structure, Stability and
Fluctuations” (Wiley-Interscience, London, 1971).

[14] T.-H.Watanabe and H.Sugama, Phys.Plasmas 9, 3659 (2002).

[15] G.W.Hammett and F.W.Perkins, Phys.Rev.Lett. 64, 3019 (1990).

[16] H.Sugama, T.-H.Watanabe, and W.Horton, Phys.Plasmas 8, 2617 (2001).

[17] H.Sugama, T.-H.Watanabe, and W.Horton, Phys.Plasmas 10, 726 (2003).

29


